2020年高考圆锥曲线知识点汇编.
- 格式:pdf
- 大小:565.34 KB
- 文档页数:3
第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考圆锥曲线知识点汇总知识摘要:1、椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.2、双曲线及其标准方程.双曲线的简单几何性质.3、抛物线及其标准方程.抛物线的简单几何性质.一、椭圆方程 .1. 椭圆的定义:平面内与两个定点F1 ,F2 的距离之和等于常数2a (大于 F 1F 2 )的点的轨迹叫做椭圆 . 其中两个定点 F 1,F 2 为椭圆的两个焦点, 两焦点间的距离 焦距.F F 叫做椭圆的1 2第一定义:当 P FPFaF F ,无轨迹122 1 2当 P FPFa F F ,轨迹是以 122 1 2F , 1F 为端点的线段2当 P FPFa F F ,轨迹为椭圆1221 2第二定义:椭圆上的点到对应焦点的距离与到对应准线的距离的比等于离心率 e . 切记:“ 点点距为分子、点线距为分母 ”,其商即是离心率 e . 如图:P Fc 1eda1或P Fc2e da22、椭圆的标准方程: (1)中心在原点,焦点在x 轴上的椭圆的标准方程:22xy221( 0)a ba b(2)中心在原点,焦点在y 轴上的椭圆的标准方程:22yx221( 0) a ba b3、椭圆的一般方程:221( 0, 0) Ax ByA B22x y 4、焦点在 x轴上的椭圆的标准方程:122a b的参数方程为x y a b cos sin(其中 为参数) 5、椭圆 22xy221(a b 0)的几何性质:a b(1)顶点:( a,0) 和0, b ,其中长轴长为 2 a,短轴长为2b(2)焦点:两个焦点( c,0) ,焦距: 2 2F 1F 2c, c a b2(3)范围: a x a, b y b(4)对称性:两条对称轴x 0, y 0 ,一个对称中心(0,0 )2a(5)准线:两条准线xc(6)离心率: e ca(0 e 1),其中e越小,椭圆越圆;e越大,椭圆越扁。
(7)焦点半径:“左加右减”I 、设P(x0 ,y0 ) 为椭圆2 2x y2 2 1(a b 0)a b上的一点, F 1,F 2 为左、右焦点,则PF 1 a e0x,P F2 a e0 xⅡ、设P(x0, y0 ) 为椭圆2 2y x2 2 1(a b 0)a b上的一点, F 1,F 2 为上、下焦点,则PF 1 a ey0 , PF 2 a ey0(8)通径:垂直于x 轴且过焦点的弦叫做通经: d2 2b2 a2 2x y注:若P 是椭圆: 12 2a b上的点. F 1,F 2 为焦点,若 F 1PF 2 ,则PF 1F 2 的面积为2b (用余弦定理与PF1 PF 2 2a 可得)tan2二、双曲线方程.1. 双曲线的定义第一定义:平面内与两个定点F1 ,F2 的距离之差的绝对值等于常数 2 a (且的点的轨迹叫做双曲线. 02a F F )1 2当PF1 PF2 2a F1F2 ,轨迹为双曲线当PF1 PF2 2a F1F2 ,轨迹是以F1 ,F2 为端点的射线当PF1 PF2 2a F1F2 ,无轨迹第二定义:平面内到定点 F 的距离与它到定直线的距离的比为常数e(e 1)的点的轨迹叫做双曲线.MF如图:,d 为点M 到定直线的距离.ed切记:“点点距为分子、点线距为分母”,其商即是离心率e.2、双曲线的标准方程:(1)中心在原点,焦点在x 轴上的双曲线的标准方程:2 2x y2 2 1(a 0,b 0)a b(2)中心在原点,焦点在y 轴上的双曲线的标准方程:2 2y x2 2 1( 0, 0)a ba b3、双曲线的一般方程: 2 2 1( 0)Ax By A B4、双曲线2 2x y2 2 1( 0, 0)a ba b的几何性质:(1)顶点:( a,0) ,其中实轴长为 2 a,虚轴长为2b(2)焦点:两个焦点( c,0) ,焦距: 2 2F1F2 2c, c a b (3)范围:x a, y R(4)对称性:两条对称轴x 0, y 0 ,一个对称中心(0,0 )(5)准线方程:两条准线x2 a c(6)离心率: e ca(e 1)(7)渐近线方程:b y xa(8)焦点半径:“长加短减”原则:2 2x y焦点半径公式:对于双曲线方程1(F 1,F 2 分别为双曲线的左、右焦点或分别为双2 2a b曲线的上下焦点)MF MF 12exexaa构成满足MF1MF22aMMFF12exexaa(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)▲y▲yM' MF1MxxF 1 F2M'F2MF 1 eyaMF 2 eyaM F 1 eyaM F 2 eya5、等轴双曲线:双曲线x2 y2 a2 称为等轴双曲线,其渐近线方程为y x ,离心率 e 2 .三、抛物线方程.3. 设p 0,抛物线的标准方程、类型及其几何性质:2 y 2 2 px x 2 2 py x2 2 pyy 2px图形▲y▲y ▲y ▲yx x xxOO OO焦点p p p pF ( ,0) F ( ,0) F (0, ) F (0, )2 2 2 2准线x p2xp2yp2yp2范围x 0, y R x 0, y R x R, y 0 x R, y 0 对称轴x轴y 轴顶点(0,0)离心率 e 1半焦距p p p p PF 1x PF yPF x PF y1 112 2 2 224ac b b注:①ay2 by c x 顶点)(4a 2a.2 px p②y 2 ( 0) 则焦点半径P2 py pPF ; x 2 ( 0) 则焦点半径为x2Py.PF2③通径为2p,这是过焦点的所有弦中最短的.2④y 2px2(或x 2py )的参数方程为2x 2 ptx 2pt(或y 2 pt y 2 pt2)(t 为参数).注:椭圆、双曲线、抛物线的标准方程与几何性质椭圆双曲线抛物线定义1.到两定点F1,F2 的距离1.到两定点F1,F2 的距之和为定值 2 a (2离之差的绝对值为定值a>|F1F2|)的点的轨迹2 a (0<2 a<|F1F2|)的点的轨迹2.与定点和直线的距离2.与定点和直线的距离与定点和直线的距离相等之比为定值 e 的点的轨之比为定值 e 的点的轨的点的轨迹.迹.(0<e<1)迹.(e>1)图形略略略方标准2 2 2 2x y x y方程1( a b >0) 12 2 2 2a b a b(a>0,b>0) 2 2y px参数方程xy(参数a cosb sin为离心角)xyasecb tan(参数为离心角)xy2 pt2pt2程(t 为参数) 范围x 0a x a,b y b x a, y R中心原点O (0,0) 原点O(0,0)顶点( a,0),(0, b) (a ,0) ,( a ,0) (0,0)对称轴x轴,y 轴;x轴,y 轴 ; x轴长轴长 2 a,短轴长2b 实轴长 2 a, 虚轴长2b.焦点pF1 ( c,0), F2 (c,0) F1( c,0), F2 (c,0) ,0)F (2 焦距2c (c= 2 b2a )2c (c=2 b2a )离心率 c ce (0 e 1) e (e 1)e=1a a准线x=2acx=2acxp2渐近线y=±ba x焦半径r a exr (ex a) r x p 2通径22b 2b22pa a焦参数a 2 2aPc c。
高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2 (2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(E D--半径是2422FE D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E)2=44F-E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E); ③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高考圆锥曲线公式学问点总结高考圆锥曲线公式学问点总结导语:人生,没有过不去的坎,你不行以坐在坎边等它消逝,你只能想方法穿过它。
下面是为大家整理,数学学问。
词更多相关信息请关注CNFLA相关栏目!圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x/a+y/b=1,其中ab0,c=a-b2、中心在原点,焦点在y轴上的椭圆标准方程:y/a+x/b=1,其中ab0,c=a-b参数方程:x=acos;y=bsin(为参数,02)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的.双曲线标准方程:x/a-y/b=1,其中a0,b0,c=a+b.2、中心在原点,焦点在y轴上的双曲线标准方程:y/a-x/b=1,其中a0,b0,c=a+b.参数方程:x=asec;y=btan(为参数)圆锥曲线公式:抛物线参数方程:x=2pt;y=2pt(t为参数)t=1/tan(tan为曲线上点与坐标原点确定直线的斜率)特殊地,t可等于0 直角坐标:y=ax+bx+c(开口方向为y轴,a0)x=ay+by+c(开口方向为x轴,a0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式学问点总结圆锥曲线椭圆双曲线抛物线标准方程x/a+y/b=1(ab0) x/a-y/b=1(a0,b0) y=2px(p0) 范围x[-a,a] x(-,-a][a,+) x[0,+)y[-b,b] yR yR对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0) (0,0)焦点(c,0),(-c,0) (c,0),(-c,0) (p/2,0)准线x=a/c x=a/c x=-p/2渐近线y=(b/a)x离心率e=c/a,e(0,1) e=c/a,e(1,+) e=1焦半径∣PF∣=a+ex ∣PF∣=∣ex+a∣∣PF∣=x+p/2∣PF∣=a-ex ∣PF∣=∣ex-a∣焦准距p=b/c p=b/c p通径2b/a 2b/a 2p参数方程x=acos x=asec x=2pty=bsin,为参数y=btan,为参数y=2pt,t为参数过圆锥曲线上一点x0x/a+y0y/b=1 x0x/a-y0y/b=1 y0y=p(x+x0)(x0,y0)的切线方程斜率为k的切线方程y=kx(ak+b) y=kx(ak-b)y=kx+p/2k。
2020高考数学知识再梳理---------圆锥曲线知识梳理:(1)椭圆的标准方程及其性质:(2)双曲线的标准方程及其性质:(3)抛物线的标准方程及其性质:2020高考数学知识再梳理---------圆锥曲线配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.2.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.3.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.4.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.5. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 7.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.8. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________.9. 椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.10.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.12. 如图,在平面直角坐标系xOy中,椭圆C∶x2a2+y2b2=1(a>b>0)的离心率为32,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN 相交于点T.求证:点T在椭圆C上.13. 设椭圆E:x2a2+y21-a2=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.配套练习:1.在平面直角坐标系xOy 中,若双曲线x 2m -y 2m 2+4=1的离心率为5,则m 的值为________.1.解析 建立关于m 的方程求解∵c 2=m +m 2+4,∴e 2=c 2a 2=m +m 2+4m=5,∴m 2-4m +4=0,∴m =2.答案 22.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.2.解析 法一 x =3代入x 24-y 212=1,y =±15,不妨设M (3,15),右焦点F (4,0).∴MF =1+15=4.法二 由双曲线第二定义知,M 到右焦点F 的距离与M 到右准线x =a 2c =1的距离比为离心率e =c a =2,∴MF 3-1=2,MF =4.答案 43.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________.3.解析 由题意知c =3,e =c a =32,所以a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1. 答案 x 24-y 25=14.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.4.解析 不妨设F 1,F 2分别为双曲线的左、右焦点,点P 在双曲线的右支上,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a , 求得|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,所以∠PF 2F 1=90°,求得|F 1F 2|=23a ,故双曲线C 的离心率e =23a 2a = 3.答案35. 设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________________.5.解析 法一 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),根据定义2a =|(15)2+12-(15)2+72|=4,故a =2.又b 2=32-22=5,故所求双曲线方程为y 24-x 25=1. 法二 x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5,故所求双曲线方程为y 24-x 25=1.法三 设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去),故所求双曲线方程为y 24-x 25=1.答案 y 24-x 25=1[规律方法] 本例可有三种解法:一是根据双曲线的定义直接求解,二是待定系数法;三是共焦点曲线系方程,其要点是根据题目的条件用含有一个参数的方程表示共焦点的二次曲线系,再根据另外的条件求出参数.6. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为____________. 6.解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.答案 x 216+y 28=17.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.7.解析 由题意可知|F 1F 2|=23,∴c = 3.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a ,∴|AF 2|=2+a ,|AF 1|=2-a .在Rt △F 1AF 2中,∠F 1AF 2=90°,∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.答案62[规律方法] 求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出a ,c ,然后根据离心率的定义式求解;二是根据已知条件构造关于a ,c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =________. 9.椭圆x 2a 2+y 2b 2=1(a >b >0)的焦距为2c ,若直线y =2x 与椭圆的一个交点的横坐标为c ,则椭圆的离心率为________.8.因为双曲线的离心率e =c a =2,所以b =3a ,所以双曲线的渐近线方程为y =±ba x =±3x ,与抛物线的准线x =-p 2相交于A ⎝⎛⎭⎫-p 2,32p ,B ⎝⎛⎭⎫-p 2,-32p ,所以△AOB 的面积为12×p 2×3p =3,又p >0,所以p =2.9.因为直线与椭圆的一个交点的横坐标为c ,所以这个交点的坐标为⎝⎛⎭⎫c ,b 2a ,则有b 2a=2c ,即有b 2=a 2-c 2=2ac ,e 2+2e -1=0,解得e =2-1(另一个解不符合要求,舍去). 答案 (1)2 (2)2-110.在平面直角坐标系xOy 中,点P (a ,b )(a >b >0)为动点,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点.已知△F 1PF 2为等腰三角形. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,M 是直线PF 2上的点,满足AM →·BM →=-2,求点M 的轨迹方程.10.解 (1)设F 1(-c,0),F 2(c,0)(c >0). 由题意可得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c . 整理得2⎝⎛⎭⎫c a 2+c a -1=0, 得c a =12或c a =-1(舍),所以e =12(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2方程为y =3(x -c ).A ,B 两点的坐标满足方程组⎩⎨⎧3x 2+4y 2=12c 2,y =3(x -c ).消去y 并整理,得5x 2-8cx =0,解得x 1=0,x 2=85c ,得方程组的解⎩⎨⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝⎛⎭⎫85c ,335c ,B ()0,-3c .设点M 的坐标为(x ,y ),则AM →=⎝⎛⎭⎫x -85c ,y -335c ,BM →=(x ,y +3c ).由y =3(x -c ),得c =x -33y .于是AM →=⎝⎛⎭⎫8315y -35x ,85y -335x ,BM →=(x ,3x ).由题意知AM →·BM →=-2,即⎝⎛⎭⎫8315y -35x ·x +85y -335x ·3x =-2,化简得18x 2-163xy -15=0.将y =18x 2-15163x 代入c =x -33y ,得c =10x 2+516x >0,所以x >0.因此,点M 的轨迹方程是18x 2-163xy -15=0(x >0).[规律方法] (1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为何种圆锥曲线,则可考虑用定义法求解或用待定系数法求解. (2)讨论轨迹方程的解与轨迹上的点是否对应,要注意字母的取值范围.11.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值. 11.解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a ,由题意知2b 2a =1,即a =2b 2.又e =c a =32,所以a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)法一 如图,由题意知|F 1M ||MF 2|=|PF 1||PF 2|,即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m ,整理得m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3. ∴-32<m <32.故m 的取值范围是m ∈⎝⎛⎭⎫-32,32. 法二 由题意知PF 1→·PM →|PF 1→||PM →|=PF 2→·PM→|PF 2→||PM →|,即PF 1→·PM →|PF 1→|=PF 2→·PM →|PF 2→|.设P (x 0,y 0),其中x 20≠4,将向量坐标化得m (4x 20-16)=3x 30-12x 0.所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝⎛⎭⎫-32,32. (3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k (x -x 0),整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.所以Δ=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0.故k =-x 04y 0,由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0所以1kk 1+1kk 2=1k ⎝⎛⎭⎫1k 1+1k 2=⎝⎛⎭⎫-4y 0x 0·⎝⎛⎭⎫2x 0y 0=-8.所以1kk 1+1kk 2为定值,这个定值为-8.12. 如图,在平面直角坐标系xOy 中,椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. 12.(1)解 由题意知b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝⎛⎭⎫c a 2=12.所以a =2 2.所以椭圆C 的方程为x 28+y 32=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1.①直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3由x 208+y 202=1可得x 20=8-4y 20, 因为18⎝⎛⎭⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y )联立①②解得x 0=x2y -3,y 0=3y -42y -3,因为x 208+y 202=1,所以18⎝⎛⎭⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1.整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.[规律方法] (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.13. 设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上. 13.(1)解 因为焦距为1,且焦点在x 轴上,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y 23=1.(2)证明 设P (x 0,y 0),F 1(-c,0),F 2(c,0), 其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c .直线F 2P 的斜率kF 2P =y 0x 0-c .故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -x 0,即点Q 坐标为⎝⎛⎭⎫0,cy 0c -x 0.因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0.由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1),①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限. 解得x 0=a 2,y 0=1-a 2. 即点P 在定直线x +y =1上.14.已知椭圆C :x 2m 2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A 的坐标为(2,0).(1)若M 与A 重合,求曲线C 的焦点坐标; (2)若m =3,求P A 的最大值与最小值;(3)若P A 的最小值为MA ,求实数m 的取值范围.14.解 (1)由题意知m =2,椭圆方程为x 24+y 2=1,c =4-1=3,∴左、右焦点坐标分别为(-3,0),(3,0). (2)m =3,椭圆方程为x 29+y 2=1,设P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 29=89⎝⎛⎭⎫x -942+12(-3≤x ≤3)∴当x =94时,P A min =22;当x =-3时,P A max =5.(3)设动点P (x ,y ),则P A 2=(x -2)2+y 2=(x -2)2+1-x 2m2=m 2-1m 2⎝⎛⎭⎫x -2m 2m 2-12-4m 2m 2-1+5(-m ≤x ≤m ). ∵当x =m 时,P A 取最小值,且m 2-1m 2>0,∴2m 2m 2-1≥m 且m >1,解得1<m ≤1+ 2.。