圆锥曲线知识点全归纳完整精华版图文稿
- 格式:docx
- 大小:56.37 KB
- 文档页数:6
高中数学知识点 一圆锥曲线部分、平面解析几何的知识结构:炭|»■汕旷崔乂 —■ 才程,人闻性息、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长 2a 大于焦距2c 。
用集合表示为:{刊昭+昭 =2肚,<2c?,巩出为定点}②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e ,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e 是离心率。
用集合表示为:厂国丽F •诵和廊阿 HSi^HSSJ^Tjj L|闿箫MWBUW 旧展rBe aglr ff<* 人卄武 -TRU :在虹 L-fttW —ifeBSMKEA■・—奥・/RAgTE Em严闌* IS 幣内CL 耐 严・寰丫Lesgg*&和 <«)MtLlweA^B€ff«^B>g* < lt> 的比较4 山RHHA5il曲测6“旳左丈吞穴育啟/UMfl■相FT?F- = % 0 < f < k F为定点9 £为动点到定言线的距离e越小,椭圆越圆;e越大,椭圆越扁(2)标准方程和性质:2 2①范围:由标准方程^2 爲1知|x| a,|y| b,说明椭圆位于直线x a,a by b所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(x, y)在曲线上时,点(x, y)也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y 轴对称。
若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。
所以,椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。
在椭圆的标准方程中,令x 0,得y b,则B1(0, b),B2(0,b)是椭圆与y轴的两个交点。
圆锥曲线的方程与性质1.椭圆1)椭圆概念的焦点,两焦点的距离 2c 叫椭圆的焦距。
若 M 为椭圆上任意一点,则有 | MF 1 | | MF 2 | 2a 。
表示焦点在 y 轴上的椭圆。
2)椭圆的性质方程也不变,则曲线关于原点对称。
所以,椭圆关于 x 轴、 y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心 叫椭圆的中心;③ 顶点:确定曲线在坐标系中的位置,常需要求出曲线与 x 轴、 y 轴的交点坐标。
在椭圆的标准方程中,令平面内与两个定点 F 1 、 F 2 的距离的和等于常数2a (大于 |F 1F 2 | )的点的轨迹叫做椭圆。
这两个定点叫做椭圆 椭圆的标准方程为:22xy 22 ab0 )(焦点在 x 轴上)2y2 a2xx2 1( a b 0 ) b2焦点在 y 轴上)。
注:①以上方程中a,b 的大小 a b 0 ,其中 b 22c ;22②在 a x 22 b y 22221和a 2b 2 1 两个方程中都有 a 0的条件,要分清焦点的位置,只要看x2和 y2的分母的大小。
例如椭圆m 0, n 0, m n )当 m n 时表示焦点在 x 轴上的椭圆; 当m n 时2 x①范围:由标准方程 2a 22 yb 21知|x| a ,| y| b ,说明椭圆位于直线 x a , b 所围成的矩形里; ②对称性:在曲线方程里, 若以y 代替 y 方程不变,所以若点 (x, y)在曲线上时,(x, y) 也在曲线上,所以曲线关于 x 轴对称,同理,以 x 代替 x 方程不变,则曲线关于 y 轴对称。
若同时以 x 代替 x , y 代替 y半轴长和短半轴长。
由椭圆的对称性知: 椭圆的短轴端点到焦点的距离为 a ;在 Rt OB 2F 2中,|OB 2 | b ,|OF 2| c ,| B 2F 2 | a , 且|OF 2|2 | B 2F 2 |2 |OB 2 |2 ,即 c 2 a 2 b 2;c④离心率: 椭圆的焦距与长轴的比 e 叫椭圆的离心率 。
圆锥曲线的方程与性质1.椭圆(1)椭圆概念的焦点,两焦点的距离2c 叫椭圆的焦距。
若 M为椭圆上任意一点,则有|MF 1 I |MF 2 I 2a 。
0的条件,要分清焦点的位置,只要看 X 2和y 2的分表示焦点在y 轴上的椭圆。
(2)椭圆的性质方程也不变,则曲线关于原点对称。
所以,椭圆关于X 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心 叫椭圆的中心;X 0,得y b ,则B 1(0, b ), B 2(0,b )是椭圆与y 轴的两个交点。
同理令 y 0得X a ,即A ( a,0),A 2(a,0)是椭圆与X 轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
平面内与两个定点 F 1、F 2的距离的和等于常数2a (大于IF 1F 2I )的点的轨迹叫做椭圆。
这两个定点叫做椭圆上)。
椭圆的标准方程为:22Xy22a b0)(焦点在 x 轴上)2y a 2XP 1 ( a b 0 )(焦点在y 轴b 2注:①以上方程中 a,b 的大小 a b 0,其中b 2母的大小。
例如椭圆2y nn )当m n 时表示焦点在X 轴上的椭圆;当 m n 时1两个方程中都有aX 2①范围:由标准方程a1知|X| a ,|y| b ,说明椭圆位于直线 X a ,b 所围成的矩形里; ②对称性:在曲线方程里, 若以 y 代替y 方程不变,所以若点(X, y )在曲线上时,(X, y )也在曲线上, 所以曲线关于X 轴对称,同理,以X 代替X 方程不变,则曲线关于 y 轴对称。
若同时以X 代替X , y 代替y③ 顶点:确定曲线在坐标系中的位置,常需要求出曲线与X 轴、y 轴的交点坐标。
在椭圆的标准方程中,令焦距。
(2)双曲线的性质同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。
【最新整理,下载后即可编辑】圆锥曲线―概念、方法、题型、及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>),焦点在y轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
如(1)已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为____(答:11(3,)(,2)22---);(2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___2)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222b ac =-;②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。
所以,椭圆关于x 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。
在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。
同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。
高中数学圆锥曲线选知识点总结一、椭圆1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:2222二、双曲线1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.2、双曲线的几何性质:22x y 22y x 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线1、定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.2、抛物线的几何性质:3、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.4、关于抛物线焦点弦的几个结论:设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ= ⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P+= 四、直线与圆锥曲线的位置关系⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧繁琐)利用两点间距离公式(易)利用一般弦长公式(容弦长问题直线与圆锥曲线相交的系)直线与圆锥曲线位置关代数角度(适用于所有)位置关系主要适用于直线与圆的(几何角度关系直线与圆锥曲线的位置直线与圆锥曲线.12.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
圆锥曲线知识点全归纳
完整精华版
集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-
圆锥曲线知识点全归纳(精华版)
圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到
定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:
1)椭圆
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是
一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:
1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^
2.
2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.
参数方程:
X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的
考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)
2)双曲线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是
一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常
数e是双曲线的离心率。
标准方程:
1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-
(y^2/b^2)=1?
其中a>0,b>0,c^2=a^2+b^2.
2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-
(x^2/b^2)=1.
其中a>0,b>0,c^2=a^2+b^2.
参数方程:
x=asecθy=btanθ(θ为参数)
3)抛物线
标准方程:
1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0
2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0
3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0
4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0
参数方程?
x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0
直角坐标?
y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x
轴,a<>0)
圆锥曲线(二次非圆曲线)的统一极坐标方程为?
ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
二、焦半径
圆锥曲线上任意一点到焦点的距离称为焦半径。
圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为:
椭圆|PF1|=a+ex|PF2|=a-ex
双曲线P在左支,|PF1|=-a-ex|PF2|=a-ex
P在右支,|PF1|=a+ex|PF2|=-a+ex
P在下支,|PF1|=-a-ey|PF2|=a-ey
P在上支,|PF1|=a+ey|PF2|=-a+ey
抛物线|PF|=x+p/2
三、圆锥曲线的切线方程?
圆锥曲线上一点P(x0,y0)的切线方程
以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y?即椭圆:x0x/a^2+y0y/b^2=1;
双曲线:x0x/a^2-y0y/b^2=1;
抛物线:y0y=p(x0+x)
四、焦准距
圆锥曲线的焦点到准线的距离p叫圆锥曲线的焦准距,或焦参数。
椭圆的焦准距:p=(b^2)/c?
双曲线的焦准距:p=(b^2)/c?
抛物线的准焦距:p
五、通径
圆锥曲线中,过焦点并垂直于轴的弦成为通径。
椭圆的通径:(2b^2)/a?
双曲线的通径:(2b^2)/a?
抛物线的通径:2p
六、圆锥曲线的性质对比
见下图:
七、圆锥曲线的中点弦问题
已知圆锥曲线内一点为圆锥曲线的一弦中点,求该弦的方程
⒈联立方程法。
用点斜式设出该弦的方程(斜率不存在的情况需要另外考虑),与圆锥曲线方程联立求得关于x的一元二次方程和关于y的一元二次方程,由韦达定理得到两根之和的表达式,在由中点坐标公式的两根之和的具体数值,求出该弦的方程。
2.点差法,或称代点相减法。
设出弦的两端点坐标(x1,y1)和(x2,y2),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x1+x2)·(x1-
x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0由斜率为(y1-y2)/(x1-x2)可以得到斜率的取值。
(使用时注意判别式的问题)
补充:
焦点三角形面积公式椭圆=b2tan(a/2)=c|y0| 双曲线=b2cot(a/2)。