直流炉的协调控制
- 格式:ppt
- 大小:2.16 MB
- 文档页数:10
对我国大型火电机组协调控制系统的分析摘要:目前我国火电站领域的技术具有快速的发展,单元机组的容量已从300mw发展到600mw,外高桥电厂单元机组容量已达到900mw。
dcs系统在火电站的成功应用,大大提高了电站控制领域的自动化投入水平。
本文主要对大型火电机组的两种主要炉型-汽包炉和直流炉机组的协调控制系统的设计机理进行概要性的说明。
关键词:火电站;汽包炉;汽轮机一、协调控制系统的功能和主要含义协调控制系统是我国在80年代引进的火电站控制理念,主要设计思想是将锅炉和汽机作为一个整体,完成对机组负荷、锅炉主汽压力的控制,达到锅炉风、水、煤的协调动作。
对于协调控制系统而言包含三层含义:机组与电网需求的协调、锅炉汽轮机协调以及锅炉风、水、煤子系统的协调。
锅炉汽轮机的协调被认为是机组的协调,主要是协调控制锅炉与汽轮机,提高机组对电网负荷调度的响应性和机组运行的稳定性。
从协调控制系统而言,对汽包锅炉和直流锅炉都具有相同的控制概念,但由于两种炉型在汽水循环上有很大的差别,导致控制系统具有很大的差别。
二、汽包锅炉机组的协调控制系统汽轮机、锅炉协调控制系统概念的引出,主要在于汽轮机和锅炉对于机组的负荷与压力具有完全不同的控制特性,汽轮机以控制调门开度实现对压力、负荷的调节,具有很快的调节特性,而锅炉利用燃料的燃烧产生的热量使给水流量变为蒸汽,其控制燃料的过程取决于磨煤机、给煤机、风机的运行,对压力、负荷的调节具有很慢的调节特性。
因此协调控制系统就是要以优良的控制策略实现对锅炉-汽轮机的统一控制。
以达到锅炉-汽轮机组对负荷响应的快速性和对压力控制的稳定性。
协调控制系统的设计包含了两种协调控制方式,一种是以炉跟机为基础的协调控制系统,这种协调控制方式是建立在锅炉控制压力、汽机控制功率的基础上,具有负荷响应快的优点。
另一种是以机跟炉为基础的协调控制系统,这种协调控制方式是建立在汽机控制压力、锅炉控制功率的基础上。
对于炉跟机为基础的协调控制系统有必要提到80年代中期引用的直接能量平衡控制系统,该控制系统的引用,使汽包锅炉机组的协调控制系统从探索趋于成熟,使汽轮机-锅炉协调控制系统趋于简单、响应性快、稳定性高。
第四章直流炉给水控制系统直流锅炉给水调节系统具有多重控制任务:(1)维持中间点温度等于定值;(2)快速跟随燃料量,保证燃水比,共同满足负荷要求;(3)调整中间点温度,实现过热汽温粗调。
第一节直流炉给水系统的特点一、汽包炉给水系统特点在汽包锅炉中,汽包把整个锅炉的汽水流程分隔成三部分,即加热段(省煤器)、蒸发段(水冷壁)和过热段(过热器)。
这三段受热面面积的大小是固定不变的。
汽包除作为汽水的分离装置外,其中的存水和空间容积还作为燃水比失调的缓冲器。
当燃水比(给水跟踪燃料流量的比例关系)失调后,在一段相当长的时间里(非事故的范围内),并不改变原来那三段受热面面积的大小。
例如,增加给水流量,给水量的变化就破坏了原来的平衡状态,汽包水位升高了;但由于燃料流量没有变化,所以蒸发段的吸热量及其产生的蒸汽量可近似认为不变。
因为过热段的受热面是固定的,因此出口汽压、汽温都不会有什么变化,如同燃水比未失调一样。
如果燃料方面的变化破坏了原来的平衡状态,比如燃料量增加,蒸发段就会产生较多的蒸汽,但同时过热段也吸收了较多的热量,所以可使汽温变化不大,然而此时出口蒸汽压力和流量却都增加了。
由于给水流量没有改变,汽包中的部分水变成了多蒸发的那部分蒸汽,所以汽包水位降低了。
从以上所述可以看出,在汽包锅炉中,水位是燃水比是否失调的标志。
用给水流量调节水位,实质上起到了间接保持燃水比不变的作用。
二、直流炉给水系统特点直流炉的汽水流程中既没有汽包,又没有炉水小循环回路。
直流炉是由受热面以及连接这些受热面的管道所组成,图4-1是直流炉汽水流程示意图.给水泵图4-1直流炉汽水流程示意图给水泵强制一定流量的给水进入炉内,一次性流过加热段、蒸发段和过热段,然后去汽轮机。
它的循环倍率始终为1,与负荷无关。
给水泵出口水压通过上述三段受热面里的工质,直接影响出口汽压,所以直流炉的汽压是由给水压力、燃料流量和汽轮机调节汽门共同决定的。
直流炉汽水流程中的三段受热面没有固定的分界线。
第二章协调控制一、协调控制概述协调控制系统关键在于处理机组的负荷适应性与运行的稳定性这一矛盾。
既要控制汽机充分利用锅炉蓄能,满足机组负荷要求;又要动态超调锅炉的能量输入,补偿锅炉蓄能,要求既快又稳。
超临界机组中的锅炉都是直流锅炉,作功工质占汽-水循环总工质的比例增大,锅炉惯性相对于汽包炉大大降低;超临界机组工作介质刚性提高,动态过程加快。
超临界直流炉大型机组的协调控制需要更快速的控制作用,更短的控制周期,以及锅炉给水、汽温、燃烧、通风等之间更强的协同配合。
二、协调控制的主要策略(1)锅炉、汽机之间功率平衡信号与汽机相比,锅炉系统动态响应慢、时滞大;对直流炉来说,合理地选择功率平衡信号,才能适应直流炉对快速控制的要求。
因此功率平衡信号的选择,对整个机组动态特性的影响极大。
依照实际的P1(或MW)信号出现后,再反馈到锅炉侧,因此是基于反馈的锅炉跟踪汽机设计.根据MWD,控制锅炉侧,因此是一种前馈控制.控制策略思想比P1信号慢,相差一个汽机/发电机时间常数τ.比MWD 信号慢,相差一个锅炉侧时间常数τB 。
时间上MWD 信号出现最早.时间关系机组的实发电功率.当前发电汽机实际消耗的功率.机组为达到一定负荷应当需要的功率.特点当前的机组发电功率代表了当前机组承担的负荷,也即锅炉应产生的负荷功率。
汽机第一级压力P1可换算为汽机侧当前实际消耗的蒸汽量,也即锅炉侧当前应提供的蒸汽功率。
机组负荷指令(MWD)代表了机组应发的功率,也代表了锅炉侧应提供的蒸汽功率。
物理意义第三方案机组实发功率(MW)第二方案汽机第一级压力(P1)第一方案机组负荷指令(MWD)需求信号MWD信号在快速性及时间上具有优势,前苏联及日本一般采用MWD信号。
下图为前苏联设计的协调系统示意框图。
图1 所示的前苏联协调控制方案,则是简单地采用了主汽压力Pt的动态微分来抵消锅炉侧的内扰,虽可以发挥一定的作用,但未能考虑到主汽压力与额定(设定)值之间的偏差,例如主汽压力已低于设定值,主汽压力升高过程中,锅炉侧反会减负荷,是其设计不合理之处。
超临界直流炉控制策略特点一、超临界直流炉机组特点当蒸汽压力提到高于22.1Mpa时就称为超临界机组,如果蒸汽压力超过27Mpa,则称为超超临界火电机组。
由于超临界压力下无法维持自然循环即不能采用汽包锅炉,直流锅炉成为唯一型式。
随着锅炉朝着大容量参数的方向发展,超临界机组日益显示其诸多优点,不仅煤耗大大降低,污染物排污量也相应减少,经济效益十分明显。
超临界机组与亚临界汽包锅炉结构和工艺过程有着显著不同,其控制具有如下一些特点:1、超临界直流炉没有汽包环节,给水经加热、蒸发和变成过热蒸汽时一次性连续完成,随着运行工况不同,锅炉将运行在亚临界或超临界压力下,蒸发点会自发的在一个或多个加热区段内移动,汽水之间没有一个明确的分界点。
这要求控制系统更为严格保持各种比值的关系(如给水量/蒸汽量、燃料量/给水量及喷水量/给水量等)。
2、由于没有储能作用的汽包环节,锅炉的蓄能显著减小,负荷调节的灵敏性好,可实现快速启停和调节负荷,但汽压对负荷变动反映灵敏,变负荷性能差,汽压维持比较困难。
3、直流炉由于汽水是一次完成,因而不象汽包炉那样。
汽包在运行中除作为汽水分离器外,还作为燃水比失调的缓冲器。
当燃水比失去平衡时,利用汽包中的存水和空间容积暂时维持锅炉的工质平衡关系,以保持各断受热面积不变。
这使得直流炉汽机与锅炉之间具有强烈的耦合特性,整个受控对象是一多输入多输出的多变量系统。
二、超临界机组的控制策略超临界机组的发电负荷在电网中的比重正在稳步上升,电网要求超临界机组能调峰运行,其控制策略应保证机组良好的负荷响应性和关键运行参数的稳定。
直流锅炉作为一个多输入、多输出的被控对象,其主要输出量为汽温、汽压和蒸汽流量(负荷),其主要的输入量是给水量、燃烧率和汽机调门开度,由于是强制循环且受热区段之间无固定界限,一种输入量扰动将对各输出量产生作用,与汽包炉相比,其控制策略最大的区别在于:协调控制系统、给水调节系统、减温调节系统。
随着大型热力发机电组日益增多,单机容量不断增大,采用中间再热的机组也逐渐增加。
为便于进行燃烧调整,提高循环效率。
汽轮机、锅炉联合运行时,大容量机、炉都采用了单元制热力系统,单元机组的负荷适应性相对较差,汽轮机中、低压缸功率滞后明显,一次调频能力降低。
为改善单元机组的调节性能,提高电网自动化水平,加强机、炉运行的稳定性,目前单元制机组都采用机、炉联合控制的方式进行运行调节。
答:为改善单元机组的调节特性,增强其负荷适应性,提高一次调频能力,在单元机组中,普通都采用机、炉联合控制方式进行运行调节,也即将功率、转速或者汽压信号同时输入汽轮机、锅炉控制器,使两者进行协调控制,同时由于采用协调控制后,机组自动化水平得到提高,可很方便地进行电网负荷调度中心(以下简称中调)远方控制,实现机组二次调频,并可进一步实现自动发电功能(AGC)。
协调控制的主要任务是:1 )根据本机炉具体运行状态及控制要求,选择协调控制的方式和恰当的外部负荷指令。
2)对外部负荷信号进行适当处理,使之与机炉的动态特性及负荷变化能力相适应,并对机炉发出负荷指令。
3)根据不同的负荷指令,锅炉确定相应的风、水、煤量,汽轮机确定相应的高、中压调节阀开度。
协调控制系统具有如下普遍特点: 1 )为了迅速地满足电网调频的要求,尽量从控制系统方面提高机组的负荷适应性,增加了超前回路,目的是尽量利用锅炉蓄热能力。
2 )为保证机、炉更加协调控制,增加了反馈回路的稳定性和超前回路的静态补偿。
3)协调控制系统的范围不断扩大,不仅要在正常运行时能实现负荷自动控制,而且要求在机组 (或者辅机) 异常时能在保护系统配合下自动处理故障,有时需要自动切换控制系统,使其能达到低一级水平的控制状态。
4)为提高整个控制系统的可靠性,在实现手段上,使其功能和结构进一步分散,并增加了冗余功能。
协调控制系统具有的功能如下: 1 )根据机组的运行状态,选择不同的外部负荷指令信号。
2)根据本机组辅机的运行状况、运行台数以及燃烧率偏差信号计算出机组最大允许出力。