函数方程思想的应用举例.
- 格式:docx
- 大小:340.39 KB
- 文档页数:3
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
函数与方程思想在初中数学解题中的应用张猛【内容提要】:函数与方程思想是初中数学中的基本思想。
它们密切相关,有时需要互相转化来解决问题。
本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。
关键词:函数;方程;函数与方程思想应用案例数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。
近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。
其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。
学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。
一:函数与方程思想的地位与作用函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。
在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。
用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。
函数与方程思想在解题过程中有着密切的联系。
目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。
函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数,相等与不等过程中的基本数学思想。
本文例析函数与方程思想在解题中的应用:二:函数与方程思想的应用案例通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。
1 求代数式的值例1 已知22a b ==+求22(3124)(2813)a a b b -+-+的值。
解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。
当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=;当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得∴ 原式=1⨯11=11。
方程与函数思想在圆锥曲线的应用 【核心内容及思想】解析几何是将形与数结合在一起的一门学科.研究形的问题,往往是通过数表示出来,而数又是通过方程予与定量的.因此求解析几何的有关问题,常常通过方程予与解答.深刻理解方程思想对于研究解析几何中问题有着至关重要的作用.方程思想的核心是运用数学的符号化语言,将问题中已知量和未知量(或参变量---对于一个式子(函数、方程或不等式),若含有两个或两个以上的变量,如果其中一个变量在允许的范围内的变化,直接或间接地影响另外一个或两个变量的变化(或性质改变),则我们将这一变量称为参变量.)之间的数量关系,抽象为方程(或方程组)、不等式等数学模型,然后通过对方程(或方程组)、不等式的变换求出未知量的值,使问题获解. 【例题及习题】1. (1)若椭圆的长轴长为2,离心率为12,则椭圆的标准方程为______________(2)若双曲线的渐近线方程为32y x =±,则该双曲线的离心率为_________(3) 已知椭圆19822=++y k x 的离心率21=e ,则k 的值为___________. 2. 若圆1O 的方程为()41)1(22=+++y x ,圆2O 的方程为()12)3(22=-+-y x ,则方程()1)2()3(41)1(2222--+-=-+++y x y x 表示的轨迹是( )A . 经过1O 、2O 的直线B . 线段21O O 的中垂线C . 两圆公共弦所在的直线D.一条直线且过该直线上点到两圆的切线长相等3. 点P 在2211620x y -=上,若19,PF =则2PF =4. 设(),P x y 1=上的点,()14,0F -,()24,0F ,则必有( ) (A )1210PF PF +≤ (B )1210PF PF +< (C )1210PF PF +≥ (D )1210PF PF +>5. 在平面直角坐标系xOy 中,O 是坐标原点,设函数()(2)3f x k x =-+的图象为直线l ,且l 与x 轴、y 轴分别交于A 、B 两点,给出下列四个命题: ① 存在正实数m ,使△AOB 的面积为m 的直线l 仅有一条;② 存在正实数m ,使△AOB 的面积为m 的直线l 仅有两条; ③ 存在正实数m ,使△AOB 的面积为m 的直线l 仅有三条;④ 存在正实数m ,使△AOB 的面积为m 的直线l 仅有四条. 其中所有真命题...的序号是 A .①②③ B .③④ C .②④ D .②③④ 6. 点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”7.已知直线l 与抛物线y 2=x 交于点A(x 1,y 1),B(x 2,y 2),若y 1y 2=-1,点O 为坐标原点,则△OAB 是( )A 直角三角形B 钝角三角形C 锐角三角形D 任意三角形8. 过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B 、C 两点,直线BC 的斜率为____.9. 抛物线x 2=2y 上离点A (0,a )最近的点恰好是顶点的充要条件是( )A a ≤0B a 21≤ C a ≤1 D a ≤210.设椭圆42x +y 2=1上一点,F 1、F 2是椭圆的左、右两个焦点,则|PF 1||PF 2|的最大值为_____;最小值为____11. 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且BF 2FD =uu r uu r,则C 的离心率为 .12. 已知圆A :()2232x y -+=,点P 是抛物线C :24y x =上的动点,过点P 作 圆A 的两条切线,则两切线夹角的最大值为 .13. 在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点①求证:“如果直线l 过点T (3,0),那么→--OA →--⋅OB =3”是真命题;②写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.14. 如图,在平面直角坐标系中,方程为220x y Dx Ey F ++++=的圆M 的内接四边形ABCD 的对角线AC 和BD 互相垂直,且AC 和BD 分别在x 轴和y 轴上 .(1)求证:0F <;(2)若四边形ABCD 的面积为8,对角线AC 的长为2,且0A B A D ∙=,求224D E F +-的值;(3)设四边形ABCD 的一条边CD 的中点为G ,OH AB ⊥且垂足为H .试用平面解析几何的研究方法判断点O 、G 、H15. 已知椭圆C:22221(0)x y a b a b+=>>的长轴长为22=e .(I )求椭圆C 的标准方程;(II )若过点B (2,0)的直线l (斜率不等于零)与椭圆C 交于不同的两点E 、F (E 在B 、F 之间),且∆OBE 与∆OBF 的面积之比为12,求直线l 的方程.16.已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P.(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;(Ⅲ)设Q (x ,y )是圆P 上的动点,当t 变化时,求y 的最大值.17.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.18.已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程; (Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.19. 已知过抛物线x 2=4y 的对称轴上一点P(0,m)(m>0)作直线l ,l 与抛物线交于A 、B 两点.(1)若角∠AOB 为锐角(O 为坐标原点),求实数m 的取值范围. (2)若l 的方程为x-2y+12=0,且过A 、B 两点的圆C 与抛物线在点A(A 在第一象限)处有共同的切线,求圆C 的方程.20. 已知抛物线2:4C y x =,点M (m ,0)在x 轴的正半轴上,过M 的直线l 与C 相交于A 、B 两点,O 为坐标原点.(Ⅰ)若m =1,l 的斜率为1,求以AB 为直径的圆的方程;(Ⅱ)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.21. 椭圆的中心在原点O ,焦点在x 轴上,离心率e=32,直线l 交椭圆于点A 、B ,满足CA =2BC ,其中,定点C (1,0).当△OAB 取得最大值时,求椭圆的方程.,(0,),,,.2l y P m C A B AP PB λ=直线与轴交于点与椭圆交于相异两点且22. 如图,椭圆22:14y C x +=短轴的左右两个端点分别为,A B ,直线:1l y kx =+与x 轴、y 轴分别交于两点,E F ,与椭圆交于两点,C D ,.(Ⅰ)若CE FD =,求直线l 的方程;(Ⅱ)设直线,AD CB 的斜率分别为12,k k ,若12:k k =23O ,焦点在y 轴上,焦点到相应准线的距离以及离心率均为(1)求椭圆方程;(2)若m 求,4=+λ的取值范围.24.已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1) 求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.25.如图,已知椭圆22221(0)x y a b a b+=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.26. 已知椭圆E 经过点()2,3A ,对称轴为坐标轴,焦点12,F F 在x 轴上,离心率12e =. (Ⅰ)求椭圆E 的方程;(Ⅱ)求12F AF ∠的角平分线所在直线l 的方程; (Ⅲ)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.27. 设动点M 的坐标为(,)x y (x y ÎR 、),向量a (2,)x y =-,b (2,)x y =+,且+a b =8.(I )求动点(,)M x y 的轨迹C 的方程;(Ⅱ)过点(0,2)N 作直线l 与曲线C 交于A 、B 两点,若OP OA OB =+uu u r uu r uu u r(O为坐标原点),是否存在直线l ,使得四边形OAPB 为矩形,若存在,求出直线l 的方程,若不存在,请说明理由.28. 如图,已知A B 、是椭圆22221(0)x y a b a b+=>>的左、右顶点,P Q 、是该椭圆上不同于顶点的两点,且直线AP 与QB 、PB 与AQ 分别交于点M N 、. (1)求证:MN AB ⊥;(2)若弦PQ 过椭圆的右焦点2F ,试求直线MN 的方程.30. 已知点(1,)M y 在抛物线2:2C y px =(0)p >上,M 点到抛物线C 的焦点F 的距离为2,直线:l 12y x b =-+与抛物线交于,A B 两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)若以AB 为直径的圆与x 轴相切,求该圆的方程; (Ⅲ)若直线l 与y 轴负半轴相交,求AOB ∆面积的最大值.31. 已知椭圆12222=+by a x (0>>b a )的右焦点为2(3,0)F ,离心率为e .(Ⅰ)若e =,求椭圆的方程;(Ⅱ)设直线y kx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以MN 为直径的圆上,且2322≤<e ,求k 的取值范围.。
关于等差数列前n 项和的两个公式的应用方法摘要:本文从在思想方法的角度给出了等差数列前n 项和两个公式的侧重点。
关键词:等差数列 思想 前n 项和公式我们知道,教材就等差数列前n 项和给出了两个公式:设等差数列{}n a 的前n 项和公式和为n S ,公差为d ,*n N ∈,则 1(1)2n n n S na d -=+(公式一) 1()2n n a a S n += (公式二) 这两个公式在解决问题各有侧重,如何使用,下面举例说明。
以下*,,,m n p q N ∈,。
一 侧重于函数方程思想的公式一1 方程思想:所谓方程思想就是将题目条件运用前n 项和公式,表示成关于首项a 1和公差d 的两个方程,通过解决方程来解决问题。
例1 已知{a n }为等差数列,前10项的和S 10=100,前100项的和S 100=10,求前110项的和S 110.剖析:方程的思想,将题目条件运用前n 项和公式,表示成关于首项a 1和公差d 的两个方程.解析:设{a n }的首项为a 1,公差为d ,则⎪⎪⎩⎪⎪⎨⎧=⨯⨯+=⨯⨯+,109910021100,100910211011d a d a 解得⎪⎪⎩⎪⎪⎨⎧=-=.1001099,50111d a ∴S 110=110a 1+21×110×109d =-110. 拓展:观察结构特点,将公式一做如下变形:11(1)(1)22n n S n n d S na d a n n -=+⇔=+-,在处理问题是会更方便。
例2 如果等差数列{}n a 的前4项和是2,前9项和是6-,求其前n 项和公式。
解:由变形公式得:()()⎪⎪⎩⎪⎪⎨⎧-=--=-d n S nS d S S n 4214492149449 ()()21将9,294-==S S 代入()()2,1得:n n S n 30433072+-= 2 函数思想 将211(1)()222n n n d d S na d n a n -=+=+-,当0d =,数列{}n a 为常数列;当0d ≠,则n S 是关于n 的二次函数,若令1,,22d d A B a ==-则2n S An Bn =+。
函数思想在高中数学解题中的应用研究摘要:函数思想是数学思想中的重要内容,是指用函数概念和性质去分析问题、转化问题和解决问题的思维策略,在高中数学解题的过程中发挥着非常重要的作用。
高中数学教师将函数思想应用于解题练习中,会进一步提升高中生的解题能力。
为此,本文对函数思想在高中数学解题中的应用进行了研究,以供参考。
关键词:函数思想;高中数学;解题;应用前言:数学是高考中十分重要的考试科目,分值所占比例也比较大。
但高中数学知识复杂程度、抽象度等都较高,高中生学习起来会面临较大的阻力,所以一些高中生对于数学课程有畏难心理,同时也直接影响了他们的数学成绩。
教师通过将函数思想应用到数学题解答中,可以有效帮助高中生加深对数学知识的理解,并不断提升高中生的解题能力。
一、应用函数思想解答实际优化问题数学与生活有密切联系,数学知识可以良好解决许多生活问题。
但一些数学知识解答生活中的问题,需要高中生经过较为复杂的一个过程。
而一些数学知识解答生活中同样的实际问题,就可以十分简单。
比如,函数思想就可以将复杂的解题过程,进行高效优化。
并且,还会让实际生活问题加简单、系统,令高中生更快理解。
在实际生活中,存在许多量与量之间关系的问题。
如,路程方面的问题,需要考虑速度、路程、时间三个量之间的关系;生产方面的问题,需要考虑总数、价格、时间三者的关系。
其中价格方面的问题,又包括采购价格和售价,这些因素也都可以对应应用函数中的变量。
在数学试卷中,涉及实际优化问题的数学题也占有相当重的比重,教师指导高中生应用函数思想去解答,会更利于高中生提高解答问题的准确率。
在《函数的应用(一)》一课的讲解中,就涉及许多实际优化问题。
教师在提出问题后,就可以引入实际问题,来指导高中生应用函数思想来解答。
如:“距离甲船只正北方向200海里的位置,有船只乙,以每个小时40海里的速度,沿北偏西70度角的方向行驶,甲船只以每个小时20海里的速度向正北方向行驶。
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
函数与方程思想在三角问题中的应用在三角形几何学中,函数和方程是用来表示三角形各部分参数关系的有用工具。
函数和方程的应用使我们能够在研究三角形的特性时,更加有效地对三角形进行分析和推断。
具体来说,函数与方程在三角形问题中的应用包括:一、直角三角形函数:1. hypotenuse函数:定义两条直角边的长度之和等于直角边的平方,即勾股定理公式c^2 = a^2 + b^2。
2. Angle bisector函数:定义一条通过三角形共边腰而成的垂直线,其长度等于两个斜边的长度之和,即 a/c + b/c = c。
3. Law of Cosines函数:定义两个角的夹角的余弦值等于两个斜边的乘积除以直角边的平方,即cosA= a^2 + b^2 - c^2 / 2ab。
二、任意三角形函数:1. Law of Sines函数:定义两个角的夹角的正弦值等于两个斜边的比值,即a/sinA=b/sinB=c/sinC。
2. Triangle Inequality函数:定义三角形内角之和为180度,以及两个边之和大于第三条边,即a + b ≥ c。
3. altitude函数:定义三角形内高线(垂线)与直角边的比值等于对边和斜边的比值,即ah/c=b/a。
4. Circumscribed Circles函数:定义三角形内的外接圆的半径为夹角的边等于三角形的斜边的长度的比值的平方,即rho = a/c x b/c。
三、三角形方程:1、倾斜角三角形方程:定义三角形的斜边长度与斜边与两个直角边长度之间的比值,即 c^2 = a^2 + b^2 -2ab cosA。
2、Circumcenter三角形方程:定义三角形外接圆的半径等于三角形内角与边的积之和的二次方之和,即r = sqrt(Aa + Bb + Cc)。
3、Heron’s formula三角形方程:定义三角形内角的面积等于三角形的周长的半径的一半,即s = (a+b+c) / 2。
毕业论文(设计)文献综述毕业论文(设计)翻译文章函数与方程思想在中学数学中的应用目录中文摘要、关键词 (Ⅰ)1引言 (1)2 方程中的函数思想 (1)3 函数中的方程观点 (3)4函数与方程思想在中学数学中的应用 (5)4.1函数与方程思想在数列中的应用 (6)4.2函数与方程思想在三角中的应用 (7)4.3函数与方程思想在不等式中的应用 (8)4.4函数与方程思想在解析几何中的应用 (8)4.5函数与方程思想在二项式定理中的应用 (12)4.6函数与方程思想在概率中的应用 (12)4.7函数与方程思想在多元问题中的应用 (13)4.8讨论方程f(x)=0在某个区间上根的个数 (13)4.9函数与方程思想在复数问题中的应用 (14)参考文献 (15)英文摘要、关键词 (Ⅱ)函数与方程思想在中学数学中的应用摘要:函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决。
这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路。
和函数有必然联系的是方程,方程f (x)=0的解就是函数y=f (x)的图像与x 轴的交点的横坐标,函数y=f (x)也可以看作二元方程f (x)-y=0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量。
这就是方程的思想,方程思想是动中求静,研究运动中的等量关系。
在中学数学中,函数与方程是相互联系不可分割的,涉及这两个方面的问题可以相互转化。
许多方程问题常常可以运用函数思想去解决,而不少函数问题又往往须转化为方程来求解。
因此,在解决一些函数和方程问题时,既要善于运用函数思想解决方程问题,又要学会灵活运用方程的观点去观察、处理函数问题。
关键词函数思想,方程思想,应用1引言函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究,从而使问题获得解决。
函数与方程的思想在高中数学中的应用作者:陈少婉来源:《广东教育·高中》2017年第01期函数与方程的思想是高中数学的基本思想之一,是通过建立函数或方程,运用函数的图像、性质等去分析问题,解决问题;更重要的是产生函数或方程的方法,能上升到思想高度主动思考问题.运用函数与方程的相互转化解决零点问题、构建函数解决不等关系问题与最值问题、利用方程的思想解决消参求值问题以及切点弦问题等等,是近年高考的热点和重难点.下面举例说明函数与方程的思想在高中数学解题中的应用.一、零点问题中的函数与方程思想函数的零点问题是近几年高考题的高频考点和重难点.许多函数问题要用方程的知识与方法来支持;许多方程的问题,需要用函数的知识与方法去解决.函数思想是对函数内容在更高层次上的抽象、概括与提炼,方程问题的函数视角就是利用函数的图像、性质来研究方程的根及范围问题.1.1.与函数的零点或方程的根或函数图像的交点个数问题例题1.1.(1)已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f (x)的图像与函数y=|lgx|的图像的交点共有()A. 10个B. 9个C. 8个D. 1个综上所述,原方程有4个实根.点评:函数零点问题的解题思路主要有两个方向,一是算出来,即利用方程求根,运用方程的思想求解,二是画出来,即转化为函数图像与轴的交点问题或者两个函数图像的交点问题,运用函数的思想以及数形结合的思想求解.在解题过程中,函数与方程相互转化.本题根据分段函数不同区间的特征,综合运用解方程、构造函数,讨论单调性等方法求解.1.2求参数的值或取值范围问题例题1.2. 已知函数f(x)=|x2-1|,g(x)=x2+ax+2,x∈R,若函数h(x)=f(x)+g (x)+2在(0,2)上有两个零点x1,x2求实数a的取值范围.点评:运用函数的思想转化零点问题,构造的函数不同,解法也不同,但用到的思想方法是相同的,在解题中要注意函数与方程的相互转化.1.3.借助零点,考查导数探究函数的性质例题1.3. 设函数f(x)=e2x-alnx.(Ⅰ)讨论f(x)的导函数f′(x)的零点的个数;值范围,体现了函数的思想.解题时要注意自变量c的取值范围,即函数定义域的确定.三、立体几何中的函数方程思想函数方程思想不仅在代数解题中发挥着重要的作用,而且在立体几何中也有着巧妙的应用.在立体几何的动点问题、最值问题和逆向问题中,通常要运用函数与方程的思想求解.3.1利用函数的图像及性质解决立几中动点的轨迹问题例题3.1. 如图,动点P在正方体ABCD-A1B1C1D1的对角线BD1上. 过点P作垂直于平面BB1D1D的直线,与正方体表面相交于M,N. 设BP=x,MN=y,则函数y=f(x)的图像大致是()点评:本题是一道立体几何与函数图像相结合的题目,主要考查了函数图像的变化.由于题目中给出了自变量和因变量,如能求出函数解析式,问题即可获解.因此,可根据几何体的特征和条件分析两个变量的变化情况,通过M,N,P作底面的垂线作出M,N在平面ABCD 内的正投影,保持其长度不变,从而把空间问题平面化,建立一次函数模型.3.2利用方程的思想解立体几何逆向题例题3.2. 如图,已知四棱台ABCDA1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角PQDA的余弦值为,求四面体ADPQ的体积.解析:由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中m=BQ,0≤m≤6.点评:本题是一道立体几何逆向题.通过设定变量m,λ利用二面角PQDA的余弦值为以及PQ∥平面ABB1A1的条件建立等量关系,求出变量m,λ的值,体现了方程的思想.3.3运用函数的思想解决立几中的最值问题例题3.3. 如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成角最小时,求线段BQ的长.解析:以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B (1,总之,作为高中数学基础知识的重要内容,数学思想与数学方法属于教学中的重点,也是学生学习过程中的难点.通过思想与方法的学习能够真正理解数学的价值和意义.函数与方程的思想是高中数学的基本思想方法之一,也是高考的重中之中,是掌握许多数学知识的基础. 运用函数与方程的思想方法去解题,才举一反三,融会贯通,才能俯瞰题目,达到“一览众山小”的境界.函数与方程思想的运用在高中数学中无处不在,在解题中应注意体会,归纳总结,形成方法和能力.责任编辑徐国坚。
数学思想在一次函数中的运用摘要:数学思想是数学素养的重要组成部分。
一次函数是研究运动变化的基础数学模型,通过一次函数教学载体渗透学生数学思想,使学生逐渐形成数学视野、数学思维、数学方法。
关键词:数学思想一次函数基础数学模型数学思想是指人们对现实世界的空间形式和数量关系的本质认识,是对数学内在规律的揭示。
数学思想会牢牢扎根在我们心中,成为我们思维组成的一部分。
我们运用数学思想去发现提出问题、思考解决问题。
数学思想是数学学科的灵魂,是数学素养的重要组成部分。
我们知道函数是研究运动变化的重要数学模型,在初中数学中占据重要地位。
而一次函数是最简单、最基本的初等函数,学好一次函数对后续的反比例函数、二次函数的学习奠定良好的基础。
下面我就以一次函数为载体来介绍初中阶段所涉及到的重要的数学思想。
一、数形结合思想数形结合思想是指有些代数问题可以从几何的角度,利用几何图形的性质和几何的直观性来研究代数问题中的数量关系,以寻求问题解决,或有些几何问题可以利用精确的数量关系来研究几何图形的性质,以达到问题解决的一种数学思想。
例.若函数y=kx+b的图象如图所示,那么当kx+b>0时,x的取值范围是()。
A.x>1B.x>2C.x<1D.x<2分析:我们可以利用函数图象过(0,1)、(2,0)两点,求出函数解析式,进而求出不等式的解集。
但是我们可以利用数形结合的思想,从图像上直观地找出来,kx+b>0即y>0,函数图象在x轴上方的自变量x的取值范围,就容易得到x<2,这样解题就显得更为便捷。
利用数形结合思想,可以使抽象的问题具体化,复杂的问题简单化,它兼有数的严谨和形的直观的长处,是优化解题过程的重要途径之一。
二、方程思想方程思想是分析数学问题中变量间的关系,找出变量间的相等关系式,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析问题,使问题获得解决的一种数学思想。
例.已知一次函数y=3x-b的图象经过点P(1,-1),则该函数图象必经过点()。
函数思想在高中数学解题中的应用在高中数学教学中,函数是一个非常重要的概念。
函数的思想贯穿于数学的各个领域,不仅在数学理论中有着重要的地位,而且在解题中也有着广泛的应用。
函数思想在高中数学解题中的应用,可以帮助学生更好地理解和掌握数学知识,提高解题的效率和准确性。
本文将从函数的定义和特点、函数在高中数学解题中的应用以及相关解题技巧等方面展开探讨,希望能帮助学生更好地理解和应用函数思想。
一、函数的定义和特点在高中数学中,函数是一个非常基础的概念。
函数通常可以用一个数学表达式来表示,它包括自变量和因变量两部分。
自变量是函数中的输入值,而因变量是函数中的输出值。
函数的定义通常是这样的:如果对于每一个属于定义域的自变量x,函数f(x)都有唯一的对应值y,则称函数f是定义在定义域上的。
函数有着许多特点,其中包括单调性、奇偶性、周期性等。
这些特点在解题中都有着非常重要的应用。
通过函数的单调性可以确定函数的增减性,从而帮助我们分析函数的变化趋势;通过函数的奇偶性可以简化函数的运算,减少解题的复杂度;通过函数的周期性可以确定函数的周期,从而帮助我们分析函数的周期性变化规律。
函数思想在高中数学解题中有着广泛的应用,涉及到数学的各个分支,比如代数、几何、概率等。
下面我们就来具体看一下函数在高中数学解题中的应用。
1. 代数方程的解法函数思想在代数方程的解题中有着非常重要的应用。
通过定义函数并建立函数关系,可以将一个复杂的代数方程转化为一个简单的函数关系,从而简化问题的求解过程。
这种方法在解决线性方程组、二次方程、高次方程等代数方程时都有着广泛的应用。
对于一个二次方程ax²+bx+c=0,我们可以定义一个函数f(x)=ax²+bx+c,然后通过函数的性质和特点来确定方程的解的存在性、唯一性和具体的解法。
这种方法不仅可以简化问题的求解过程,而且可以帮助学生更好地理解代数方程的本质和求解方法。
2. 函数图像的分析在高中数学中,函数图像的分析是一个非常重要的内容。
函数与方程的思想方法在解题中的应用何登文数列、解析几何、立体几何、不等式及实际应用问题是高中数学的几个重要内容,在高考试题中占了较大的比例,能否顺利的解答这几类问题,直接影响到学生的高考成绩。
函数与方程思想从某些方面来说,给我们指出了解决这些问题的思路和方法。
将这些问题转化为相应的函数或方程,我们就可以应用函数和方程的性质来解决问题了。
下面,我们通过例题来说明它们的应用。
一、利用函数与方程的思想解答数列问题例1、已知数列的通项公式n a =-2n +6n+2,这个数列的最大项的值是多少?从第几项起以后的项均为负值?分析:数列是以自然数n 为变量的点列函数,因此,我们在处理数列问题是,往往将其转化函数问题,利用相应函数的性质来求解。
解:∵ n a =-2n +6n+2,∴n a 可以看作是关于n 的二次函数,利用二次函数的性质,当n=-62--=3时,n a 有最大值11。
令-2n +6n+2≤0 解得 n ≥7∴从第七项起以后的项均为负值。
此题利用了数列的函数特性求解,使得问题简单化,使用了化未知为已知的思维方法。
例2、已知数列﹛n a ﹜是等差数列,若n s =10,2n s =50,求3n s 。
分析:本题我们可以用“等差数列中,依次取每k 项作和,其和仍成等差数列”的性质来求解,即ns、2ns-ns、3ns-2ns成等差数列,此时公差d=50-20=30,所以3ns=2ns-ns+2ns+d=50-10+50+30=120.这样很直接。
另外,在等差数列中211()22()22n d dn d d n n n n a s a +-==+-是关于n 的一次函数,因此,我们可以利用一次函数的点共线的性质求解。
解:∵﹛n a ﹜是等差数列,∴n n s ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭也是等差数列,是关于n 的一次函数,∴ 23,,2,,3,23n n n n n n n n n s s s ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点共线,∴35010102323n n n n n n n n n s --=-- 解得3n s =120。
例说向量中数形结合、函数、方程思想的应用数形结合法思想就是根据数学问题的条件与结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和几何图形巧妙得结合起来,不仅直观易发现解题途径,而且能避免复杂的计算与推理,是高中数学教学中的一条重要的数学原则。
如果能注意数形结合思想的应用,能使许多数学问题简单化.下面从这几方面浅谈数形结合思想在高中数学中的应用。
一. 数形结合思想在解函数和方程问题中的应用.1.数形结合思想在解函数问题中的应用。
函数的图像是函数关系的一种表示,它是从―形‖的方面来刻画函数的变化规律。
函数图像形象地显示了函数的性质,为研究数量关系问题提供了―形‖的直观性,它是探求解题途径,获得答案的重要工具。
例1 求函数y=x2-2x-3,xE(-1,2) 的值域.解析:所求函数为二次函数,由于函数是非单调的,所以并不能代端点值去求值域,因此需要借助图像来观察,如右图:借助图像的直观表达可知道,具有区间范围的该二次函数的图像应为黄色区域部分,此函数的最小值是在对称轴处取得,即当x=1 时,y=-4 。
从而该函数的值域为:(0,-4) 。
小结:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。
2.数形结合思想在解方程问题中的应用。
方程f(x) –g(x) = 0的解情况,可化为f(x)=g(x) 的解情况,也可看作函数y = f(x) 与y = g(x) 图像的交点的横坐标的情况,所以只要我们准确地画出这两个函数的图像,再根据图像就能很容易地看出它们有几个交点,及交点大致的位置或坐标,这样我们就可以根据这些信息来解题,特别是选择题。
对于计算题,我们也可以用数形结合这种方法为自己提供一种思考问题的思路,也可以用来检查自己到底有没有做错。
例2 设方程lx2-1l=k+1 ,试讨论k 取不同范围的值时其不同解的个数的情况。
课例研究KELIYANJIU函数与方程思想在解题中的应用山东省荷泽市曹县第一中学杨玉丽【摘要】本文以新课程改革与素质教育为研究背景,将提高学生的解题能九培养学生的数学学科素养作为研究目的,围绕高中数学课程教学中函数与方程思想在解题中的应用,从不等式、数列、立体几何等方面展开分析。
【关键词】函数与方程思想高中数学解题函数思想主要指的是学生能基于运动、变化、集合、对应的观点去分析数学问题中所存在的数量关系,能基于函数的性质、函数图形去转化数学问题、解答数学问题。
而方程思想主要指的是学生在解决数学问题的过程中,将未知量设定去分析未知量与已知量之间的关系,即利用方程解决实际的数学问题。
从本质上讲,函数与方程思想就是将两种思想合并,利用函数与方程之间的密切联系去解决实际的数学问题。
一、函数思想与方程思想的联系为了更好地分析函数思想与方程思想之间存在的密切联系,在求解某些数学问题时,函数思想与方程思想是相互渗透的。
以函数y=/(0)为例:方程_/•&)=0的根为函数y=/&)的图像与%轴交点的横坐标;函数y=/(%)也可以看做方程/(%)-y=0。
二、函数与方程思想在解题中的应用意义函数与方程思想具备一定的工具性,在数学解题的过程中,学生需要具备两个关键因素,第一关键因素为学生的数学知识基础,第二关键因素为学生的数学解题思想。
学生作为主体参与数学解题活动,其知识基础与解题思想则决定着他们参与解题活动的效果。
从数学学科与学生发展双方来看,高中数学学科作为重要学科,其考试分数影响着学生的发展,历年高考数学试题中关于函数与方程方面的数学问题所占比例较大,因此,学生掌握并在解题中能够灵活地应用函数与方程思想,不仅会有利于进一步提升学生解题能力,还有助于学生在考试中获取高分。
三、函数与方程思想方法在解题中的应用以例题分析的方式对函数与方程思想方法在高中数学解题中的应用展开研究,具体内容如下所述: (—)函数与方程转化例题:函数f(X)^x2-4\x\+2-k有两个零点,求%的取值范围。
函数方程思想的应用举例
函数方程思想是中学数学中最基本、最重要的数学思想,也是历年高考的重点。
函数的思想就是用运动和变化的观点,分析和研究数学问题。
具体来说,即先构造函数,把给定问题转化为研究辅助函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。
函数方程思想就是将数学问题转化为方程或方程组问题。
通过解方程(或方程组)或者运
用方程的性质来分析、转化问题,使问题得以解决。
函数与方程思想是密切相关的,函数,当
时,就转化为方程或看作方程;而方程的解是函数图象与x
轴交点的横坐标。
函数与不等式也可以相互转化,对函数,当时,就是不等式,
而求的解则可比较函数图象位置而得到。
一.构造函数思想
例1.证明不等式
分析:由所证不等式很容易想到比商法,但a、b的正负无法确定,即使分类后,当a、b都为正数时,其
商也无法与1比大小,思路受阻。
再观察不等式两边形式类似,稍加变形即为,即可联想到函数
解:令
,就只需证了,利用函数单调性,问题得以巧妙解决。
在
则则所以在
上,
上为增函数
,即。
点评:应用函数性质证明不等式,关键在于构造一个适当的函数,且能方便地判断函数的有关性质。
例2.已知
恒成立,求x的范围。
,对于值域内的所有实数m,不等式
,则
分析:我们习惯上把 x 当作自变量,构造函数
,于是问题转化为:当
时, 恒成立,求 x 范围,但要解决这个问题要用到二次函数以及二次方程的区间根原
理。
相当复杂。
而如果把 m 看作自变量,x 视为参数,原不等式化为
,构造函数
解:因为
,
所以 ,
即
原不等式可化为
所以 ,令 的问题。
为 m 的一次函数,在 上恒大于 0,这样就非常简单。
恒成立,又
为 m 的一次函数,问题转化为 在 上恒大于 0
则只需
解得
或
即 。
点评:注意到本题有两个变量 x 、m ,且 x 本来为主元,但为了解题方便,把原不等式看为 m 的一次函数, 大大简化了运算。
在多字母的关系式中,应对参数的策略常常是“反客为主、变更主元”,重新构造函数。
二. 构造方程思想
例 3. 已知
,则有( )
A.
C.
B.
D.
分析:原式变为
是实系数一元二次方程 的一个实根,故
,故选 C 。
点评:通过简单转化,敏锐地抓住了数与式的特点,运用方程思想使问题迎刃而解。
例4.已知解:由
,且
平方得
,则a的范围为_______。
又
由此得到启示,则
与
,
都可用a表示,
故b、c是关于x的一元二次方程的两根。
故
解得。
点评:当问题出现两数积与这两数和时,是构造一元二次方程的明显信号,构造方程后再用方程特点可使问题巧妙解决。
三.函数方程统一思想
例5.已知三次方程恰有三个相异实根,求实数m的范围方程的根,即函数图象与x轴交点横坐标,由题意函数
曲线连续且光滑,故只需函数极大值与极小值异号即可。
解:令
则
应与x轴有三个不同产点,因三次
令为使,得
与x轴交于不同的三个点。
只须
即。
点评:方程函数互相转化,为得到方程根的情况,用函数图象特点,特别用导数法求得极值点,用限制极值的方法使图象穿x轴三次,问题解决。
利用函数图象交点个数及交点位置,使方程满足其根的某限制条件,是最常见的方程与函数统一的思想,借助图象特点,能直观又准确地看到方程根的情况.。