活性炭对苯酚的吸附课件
- 格式:ppt
- 大小:233.00 KB
- 文档页数:10
金属盐改性活性炭吸附去除水中苯酚实验研究杨英;孟红旗;李素敏【摘要】Activated carbon modified by Metal salts has broad application prospects in water purification. The modified activated carbons from five salts( Al^3+ , H ^+ ,Zn^2+ , Cu^2+ , Mn^7+ ) were respectively prepared using the impregnation method, and the adsorption performance of phenol solution by a filtration process was investigated with different modified activated carbon. The results showed that the adsorption performance on modified acti- vated carbons by these different salts gradually decreased in the direction: Al^3+ 〉 H ^+ 〉Zn^2+ 〉 Cu^2+〉Mn^7+ . The filter bed of modified activated carbons had a stronger resistance impact on phenol solution. In a lower filtration rate, the purification capacity of modified activated carbon by aluminum salts achieved more than 99% in dealing with low concentrations of phenol solution, and the effluent concentration was lower than 1 mg/L. Overall. The effect of this kind activated carbon was superior to the other kind by hydrochloric acids. Therefore, in the depth of water treatment, aluminum salts can be used as one of the main direction of the ac- tivated carbon modified.%金属盐改性活性炭在净水处理中具有广阔的应用前景.利用浸渍法制备了5种(Al3+,H+,Zn2+,Cu2+,Mn7+)改性活性炭,用过滤手段对改性活性炭吸附去除苯酚的性能进行了研究.结果表明,各种改性活性炭过滤去除苯酚性能的高低顺序为:Al3+〉H+〉Zn2+〉CK〉Cu2+〉Mn7+;活性炭滤柱对苯酚原水具有较强的耐冲击性能,在较低滤速下,铝盐改性活性炭滤柱对中低质量浓度苯酚水的净化能力达99%以上,出水质量浓度低于1 mg/L,整体上优于盐酸活化炭滤柱.在净水深度处理中,铝盐可作为活性炭改性的主要方向之一.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2012(031)005【总页数】5页(P617-621)【关键词】改性活性炭;过滤;苯酚;铝盐【作者】杨英;孟红旗;李素敏【作者单位】河南理工大学资源环境学院,河南焦作454000;河南理工大学资源环境学院,河南焦作454000;河南理工大学资源环境学院,河南焦作454000【正文语种】中文【中图分类】TU991.240 引言苯酚是一种常见的水环境污染物,容易被皮肤、呼吸道及消化道吸收,并能与生物活体蛋白质结合使其变性,导致其组织损伤、坏死,引发生物中毒[1].其浓度较低时,会对生物体产生内分泌干扰作用,如果人体摄入一定量的苯酚便会出现急性中毒症状.苯酚的相对分子量为94,是一种极性较强的有机物,其水溶液具有一定的污染性,能被一些极性或非极性物质所吸收.因此,在水处理过程中,消除苯酚污染问题越来越受到人们的广泛关注.目前,常用的苯酚水处理技术有吸附技术、生物降解和光催化降解等.其中,吸附法由于操作简便、成本低廉而备受关注[2-4].美国环保署饮用水标准的64项有机污染物指标中,有51项将GAC列为最可行的水净化技术[5].大量研究表明,这种强大的吸附性能主要是由活性炭表面特殊的理化特性决定的,尤其是表面(化学)官能团的作用[6-7].然而,目前国内用于不同水质的饮用水处理的活性炭品种较多,性能不一.在饮水深度处理中,芮旻等对活性炭进行了筛选研究,认为要对不同水质进行静态和动态试验等综合分析与评定,选择合适的活性炭则至关重要[8].近年来,人们通过金属负载等表面改性技术来改善活性炭对有机物的吸附性能,取得了一定成果[9-14].本研究以特性分子——苯酚为例,通过不同金属盐的浸渍对活性炭进行表面改性,通过利用活性炭滤柱对水溶液中苯酚的吸附试验,考察了改性活性炭的处理效果,研究了不同浓度苯酚溶液经过改性活性炭滤柱时的吸附截留行为,强化了含苯酚的净水处理工艺中活性炭过滤吸附工艺,提高了传统净水工艺对苯酚的过滤吸附去除能力,提出了活性炭的活化和表面改性方向.1 实验材料与方法在实际净水生产工艺中,颗粒活性炭是固定在吸附塔中,当含有有机物的处理水以一定的流速流经活性炭滤床时,水中的有机物被活性炭捕集吸附,从而使处理水得以净化.因此,本文设计了活性炭滤柱过滤试验,并采用人工配水苯酚稀溶液,对比了5种改性活性炭对苯酚的过滤吸附去除性能.1.1 试剂与仪器(1)试剂.唐山华能科技炭业有限公司的颗粒活性炭(10×30目),编号HN-Y16M;1.0 mol/L盐酸溶液;1.0 mol/L金属储备液AlCl3,ZnCl2水溶液;0.5 mol/L硫酸铜溶液;0.1 mol/L高锰酸钾溶液;苯酚储备液0.085 mol/L(8g/L).(2)仪器.32目筛子(0.5 mm);UV-1801紫外可见光分光光度计;DHG-9140A电热鼓风干燥箱;MP3002电子天平;自制过滤设备(φ1.5 cm×20 cm共6根,内装活性炭体积33 mL;图1).1.2 浸渍改性活性炭滤柱制备(1)活性炭预处理.将颗粒活性炭过32目筛,用蒸馏水洗涤2次以上,在105 ℃下烘干至恒重,冷却后密封保存.(2)浸渍活化.将活性炭滤柱在不同的改性溶液(即活化剂)中浸泡30 min,并不断将活化液从顶部通过滤柱,沥干过夜,用蒸馏水过滤洗涤2次滤柱,静置1 h后将滤柱固定并保持垂直,备用.(3)优化改性条件.查阅相关文献资料[9-13],设计3种活化剂浓度,分别是0.1,0.5,1 mol/L.经过简单的试验操作,即在1 min之内从各改性炭滤柱顶部倾入100 mL(10 mg/L)的苯酚溶液,优化活性炭活化剂浓度.活化剂类型及其最佳浓度如表1所示.(4)装柱.为模拟实际生产的活性炭装柱和活化过程,预先关闭出口,滤柱内充满蒸馏水,将预处理好的活性炭倒入滤柱,使其在水中自由沉降.当达到装填高度后,将柱内水分放出,沥干.表1 活性炭活化剂类型Tab.1 Activator type of activated carbon序号代号活化剂类型说明1CK对照预处理AC2H1 mol/L 盐酸溶液酸浸渍3Al1 mol/L 氯化铝溶液铝盐浸渍4Zn1 mol/L 氯化锌溶液锌盐浸渍5Cu0.5 mol/L 硫酸铜溶液铜盐浸渍6KMnO40.1 mol/L 高锰酸钾溶液氧化剂浸渍1.3 苯酚处理液的制备(1)苯酚水溶液的摩尔吸光特征.对苯酚溶液进行光度测量,得到其吸光度值为269.5nm,摩尔吸光系数为1 462.5L/(mol·cm-1).(2)苯酚处理液的制备.用苯酚储备液配置100~104 mg/L的处理液;随液固比值的增加,缓慢增大苯酚原液浓度.制备前期,苯酚原液浓度设计较低,为3.6~500mg/L,以便考察出水苯酚浓度的累积效应;制备后期,苯酚浓度逐渐增大,为500~7 700 mg/L,以考察活性炭滤柱的穿透能力.1.4 过滤工艺参数的选择实际生产中,活性炭滤床的过滤速度选择5~20 m/h.本次实验设计处理的苯酚原液浓度范围较大,为达到理想的处理效果,选择最小的滤速(5 m/h);水流方向选择自上而下过滤.活性炭滤柱充填高度为20 cm,堆积体积为33 mL,填充质量为11.0 g,设置每过滤33 mL取样1次,测量吸光度A269.5(即液固比每增加1个单位,测量1次过滤液).在不同浓度的原液下,依次考察了26个单位液固比的活性炭过滤吸附苯酚性能.2 结果与讨论2.1 不同改性活性炭滤柱的苯酚滤液浓度将3.60~7743.86 mg/L的苯酚原液通过不同改性活性炭滤柱(过滤液苯酚浓度见图2).在前14个液固比(即液固比小于12)中,即在低质量浓度苯酚原液(500 mg/L)条件下,所有活性炭滤柱出水苯酚质量浓度均低于5.08 mg/L.在前3个液固比中,苯酚原液质量浓度还不稳定,各滤柱出水苯酚质量浓度变化较大,去除率呈上升趋势;当苯酚原液质量浓度稳定时,去除率变化较小.其中,铝盐、盐酸和锌盐浸渍活性炭的苯酚出水质量浓度较低(均小于1.16 mg/L),具有较强的吸附净化能力(苯酚去除率在原液质量浓度稳定时可达99.33%以上);铜盐和高锰酸钾浸渍过的苯酚出水浓度则偏高(0.90 mg/L以上),过滤吸附能力相对较弱(原液质量浓度稳定时苯酚去除率为96.88%以上).后期逐渐提高苯酚原水浓度,其目的在于考察滤柱的穿透性能.从试验结果来看,对于500~1 100 mg/L中浓度苯酚原水通过各滤柱,出水苯酚浓度均低于5.85 mg/L,而铝盐活性炭滤柱出水苯酚浓度相对最低.当出现7 743.86 mg/L的高浓度苯酚溶液脉冲(即液固比为22.5)时,各滤柱出水的浓度迅速上升(盐酸和铝盐浸渍活性炭出水苯酚浓度由低于0.10 mg/L上升为3 mg/L左右,而高锰酸盐浸渍活性炭出水苯酚浓度迅速由1.99 mg/L上升为8.74 mg/L,各滤柱均表现出不同的穿透能力).在高浓度脉冲过后,各滤柱又恢复了较佳的吸附过滤性能(苯酚去除率达到99.72%以上).综合考察了26个单位的液固比,得到了各改性活性炭滤柱对苯酚的平均去除率(表2).从表2来看,虽然锌盐活性炭滤柱液固比对苯酚的平均去除率最高,但从各单位的液固比来看,在中低质量浓度的苯酚原水下,铝盐改性和盐酸活化活性炭滤柱的出水苯酚质量浓度均低于1 mg/L,苯酚去除率达99%以上.总体上,前者对苯酚的去除效果最好,稍强于盐酸浸渍活性炭滤柱.因此,从整体上看,各种改性活性炭过滤去除苯酚的性能强弱顺序由高到低为:Al3+>H+>Zn2+>CK>Cu2+>Mn7+.另外,从整个趋势上来看,在较低浓度的苯酚原水下(即液固比小于3的前4个单位上),各改性活性炭滤柱对苯酚的吸附累积效应比较明显;在较高浓度苯酚原水中,并无这种累积效应.表2 改性活性炭滤柱对苯酚的去除率Tab.2 Phenol removal efficiency of by fixed bed modified activated carbons结合26个单位的液固比各种改性活性炭滤柱Zn2+/ACAl3+/ACH+/ACCKCu2+/ACMn7+/AC苯酚去除率的平均值/%99.6398.5798.4892.4892.3783.21标准偏差0.484.205.1715.9915.8822.54 苯酚在改性活性炭滤柱中的吸附穿透能力不仅与原液苯酚质量浓度有关,还与时间存在一定关系(穿透曲线见图3).从图3可以看出,10 min之前,苯酚在各滤柱中的吸附穿透力差别较大,其中铝盐、锌盐和盐酸炭滤柱稳定性相对较好;10~60 min之间时,穿透力差别较小,其中铜盐和锰盐滤柱稳定性相对较差,其他各滤柱比较稳定,表现较好;60 min之后,各滤柱吸附容量达到饱和,穿透力表现很稳定.总之,从整个过程来看,铝盐、锌盐和盐酸炭滤柱较稳定,穿透力较强;因此,在水处理过程中,选择这类盐作为活化剂是比较可取的.从净水制备的角度来看,商品活性炭装柱后不经酸活化,对水中有机污染物苯酚的吸附去除能力将下降,但铜盐和高锰酸钾浸渍与商品活性炭性质接近,因而不可取.对于锌盐浸渍活性炭,虽然能获得较好的苯酚去除率,但整体上不及铝盐和盐酸浸渍滤柱出水苯酚质量浓度低.另外,锌本身为重金属,虽未考察出水锌的残留质量浓度,但在净水处理工艺中一般不宜选择.从试验结果来看,整体上铝盐改性和盐酸活化活性炭对苯酚水的过滤效果较好,而且前者对苯酚的专性吸附效果更优于后者;因此,这两种改性活性炭在苯酚水处理中都是可取的,尤其是前者.再者,铝盐比盐酸更可取,因为它有许多生产上的优势,如便于运输、工艺简单等,并且铝盐活化后可用于原水一级工艺的混凝工艺等.2.2 过滤吸附机理探讨氯化铝溶解于水,其本身显示强酸性(pH<1.0)是由于铝离子具有强烈的水解能力,形成羟基铝,从而促进水的解离反应进行,产生氢离子.Al3++H2OAlOH2++H+.因而,氯化铝溶液本身能对活性炭起到酸活化作用不足为奇.酸活化后,活性炭表面电位降低,亲水性减弱,便于苯酚类有机分子进入活性炭微孔并发生吸附作用,因而酸活化后活性炭对苯酚的吸附去除能力大大增强.另外,从分子量大小来讲,铝离子及其一级水解产物的分子之间约在10 nm当量范围附近,可进入活性炭较小的微孔内部,并发生滞留.当水中具有一定极性的有机分子进入活性炭微孔,则被铝离子所占据的活性点位所吸附发生键合反应;由于可能发生化学反应,有机分子的吸附活化能可能迅速降低,从而加速有机物的吸附去除速率和能力.铝负载活性炭后对极性有机物的饱和吸附容量有所降低,即降低了其吸附寿命.然而,这些负载到活性炭表面的金属离子有可能成为水中低质量浓度有机物分子吸附的活性点位,从而降低吸附活化能,提高吸附反应速率和吸附去除效果.根据Pearson软硬酸碱理论“软亲软,硬亲硬,软硬搭配不稳定”的基本原则及其碱硬软分类[15](由于苯酚属于硬碱,即苯酚中氧电负性为3.8,而活性炭表面负载了属于硬酸的Al3+,H+,Zn2+后),增强了活性炭表面局部的硬酸度,使得这些金属离子对苯酚在活性炭表面的脱附活化能大于其在原始活性炭(即CK)表面的脱附活化能,从而使活性炭表面对苯酚的吸附更牢.另外,属于交界酸的Cu2+负载在活性炭表面,将减弱活性炭表面的局部硬酸性,从而减弱活性炭对苯酚的吸附作用力,表现为苯酚从这些活性炭表面上的脱附活化能低于原始活性炭表面的脱附活化能[12].对于高锰酸钾改性后的活性炭滤柱而言,因为高锰酸钾属于强氧化剂,活性炭经氧化改性处理后,使其微孔结构遭到破坏,过渡孔系增多,吸附性能明显降低[16].另外,表面含氧酸性基团大量增加,表面亲水性增强,不利于对以疏水性为主的苯酚的吸附.因此,这种改性活性炭在活性炭过滤吸附工艺中不宜使用.总之,对这几种改性活性炭而言,虽然铝盐改性活性炭对苯酚的吸附容量有所降低,但从处理效果和生产工艺等整个环节来看,铝盐活性炭是净水处理工艺中一种较优的活性炭吸附剂,尤其是在活化改性活性炭过滤净化小分子量有机物方面具有更为广阔前景.3 结论不同改性活性炭过滤吸附去除苯酚的性能强弱顺序为:Al3+>H+>Zn2+>CK>Cu2+>Mn7+.活性炭滤柱对苯酚原水具有较强的耐冲击性能.对于中低浓度的苯酚原水来说,铝盐改性活性炭滤柱对其处理净化能力达99%以上,出水浓度低于1 mg/L,盐酸活化炭滤柱的处理效果稍弱于铝盐炭滤柱.整体而言,铝盐改性活性炭滤柱的净化能力强于盐酸活化炭滤柱,其稳定性也较好,选择性较强.综合苯酚出水浓度和生产成本等因素,认为铝盐是作为一种优良的活性炭活化剂,其改性活性炭易于再生并能循环使用,在净水深度处理中具有广阔的应用前景.参考文献:[1] 王代芝.Cr3+——改性膨润土处理含苯酚废水[J].化学工业与工程,2005,22(4):282-284.[2] 吴永文,李忠,奚红霞,等.高聚物吸附剂的空隙结构和表面特性对苯酚吸附容量的影响[J].化工学报,2003,55(11):1642-1645.[3] 张青红,高濂.高度分散的Pt/TiO2的制备及光催化活性[J].化学学报,2005,63(1):65-70.[4] WEINGARTNER C.The KSVA procedure a new procedure for the selective removal of organic traces[J]. Water Supply,1996,14(2):1145-1158.[5] PONTIUS F W.Complying with future regulations[J]. AWWA,1999,91(2):146-157.[6] 张世润.活性炭水处理的应用实践[J].活性炭,1988,20(3):38-43.[7] 范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26-29.[8] 芮旻,伍海辉,朱斌,等.饮用水深度处理中活性炭的筛选试验研究[J].给水排水,2005,31(1):27-32.[9] 杨娇萍,田艳红.FeCl3-CO2体系改性活性炭的研究[J].北京化工大学学报:自然科学版,2005,32(2):55-58.[10] EWA LORENC-GRABOWSKA,GRA-ZYNA GRYGLEWICZ,STANIS LAW GRYGLEWICZ.Development of mesoporosity in activated carbons via coal modification using Ca2+ and Fe3+ ex-change[J].Microporous and Mesoporous Materials,2004,76(1-3):193-201.[11] 厉悦.改性活性炭的表面特性及其对苯酚的吸附性能[J].林产化工通讯,2004,38(2):14-17.[12] 潘红艳,李忠,夏启斌,等.苯酚在改性活性炭上的脱附活化能[J].华南理工大学学报:自然科学版,2006,34(12):72-77.[13] NEVSKAIA D M,SANTIANES A,MUNOZ V,et a1.Interaction of aqueous solutions of phenol with commercial activated carbons:an adsorption and kinetic study[J].Carbon,1999, 37(7):1065-1074.[14] 安东,李伟光,崔福义,等.固定化生物活性炭强化饮用水深度处理[J].中国给水排水,2005,21(4):9-12.[15] PEARSON R G.Hard and soft acids and bases[J].J Am Chem Soc,1963,85(22):3533-3539.[16] 刘成,高乃云,黄廷林.活性炭的表面化学改性研究进展[J].净水技术,2005,24(4):50-52.。
【活性炭对水中苯酚的吸附】活性炭对苯酚的吸附活性炭对水中苯酚的吸附梁晓王凤娇唐婧活性炭对水中苯酚的吸附梁晓王凤娇唐婧(内蒙古鄂尔多斯市环境保护中心监测站,东胜017000)摘要:本文探讨和研究了活性碳吸附水中苯酚的试验方法以及活性碳对水中苯酚的吸附效率。
在比较了不同条件下活性炭对苯酚的吸附效果的情况下,确定了处理水中苯酚的活性炭用量、水的ph值、温度、粒径大小对吸附结果的影响。
研究结果表明,粒径关键词:苯酚;活性炭;光度法;吸附中图分类号:x7031文献标识码:a文章编号:1007-0370(2009)06-0141-03theadsorptionofphenolinwaterwithactivatecarbonliangxiaowangfengjiaotangjing(erdouscityenvironmentalmonitoringstationofinnermongolia,dongsheng017000)mentalmethodsandadsorptionefficiencyofphenolinwaterwithactivatecarbonarestudiedanddiscussed.theabstrac:ttheexperiadsorptioneffectivenessofphenolwithactivatecarbonunde rdifferentconditionsarecompared,thevolumeofactivatecarbon,phvalue,temperatureandimpactsofparticlesizeonadsorptioneffectivenessarei dentified.keywords。
pheno;lactivatecarbon;luminosity;adsorption酚类属于高毒物质,是水中的主要污染物之一。
酚类的测定是环保、卫生部门水质监测的重要项目之一[1]附条件下对吸附效率的影响。
浓硫酸改性活性炭对模拟废水中苯酚的吸附研究李明;王璐【摘要】A new adsorbent was synthesized from activated carbon which was modified by concentrated sulfuric acid and the performance of the adsorbent for phenol was carried out. The experimental results showed that the optimal absorption conditions were as follows:when the adsorption temperature was 35 ℃, the initial concentration of phenol was 0. 8 g/L, the adsorbent dosage was 1. 0 g and the adsorption time was 20 min, the removal rate was up to 96. 2%. Compared with the unmodified activated carbon, the adsorption effect was greatly improved. What’s more, the adsorbent was reused after 5 times, the removal rate was still up to more than 70. 0%. Experiments showed that the activated carbon treated by sulfuric acid acts as a good adsorbent in the performance of adsorption for phenol.%采用浓硫酸改性活性炭作吸附剂,研究其对模拟废水中苯酚的吸附性能。
活性炭对多种有机物质的吸附效果
1. 研究背景
活性炭是一种常见的吸附剂,广泛应用于水处理、废气处理、
食品加工等领域。
活性炭具有强大的吸附能力,能够有效去除水中
的有机污染物。
本文将探讨活性炭对多种有机物质的吸附效果。
2. 实验设计与方法
本实验选取了四种常见的有机物质:苯酚、甲苯、乙醇和乙酸。
通过将这些有机物溶解在一定浓度的水溶液中,并加入一定量的活
性炭,观察其吸附效果。
实验设置多个组别,分别改变有机物浓度
和活性炭用量,以获得更全面的数据。
3. 实验结果
通过实验观察和数据统计,我们得到了以下结果:
- 对于苯酚、甲苯这样的芳香族化合物,活性炭表现出较好的吸附效果。
在适当的活性炭用量下,可以去除水中高浓度的芳香族化合物。
- 乙醇和乙酸是饮料和食品加工中常见的有机物质,它们在水中的浓度相对较低。
活性炭也能够吸附这些有机物质,但需要较高的用量才能达到较好的去除效果。
4. 结论
活性炭作为吸附剂,在处理多种有机物质时具有一定的效果。
不同种类的有机物质对活性炭的吸附效果不同,芳香族化合物的去除效果较好,而含有羟基的有机物质则需要较高的活性炭用量。
此外,活性炭用量的控制也是关键,过高或过低的用量都可能影响吸附效果。
5. 参考文献
[1] 张三, 李四. 活性炭在水处理中的应用研究. 中国环境科学, 20XX(1): 12-18.
[2] 王五, 赵六. 活性炭吸附有机物质的机理研究. 化学与工程, 20XX(2): 35-40.。
《环工综合实验(1)》
实验报告
专业环工1301
班级环境工程
姓名候俊媖
指导教师
成绩
东华大学环境科学与工程学院实验中心
二0一五年12 月
图表1水中苯酚在树脂上的吸附等温线图表2水中苯酚在活性炭上的吸附等温线
四、实验步骤
.绘制标准曲线
)配制50mg/L活性艳蓝溶液。
)用紫外可见分光光度计对样品在500 - 750 nm 波长范围内进行全程扫描,确定最大吸
液体吸附:
臭氧生物活性炭
2)活性炭吸附-催化臭氧氧化体系
3)颗粒活性炭吸附-高级氧化原位再生技术:采用活性炭滤罐进行废水深度处理,活性炭饱和后,滤罐中注入采用芬顿试剂进行原位再生。
(注意温度、压力变化)4)粉末活性炭吸附-好氧生物再生技术:废水深度处理中,将粉末活性炭注入废水中,吸附饱和后,混合液采用精滤器进行过滤,粉末活性炭在精滤器上形成滤饼,废水滤过后净化。
精滤器上滤饼采用刮板回收,放入好养生物曝气池中进行好氧生物处理,粉末活性炭上吸附的有机物被好氧矿化,从而使得粉末活性炭得以重生。
重生后粉末活性炭重新使用。
改性活性炭对苯酚的吸附研究
王香莲;阳岁红;鞠治杰;彭华川;刘清辉;胡志远;李亮
【期刊名称】《南昌工程学院学报》
【年(卷),期】2013(032)006
【摘要】研究初始浓度,温度,pH值对氨水改性后活性炭吸附苯酚效果的影响.随着苯酚初始浓度的增加,对苯酚的吸附量也相应增加;温度会影响吸附效果,当温度从20℃增加到45℃,相同条件下,苯酚的吸附量有所下降;微酸性有利于吸附,pH值为6左右时,活性炭对苯酚的吸附效果最佳.
【总页数】4页(P34-36,71)
【作者】王香莲;阳岁红;鞠治杰;彭华川;刘清辉;胡志远;李亮
【作者单位】南昌工程学院土木与建筑工程学院,江西南昌330099;江西省委信息保障中心,江西南昌330006;南昌工程学院后勤保障处,江西南昌330099;南昌工程学院土木与建筑工程学院,江西南昌330099;南昌工程学院土木与建筑工程学院,江西南昌330099;南昌工程学院土木与建筑工程学院,江西南昌330099;南昌大学建筑工程学院,江西南昌
【正文语种】中文
【中图分类】TU991.22
【相关文献】
1.响应曲面法优化碱改性活性炭吸附水中苯酚研究 [J], 李虹雨;王可;邢璇;夏建新;廖艺霓;余丽媛;何琼
2.不同改性活性炭吸附苯酚和亚甲基蓝的实验研究 [J], 陆蓉;田娟;何莹莹;赵俊欢;陈炎彬
3.浓硫酸改性活性炭对模拟废水中苯酚的吸附研究 [J], 李明;王璐
4.改性活性炭的制备及其吸附苯酚性能的研究 [J], 周云;刘忠凯;王耀丹;纪维维;郑蓓蕾
5.金属盐改性活性炭吸附去除水中苯酚实验研究 [J], 杨英;孟红旗;李素敏
因版权原因,仅展示原文概要,查看原文内容请购买。