平面结构的网络拓扑
- 格式:pdf
- 大小:167.04 KB
- 文档页数:3
无线传感器网络的组网技术详解无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布在空间中的无线传感器节点组成的网络系统。
这些节点能够感知环境中的各种物理量,并将采集到的数据通过网络传输到目标位置。
无线传感器网络在农业、环境监测、智能交通等领域具有广泛的应用前景。
而组网技术是无线传感器网络中至关重要的一环,它决定着网络的可靠性、稳定性和性能。
一、无线传感器网络的组网模式无线传感器网络的组网模式有两种:平面型组网和立体型组网。
1. 平面型组网平面型组网是指节点在平面上均匀分布的组网模式。
节点之间的通信距离较近,通信路径较短,能够有效降低传输延迟和能量消耗。
平面型组网适用于需要对平面区域进行全面监测的场景,如土壤湿度监测、温度监测等。
2. 立体型组网立体型组网是指节点在三维空间中分布的组网模式。
节点之间的通信距离相对较远,通信路径较长,需要更强的通信能力和能量支持。
立体型组网适用于需要对三维空间进行全面监测的场景,如建筑结构监测、地震预警等。
二、无线传感器网络的组网拓扑结构无线传感器网络的组网拓扑结构有多种,常见的有星型结构、树型结构和网状结构。
1. 星型结构星型结构是指所有节点都直接连接到一个中心节点的组网模式。
中心节点负责数据的汇聚和转发,具有较高的通信能力。
星型结构简单、稳定,适用于小规模的传感器网络。
2. 树型结构树型结构是指节点之间通过父子关系构成的层级结构。
树型结构中每个节点只与其父节点和子节点直接通信,数据通过树形结构传输。
树型结构适用于大规模的传感器网络,能够有效减少通信开销。
3. 网状结构网状结构是指节点之间通过多跳通信形成的网状网络。
每个节点都可以与其他节点直接通信,数据通过多跳传输。
网状结构具有较高的灵活性和容错性,适用于复杂环境下的传感器网络。
三、无线传感器网络的组网协议无线传感器网络的组网协议有多种,常见的有LEACH协议、TEEN协议和PEGASIS协议。
wsn路由协议的分类WSN(无线传感器网络)是由大量低功耗的无线传感器节点组成的网络,用于感知、采集和传输环境信息。
WSN路由协议是指在无线传感器网络中,节点之间进行通信和数据传输时所采用的路由方式和协议。
根据不同的路由方式和协议特点,WSN路由协议可以分为以下几类。
一、平面型路由协议平面型路由协议主要是将网络拓扑结构抽象为二维平面,将节点部署在平面上,通过节点之间的位置关系来确定路由路径。
常见的平面型路由协议有以下几种。
1. GPSR(Greedy Perimeter Stateless Routing):该协议通过节点的位置信息来进行数据包的路由选择,利用局部贪心算法选择下一跳节点,具有低能耗和高可靠性的优点。
2. GAF(Geographic Adaptive Fidelity):该协议根据节点的位置信息,动态调整节点的通信范围,从而实现网络中节点的负载均衡和能量均衡。
3. LAR(Location-Aided Routing):该协议通过节点的位置信息来进行数据包的路由选择,利用洪泛和反向路径设置机制来提高路由的效率和可靠性。
二、层次型路由协议层次型路由协议是将网络划分为不同的层次结构,每个层次有不同的路由策略和协议。
常见的层次型路由协议有以下几种。
1. LEACH(Low Energy Adaptive Clustering Hierarchy):该协议将网络节点划分为不同的簇,每个簇有一个簇头节点负责数据的聚集和转发,通过簇头节点和基站之间的通信来实现数据的传输。
2. TEEN(Threshold-sensitive Energy Efficient Sensor Network):该协议将网络节点划分为不同的阈值范围,节点根据自身能量水平选择合适的阈值范围进行数据的传输和路由选择。
3. MTE(Multicast Tree-based Energy):该协议通过构建多播树的方式进行数据传输,通过选择合适的多播树结构来实现能量的节约和路由的优化。
无线传感器作业1.1:传感器网络节点使用的限制因素有哪些?1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。
2.通信能力有限3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些限制必然导致其携带的处理器能力比较弱,存储器容量比较小。
1.2:网络传感器有哪些特点?1.自组织性2.数据为中心3.应用相关性4.动态性5.网络规模6.可靠性2.1:按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点?答:1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c网络结构的形成。
由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。
2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提高网络覆盖率和可靠性。
3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。
4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。
2.2:传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。
3.1:WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么?媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。
②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。
误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。
具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。
3.2:传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么?Event-to-sink由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。
什么是网络拓扑结构常见的网络拓扑结构有哪些网络拓扑结构是指计算机网络中各个节点之间连接方式的布局或安排。
不同的网络拓扑结构可以影响网络的性能、可靠性以及扩展性。
本文将介绍网络拓扑结构的概念,并列举一些常见的网络拓扑结构。
一、什么是网络拓扑结构网络拓扑结构是指计算机网络中各个节点之间的连接方式和布局方式。
它决定了网络中数据传输的路径和规律。
网络拓扑结构通常由硬件设备和物理链路组成,包括节点、线缆和连接设备等。
网络拓扑结构可以分为以下几种类型:1. 星型网络拓扑结构星型网络拓扑结构是指所有的节点都直接与中央控制节点相连。
中央节点具有集线器、交换机或路由器等功能,它负责接收和发送数据。
星型网络拓扑结构简单、易于扩展和管理,但是如果中央节点发生故障,整个网络将无法正常工作。
2. 总线型网络拓扑结构总线型网络拓扑结构是指所有的节点通过一条公共的传输介质连接在一起。
节点之间共享同一个传输介质,可以通过发送和接收数据来进行通信。
总线型网络拓扑结构成本低廉,但是传输介质故障会影响整个网络性能。
3. 环型网络拓扑结构环型网络拓扑结构是指节点之间通过一条环形的链路连接在一起。
每个节点都与其前后两个节点相连,形成一个封闭的环形路径。
环型网络拓扑结构具有良好的可靠性和性能,但是节点的加入和退出会对整个网络造成影响。
4. 网状型网络拓扑结构网状型网络拓扑结构是指网络中的每个节点都与其他节点相连。
节点之间可以多个路径进行通信,因此具备高度的可靠性和冗余性。
网状型网络拓扑结构适用于大规模网络和对可靠性要求较高的场景,但是节点之间的连接较复杂,管理和维护较为困难。
5. 树型网络拓扑结构树型网络拓扑结构是指通过层次结构将网络节点组织在一起。
每个节点都有唯一的父节点,并且可以有多个子节点。
树型网络拓扑结构具有灵活性和扩展性,易于管理和故障排除,但是如果根节点发生故障,整个网络将受到严重影响。
6. 混合型网络拓扑结构混合型网络拓扑结构是指将多种拓扑结构组合在一起。
交通网络拓扑结构分析交通作为现代城市生活中不可缺少的一部分,在城市发展中具有重要的地位和作用。
随着城市规模的扩大以及交通需求的不断增加,交通网络的拓扑结构也变得越来越复杂。
拓扑结构作为交通网络的核心要素,对交通系统的性能和运转具有重大的影响,因此,我们有必要对交通网络的拓扑结构进行分析。
一、拓扑结构的概念和意义拓扑结构是指构成网络的节点和边的连接方式和组织形式。
在交通网络中,节点代表城市、交叉口和公交站等,而边代表连接这些节点的道路、铁路和公交线路等。
拓扑结构对交通网络的形态、运转和效率产生影响。
通过对拓扑结构的分析,我们能够深入理解交通网络的性质和规律,更好地优化和管理交通系统。
二、拓扑结构的分类根据网络结构的复杂性和连接方式,拓扑结构可分为以下几种类型:1. 零维结构。
也称为点状结构,指网络中只含有节点,两个节点间没有任何边相连。
这种结构一般只用于描述社会网络和生物网络等非交通网络。
2. 一维结构。
也叫线状结构,指网络中只有边相连,没有形成环或回路。
这种结构常见于铁路交通系统中,因为铁路的行车方向是单向的,两条铁路线路中间不能互相交叉,因此形成了一种线状结构。
3. 二维结构。
也称为平面结构,指网络中边形成环或回路,但是运动的轨迹限制在一个平面内。
这种结构常见于道路交通系统中,因为道路的行车方向不限,而且可以制定交通信号控制规则,使得车辆在道路网络中能够流畅通行。
4. 三维结构。
也叫空间结构,指网络中存在立体交叉和相互穿越的运动轨迹。
这种结构常见于交通枢纽或高速公路交叉口,因为这些地方需要实现车辆从不同方向的进出口自由流通,车辆运动的轨迹不限于平面内。
三、拓扑结构的分析方法拓扑结构分析方法主要有以下几种:1. 随机网络模型。
该方法通过数学模型分析网络中节点和边的连通性和密度,推断网络的拓扑结构和特征参数。
2. 复杂网络理论。
复杂网络理论是一种新兴的网络分析技术,其研究范围广泛,包括网络结构、特征参数、网络演化、复杂系统等多个方面。
局域网拓扑图网络设备主要包括局域网交换机、路由器、各种服务器等。
各器件间用双绞线连接;和互联网连接用光纤。
整体拓扑结构:整体平面图:网络拓扑结构的规划设计与网络规模息息相关。
一个规模较小的星型局域网没有主干网和外围网之分。
规模较大的网络通常采用分层结构的拓扑,分为核心层、汇聚层和接入层,如图示。
分层设计规划的好处是可有效地将全局通信问题分解考虑。
分层还有助于分配和规划带宽的使用。
主干网络又称为核心层,用以连接服务器群、建筑群到网络中心,或在一个较大型建筑物内连接多个交换机管理间到网络中心设备间;用以连接信息点的“毛细血管”线路及网络设备称为接入层,根据需要在中间设置汇聚层。
汇聚层和接入层又称为外围网络。
要不要汇聚层,采用级联还是堆叠,要视网络信息流的特点而定,堆叠体内能够有充足的带宽保证,适宜本地(楼宇内)信息流密集、全局信息负载相对较轻的情况;级联适宜于全网信息流较平均,且汇聚层交换机大都具有组播和初级QoS(服务质量)管理能力的场合,适合处理一些突发的重负载(如VOD视频点播),但增加汇聚层的同时也会使成本提高。
北京总部拓扑结构:北京分部拓扑结构:管理服务器包括:邮件服务服务器、Fileserver1的文件服务器、应用服务器、数据库服务器;包含FTP服务、DNS服务、Web服务等。
企业的文件服务器上有一个给员工保存文件的共享文件夹。
要求管理人员每人最多可以保存500MB文件,一般工作人员最多可以保存200MB文件,短期员工最多可以保存100MB文件。
企业中有一个名为Fileserver1的文件服务器,这台文件服务器上有一个共享文件夹叫shared folder,里面有几千份文档供企业的工程师使用。
为保证共享文件夹数据的安全性,需要对此共享文件夹进行严格审核,并进行每天一次的备份。
企业的主要数据都放置在北京的一号办公大楼服务器中。
研发部打印机服务器管理4台型号相同并集中放置在打印室的网络激光打印机,现在要求管理人员在使用这些打印机时要比一般员工有更高的优先级。
无线传感器网络作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII无线传感器作业1.1:传感器网络节点使用的限制因素有哪些?1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。
2.通信能力有限3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些限制必然导致其携带的处理器能力比较弱,存储器容量比较小。
1.2:网络传感器有哪些特点?1.自组织性2.数据为中心3.应用相关性4.动态性5.网络规模6.可靠性2.1:按照节点功能和结构层次划分,将传感器网络的结构有哪几种各有什么特点答:1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c网络结构的形成。
由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。
2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提高网络覆盖率和可靠性。
3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。
4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。
2.2:传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。
3.1:WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么?媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。
②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。
误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。
具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。
3.2:传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么?Event-to-sink由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。
平面结构的网络拓扑
概述
网络管理系统的网络拓扑图是网络管理系统中最为基础的部分,网络管理系统中大部分的功能都将通过拓扑图来进行体现,这是网络拓扑图在网管系统的重要地位表现。
网络拓扑图对网管系统的另外一个重要性在于它的适应性。
现在网络的建设并不都是很规范,同时又不同的厂商的设备、同一个厂商的设备有不同的型号、同一个型号的设备随着设备的升级,其操作系统的版本不一样,所能提供的信息也不一样,对于SNMP的支持程度也不一样。
这就为网络管理工作增加了很大难度,但借助网络拓扑图,网管人员就可直观的了解所有网络设备的状态。
将网管人员从机械、重复的手动监管中解放出来,并能够迅速地定位故障,避免了企业的重大损失。
网络拓扑展现方式
网络拓扑图从表现形式上看,一种是类似树形的结构,一种是平面的结构。
从实践经验来看,平面拓扑是一个比较好的表现形式,它不仅仅可以涵盖树形结构,同时可以表现网状结构,更适合表现复杂的网络环境。
n树形结构网络拓扑图
n平面结构网络拓扑图
如下图,在图二中双击信息中心节点将会打开图三所示的
信息中心子拓扑图。
通过此功能,可在平面结构网络拓扑
图中展示网络的树形结构。
摩卡业务服务管理(Mocha BSM)平面网络拓扑的功能与亮点
n支持主流协议、主流厂商的网络设备;
n展现实时动态的、显示全局的网络拓扑图;
n可以根据用户的网络,定制逻辑网络拓扑图;
n支持网络拓扑导入、导出功能;
n按节点类型分类查看各层网络拓扑图;
n集成MIB Browser、Telnet等网络管理工具;
n定制丰富的搜索条件,能够快速定位网络中的设备;
n自动分析故障根本原因,故障告警升级处理;
n实现网络服务器管理;
n简单易用的图形界面,免客户端软件安装。
图一树形网络拓扑图
图二摩卡业务服务管理(Mocha BSM)平面网络拓扑图
图三摩卡业务服务管理(Mocha BSM)平面网络拓扑图
Mocha BSM 4+1 介绍
n三位一体的产品定位
三位一体的解决方案
摩卡软件是亚太区率先推出三位一体产品定位的软件提供商之一,三个定位包括了:
n网络管理
( Network Management System )
—传统意义上的网络、系统、应用监控,满足了成长中企业的需要;
n IT运维管理
( IT Operations Management) —把监控上升至管理的层面,帮助企业规划、运维和改进IT系统。
通过端到端的监控,帮助中大型企业管理IT 系统;
n IT服务管理
( IT Service Management ) —基于ITIL流程框架,带领企业进入流程化,规范化和自动化的时代。
n Mocha BSM 4+1做得更多
为了满足三位一体的定位,摩卡软件推出了Mocha BSM 4+1产品套装。
Mocha BSM 4+1涵盖了以下几方面:
:基础架构管理
—网络拓扑、主机、流量分析、IT资产;
:应用管理
—应用服务器、数据库、Web服务器等;。