2021新版发电机内冷水处理技术的探讨
- 格式:docx
- 大小:230.84 KB
- 文档页数:11
关于发电机内冷水系统处理的若干思考摘要:分析发电机内冷水处理系统的运行标准,了解冷水运行系统存在的问题,研究问题出现的原因,可得知发电机厂内冷水铜含量长期超标。
为了应对超标对生产所带来的不良影响,可以使用缓蚀剂以及离子交换处理技术,使内冷水质量符合要求,具有推广利用价值。
可使发电机内冷水处理系统运行更快、更科学,提升生产效率,保障整体安全性、可靠性、合理性。
关键词:发电机;冷水系统;处理;研究分析水质对发电机的运行有着直接关联,对水质进行精准控制,可以使机组运行速度以及最终生产效率得到优化。
我国发电机以300MW机组为例,自2021年至2022年发生的生产安全事故13起。
虽整体降低,但其事故原因依然与冷水回路堵塞、断水等有关联。
300MW大机组内部的冷水处理系统更容易出现问题,内冷水系统在出现结垢或腐蚀等问题后,其发电机的冷却绝缘效果将会明显下降,为安全生产带来隐患。
需要结合生产需求,使用除盐水、凝结水,融合 BTA+EA缓释剂、溢流法、小混床处理法等进行处理。
可保障发电机内冷水处理水质达到要求,降低运行维护费用。
一、内冷水系统水质不合格原因分析(一)内冷水补水不合理内冷水补水系统不合理是首要原因,在发电机组运行时,其内冷水需要使用除盐水。
通过一级除盐结合混床处理得到的除盐水,水质虽然能够达标,但除盐水进入水箱后,受客观因素影响,水质下降。
例如,机组在正常运行时,除盐水会受到二氧化碳溶解速度、凝结水箱系统密封程度、水分停留时间、水位波动等影响,自身PH值出现变化[1]。
除盐水中包含了其他的弱酸性物质,当PH值到达一定峰值且稳定后,该物质的不饱和趋势明显上升。
这种物质与二氧化碳融合(二氧化碳物质来源于空气中二氧化碳气体溶解),在生产环境空气污染不严重的情况下,并不会出现内冷水系统水质问题。
一旦周围出现空气质量下降等问题(如温度上升),势必会在机组运行时导致内容水系统水质明显下降。
除盐水与空气接触,并溶解二氧化碳物质在水中发生电离反应。
发电机内冷水处理技术的探讨目前国内外大、中型发电机内冷水处理技术普遍存在问题,造成发电机内冷水电导率和pH值达不到有关标准规定的要求。
文章介绍了一种新型的发电机内冷水超净化处理技术及其应用。
该技术在发电机内冷水处理方面有所创新,技术的综合性能指标达到国际先进水平。
针对目前沙角C电厂660MW机组和沙角A 电厂200MW机组发电机内冷水系统结构方式及运行状况,提出采用新型发电机内冷水超净化处理技术及改造内冷水处理系统的建议。
关键词:发电机内冷水;电导率;p H;超净化处理;改造1 发电机内冷水的水质要求大中型发电机组设备普遍采用水-氢冷却方式,发电机内冷水选用除盐水或凝结水作冷却介质。
冷却水的水质对保证发电机组设备的安全经济运行是非常重要的。
近年来随着大容量、亚临界、超临界发电机组的投入运行,为了确保发电机组设备的安全运行,对发电机内冷水品质的要求越来越高,国标GB/T12145—1999《火力发电机组及蒸汽动力设备水汽质量》,对发电机内冷水质量标准有如下规定:a)对双水内冷和转子独立循环的发电机组,在25℃温度下,冷却水电导率不大于5μS/cm,铜的质量浓度不大于40μg/L,pH值大于6.8;b)机组功率为200MW以下时,发电机冷却水的硬度(水中钙和镁阳离子的总浓度)不大于10μmol/L,机组功率为200MW及以上时,发电机冷却水的硬度不大于2μmol/L;c)汽轮发电机定子绕组采用独立密闭循环水系统时,其冷却水的电导率小于2.0μS/cm。
2 目前国内外发电机内冷水处理的方法及存在问题为了改善发电机内冷水的水质,目前国内外发电机组普遍采取的防腐、净化处理的方式主要有单纯补充除盐水或凝结水运行方式、内冷水加铜缓蚀剂法、小混床处理法和双小混床处理法。
这些方法在实际生产中难以解决内冷水中的电导率和pH值机内冷水的关键技术是解决现有小混床处理法中电导率、铜离子指标必须长期合格的问题,即发电机的内冷水pH不小于7.0,并稳定在7~8之间;解决小混床偏流、漏树脂而导致出水p H值偏低引起循环系统酸性腐蚀问题;解决小混床树脂交换容量小,机械强度低,易破碎问题;实现闭式循环系统及防止补水对循环内冷水产生受冲击性污染问题,实现长周期稳定运行及免维护等功能。
探讨发电机内冷水系统的优化处理【摘要】控制发电机的内冷水水质是发电机安全运行的一个重要保证,对改善和处理就显得十分重要,本文对发电机内冷水系统的现状及优化处理进行分析,并探讨冷水旧标准与新标准不相适应的情况以及按照国家标准控制的难点及优化处理的一些方法。
【关键词】发电机;内冷水系统;现状;优化;处理火电厂发电机内冷水系统的水质与发电机的对地绝缘性能和铜线棒的腐蚀速率密切相关,其水质控制方法直接影响机组的运行安全。
我国近年300MW机组发电机本体发生事故53起,由于内冷水回路堵塞、断水等原因造成的事故29起,占事故总次数的54.7%。
对于容量小于125MW的双水内冷机组,由于内冷水水质比300MW大型机组差,故因内冷水水质引起的事故更多。
由此可见,内冷水的水质问题已经直接影响发电机的运行安全。
发电机330MW水氢氢冷却汽轮发电机定子,水冷外部控制系统,发电机定子线圈和引出线采用水内冷,发电机转子线圈、定子铁芯及其它部件采用氢气冷却。
内冷水装置为发电机厂家自带的小混床处理装置。
发电机内冷水通常选用除盐水作为冷却水质,凝结水作为备用水源。
1.发电机内冷水系统的现状发电机内冷水作为冷却介质的水质要满足的条件是:绝缘性能要好,也就是说导电率较低;对发电机的空心铜导线和冷却水系统要没有腐蚀性,也就是要有较高的pH值;发电机冷却水中的杂质不能在空心铜导线内结垢。
对于内冷却水的这种要求,旧标准中只对内冷却水的pH值、电导率以及铜离子股一定了一个标准。
按照国家标准控制的难点,PH值和电导率不能同时达到标准,发电机的冷却水的补充水的补充水是除盐水或者是凝结水,或者是把两者按一定的比例相结合。
除盐水的PH值为7.0左右,电导率是0.2μS/cm,但是除盐水箱不是很严密,容易受到空气中的二氧化碳等溶解气体的影响,除盐水的PH值会小于7.0,电导率也会变成1.0μS/cm。
其PH会随着溶解的二氧化碳的增多而降低,在每一升的除盐水中对多可以溶解1毫克的二氧化碳,PH值将会降到5.5。
发电机内冷水的处理方法范文随着能源需求的增加,发电机作为一种常见的能源转换设备,广泛应用于各个领域。
发电机的内部冷却系统是其正常运转的重要组成部分。
本文将探讨发电机内冷水的处理方法。
一、发电机内冷水的来源与特点发电机内冷水的来源主要分为两种,一种是外部给水系统供应的自来水,另一种是循环冷却系统中再循环使用的冷水。
无论使用哪种冷却水源,其特点主要有以下几点:1. 温度波动大:冷却水在循环过程中,温度会随着发电机负载的变化而波动。
这种温度波动对发电机的冷却效果会产生一定的影响;2. 含杂质丰富:冷却水中会含有各种杂质,如沉淀物、微生物、水垢等。
这些杂质的存在会导致冷却水的性能下降,加速设备的磨损与老化;3. pH值复杂:冷却水的pH值在循环过程中也会变化,pH值的变化会影响到冷却水的腐蚀性,进而影响发电机的使用寿命。
二、发电机内冷水的处理方法为了保证发电机的正常运行,提高其使用寿命和效率,我们需要对发电机内冷水进行处理。
下面将介绍几种常见的发电机内冷水处理方法。
1. 冷却水过滤冷却水在给水系统中会引入各种杂质,如沙粒、藻类、细微的微粒等。
这些杂质会堵塞冷却设备,影响其正常工作。
因此,首先要进行冷却水的过滤处理。
过滤设备的选择应根据冷却水的杂质特点和数量来确定。
常见的过滤设备有深度过滤器、颗粒过滤器等。
深度过滤器具有较高的过滤精度,能有效地去除杂质,但维护成本较高。
颗粒过滤器适用于过滤大颗粒的杂质,成本较低,但过滤精度相对较低。
根据实际情况选择合适的过滤设备,保证冷却水的清洁度。
2. 添加阻垢剂发电机内冷水中常常存在水垢问题,尤其是硬水地区。
水垢的生成对发电机设备的使用寿命和效率会有较大影响,因此需要采取相应的防垢措施。
添加阻垢剂是一种常见的防垢方法。
阻垢剂能够与水中的钙、镁等离子化合,形成水溶性络合物,阻止钙、镁等离子的沉淀和结晶,减少水垢的生成。
选择合适的阻垢剂需要根据水质的硬度和冷却水循环系统的工作条件来确定。
发电机内冷水的处理方法
近年来,工业的发展为中国经济所做了不可磨灭的贡献,中国已成为公认的世界工厂,而如何在保证产品质量的前题下,降低产品的生产成本,是诸多生产企业共同面临的问题。
本文以非标自动化设备为研究对象,阐述了它的非标自动化设备的相关概念,介绍了目前在多个行业的应用,最后分析了非标自动化的发展现状和未来趋势。
随着中国城市化和工业化进程的加快,人工成本的增加,这对于生产企业尤其是劳动密集型企业来说是一笔沉重的负担。
加上产业结构的不断升级,产品的生产要求越来越严格,要在保证产品质量的前题下做更便宜的产品是一个急需解决的问题,因此非标自动化设备应运而生。
近年来,非标设备特别是技术含量较高的自动设备专机或生产线取得了飞速的发展,在工业、电子、医疗、卫生以及国防工业等领域都起着无可替代的作用。
非标自动化设备概述
1.1.非标自动化设备的概念
非标自动化设备,指的是不是按照国家颁布的统一的行业标准和规格制造的设备,而是根据的客户用途和需求,而定制的自动化设备。
非标自动化装备的使用可以帮助企业发展生产优势,获得更大的经济利润。
促进人们的工作效率,保证工作流程安全、简便的进行。
1.2.非标自动化设备的分类
关于非标自动化设备有多种分类形式,主要有两种。
1.3.非标自动化设备的特点
1.3.1.复杂性。
发电机内冷水超标分析及改进措施就目前来说,电能是人们接触最为频繁的能源之一,并且在实际的生活和工作过程中都有一定的应用.。
发电机设备就能够进行电能资源的输出,但是部分发电厂在实际的电能生产和运输的过程中,发电机内部的冷水会出现一定的超标现象,这将会影响到电能生产和传输工作.。
而发电机在实际的运转过程中又存在着比较大的能源消耗情况,在能量转换的过程中需要冷水对其进行冷却,这样才能稳定持续地进行电能资源的生产和输出.。
故此,在本文中就将针对发电机内冷水超标分析及改进措施进行相关的研究和分析,以此完成对发电机冷水系统的改造,这对于国内电力事业发展比较重要.。
关键词:发电机;冷水超标;超标分析;改进措施;研究分析前言:一般情况下,进入发电机中的定冷水是通过电磁阀、过滤器之后最后进入到水箱当中的,在长期的发电机的运行过程中,其中使用的冷水会出现部分指标超标的现象,这会使得发电机的正常运作受到比较大的影响,严重情况下还会使得发电机的内部出现线圈腐蚀、局部过热等等情况,这对于发电厂一线技术工作人员的人身安全方面的影响也是比较严重的.。
所以,在接下来的文章中就将针对发电机内冷水超标分析及改进措施进行详尽的阐述;1发电机内冷水超标分析以及其导致的后果概述1.1冷水水质具体情况一般情况下,发电厂中的发电机的冷却用定水采用的都是除盐水,另外部分冷水还会采取加氮的方式.。
未加入氮的除盐水的优势是比较多的(对于发电机来说),这种冷却用水的水质是比较准晶的,由此所带来的缓冲性能也是比较小的.。
但是需要知晓的是,除盐水箱是没有办法进行密封处理的,由此空气中的部分成分就会很容易融入到水中,正是由于这一原因,大气中的二氧化碳对于除盐水水质和PH值以及电导率的影响都是比较大的[1].。
譬如,除盐水的PH值一旦降低,就会使得除盐水的电导率得到比较大的提升,这种现象就会使得发电机中的部分空芯铜材质的导线禅僧一定的腐蚀现象,由此金属的腐蚀速率大大提升,发电机在实际的运行过程中会产生一定的劣质水,这使得对发电机的腐蚀程度进一步提升,这是发电机在运行过程中所不想看到的一种情况.。
2024年发电机内冷水的处理方法
抱歉,作为文本AI助手,我无法上传或共享文件。
但是,我可以为您提供一些可能的水处理方法的建议。
对于发电机内的冷却水处理,以下是一些可能的方法:
1. 定期清洗和冲洗冷却系统,以去除积聚的污垢和沉积物。
可以使用适当的清洁剂或化学药剂来清洗内部管道和部件。
2. 使用冷却水处理剂来抑制腐蚀和沉积物的形成。
这些处理剂可以提供稳定的pH值和化学平衡,防止铁锈和其他金属腐蚀,并减少沉积物的形成。
3. 安装过滤系统来去除水中的颗粒物和杂质。
这可以防止颗粒物堵塞管道和部件,并保持水的清洁度。
4. 考虑使用循环冷却水系统,其中水被循环使用并经过水处理过程进行净化。
这可以减少对新水的需求,同时确保冷却系统的清洁和高效运行。
5. 定期监测冷却水的化学性质和水质,以确保系统的稳定性。
这可以包括监测pH值、硬度、铁锈和其他化学成分的浓度。
请记住,这些方法仅供参考,并且最佳的水处理方法可能需要根据您的具体情况和设备要求进行定制。
最好咨询专业水处理公司或工程师的建议,以确定最适合您发电机冷却水处理的方法。
第 1 页共 1 页。
发电机内冷水碱化处理摘要:发电机内冷水运行中pH值经常在6.6~6.8偏低范围运行,空芯铜导线在铜水体系中处于不稳定状态,通过实施碱化处理,提高发电机内冷水pH值至7以上,减缓和防止铜导线腐蚀,使其符合行业标准和企业生产要求。
关键词:发电机;冷却水;碱化处理青山热电厂12号发电机内冷水运行中pH经常在6.6~6.8偏低范围运行,内冷水的运行方式是,补充水为除盐水,没有加药处理,系统设计为密闭系统,在循环泵出口旁路装有混合离子交换器,投运后约2%~10%的内冷水流量经过离子交换器被净化和过滤处理。
为改善内冷水水质,减缓和防止铜导线腐蚀,对现运行方式进行调整试验,使其符合行业标准和企业生产要求。
1摸底试验试验前发电机内冷水水质列于表2。
内冷水冷却器出口水温33~35.7℃,内冷水pH值偏低,换水周期3~5天,换水原因是电导率达到或超过1.5μS/cm的运行控制指标。
2内冷水碱化处理2.1碱化处理原理发电机空芯导线在不含氧的水中腐蚀速率是很低的,仅10-4g/(m2·h)的数量级。
而当水中溶有游离二氧化碳,在有溶解氧的情况下,铜的腐蚀速度大大增高。
在中性除盐水中,铜按下述反应发生腐蚀:阳极反应(铜被氧化溶解)Cu→Cu++eCu→Cu2+ +2e2Cu++H2O+2e=Cu2O+H2Cu++H2O+e=CuO+H22Cu++1/2O2+2e=Cu2OCu++1/2O2+e=Cu2O阴极反应(溶解氧被还原)O2+2H2O+4e=40H当溶液pH值为7,温度25℃时,氧的平衡电位ψO2/OH-为0.814V,铜的平衡电位ψCu2+/Cu为0.34V,ψO2/OH->ψCu2+ /Cu,故铜在中性溶液中可能发生耗氧腐蚀,生成的腐蚀产物是Cu2O和CuO,一般情况下在铜表面形成一层氧化铜覆盖层。
铜的腐蚀速率取决于水的含氧量和pH值。
铜表面保护膜的形成及其稳定性与水的pH值有很大关系,一般铜在水中的电位在0.1~0.4V范围,从Cu-CO2-H2O体系的电位-pH 图[3]可以看到,若水的pH值在6.9以下时,则铜的状态是处于腐蚀区,在pH值高于6.9,铜表面的初始氧化亚铜膜能稳定存在,铜处于被保护或较安全状态[1]。
发电机内冷水的处理方法冷却水是发电机内部冷却系统中的重要组成部分,它起着冷却发电机部件的作用。
因此,对冷却水的处理尤为重要,以确保发电机的可靠运行和延长其使用寿命。
对于冷却水的处理,主要包括以下几个方面:水质检测、冷却水循环系统的材料选择、防腐保护措施和冷却水的定期更换。
一、水质检测冷却水质量的检测是确保发电机的正常运行的重要步骤。
水质检测的目的是评估冷却水中各种成分的浓度,并判断是否达到发电机的工作要求。
有几个主要指标需要检测,包括水中的硬度、溶解氧、pH 值和水中杂质的含量等。
通过合理的水质检测,可以及时检测到冷却水中的异常情况,以便采取相应的处理措施。
二、循环系统的材料选择循环系统的材料选择是设计冷却水循环系统时的关键问题之一。
由于冷却水中含有一定的酸性物质和杂质,如果选用不合适的材料,会导致循环系统内的管道和设备受到腐蚀和损坏。
因此,在选择材料时应考虑其耐腐蚀性和耐高温性能。
一般情况下,不锈钢、铝合金和塑料等材料都具有一定的耐腐蚀性能,因此可以作为循环系统的材料选择。
三、防腐保护措施为了保护冷却水循环系统不被腐蚀和污染,需要采取一系列的防腐保护措施。
首先,可以向冷却水中加入一定量的缓蚀剂,它可以在金属表面形成一层保护膜,以减少金属与水的接触。
其次,可以定期清洗和冲洗冷却水系统,去除水中的杂质和沉淀物,以保持水质的清洁。
此外,还可以定期更换冷却水,避免水中的杂质和盐分积累过多,从而对发电机造成损害。
四、定期更换冷却水冷却水的定期更换是保持冷却系统运行良好的关键。
由于冷却水中存在一定的溶解物和杂质,随着时间的推移,这些杂质会逐渐积累并降低冷却效果,甚至导致冷却系统的堵塞和损坏。
因此,定期更换冷却水是维护冷却系统的重要手段之一。
一般而言,建议每隔一定时间(如半年或一年)更换一次冷却水,并在更换时彻底清洗冷却系统,以确保冷却水的质量和性能。
综上所述,发电机内冷却水的处理方法主要包括水质检测、循环系统的材料选择、防腐保护措施和冷却水的定期更换。
发电机内冷水的处理方法模版一、引言发电机内冷水是指发电机运行过程中用于冷却发电机的水。
在发电机内部,冷却水发挥着至关重要的作用,它可以有效地降低发电机的温度并保持其正常运行。
然而,由于发电机内冷水会受到外部环境和内部因素的影响,可能出现水质不佳、水温过高等问题,从而影响到发电机的正常运行和寿命。
因此,合理有效地处理发电机内冷水是非常重要的。
二、发电机内冷水的特点1. 温度较高:发电机内冷水常常会受到发电机自身的发热作用影响,导致水温较高。
如果水温过高,则会对发电机的绝缘材料造成损害,甚至发生爆炸等严重事故。
2. 水质要求高:良好的水质是发电机正常运行的基础。
如果水质不佳,其中的杂质、矿物质等会在发电机内部堆积,增加设备磨损和故障的风险,同时也降低发电机的散热效果。
三、发电机内冷水的处理方法根据发电机内冷水的特点,我们可以采取以下几种方法来处理发电机内冷水。
1. 控制水温由于发电机发热会导致水温升高,因此必须采取措施来控制水温。
首先,可以安装散热器,通过散热器将发电机内的热量散发出去。
其次,可以利用循环冷却系统,将热水导出,然后引入冷水进行循环冷却。
此外,还可以采取增加散热面积、提高水流速度等措施来控制水温。
2. 提升水质通过提升发电机内冷水的水质,可以减少设备故障和磨损的风险,同时也有利于发电机的散热效果。
可以采取以下几种方法提升水质。
(1) 过滤净化通过安装滤网或过滤器,过滤掉水中的杂质,如沙子、小颗粒,从而提升水质。
选择适当的滤网或过滤器,可以根据水质的特点来进行选择。
(2) 加入水处理剂可以适量加入水处理剂,如防锈剂、杀菌剂等,来净化和稳定水质。
根据实际情况,可以选择合适的水处理剂,并按照说明书的要求来使用。
(3) 禁止使用污水在发电机内冷水中,严禁使用污水,以免污染水质。
应该使用优质的自来水或经过处理的水源,以保证水质的良好。
3. 定期检查和维护定期检查和维护发电机内冷水系统,对于保持发电机正常运行和水质良好至关重要。
发电机内冷水的处理方法发电机内冷水是发电机运行时的副产物之一,主要是用来冷却发电机的电磁线圈和部分其他部件。
处理发电机内冷水的目的是为了保证发电机的正常运行和延长发电机的使用寿命。
下面将介绍几种常见的发电机内冷水处理方法。
1. 循环冷却系统循环冷却系统是一种常见且常用的发电机内冷水处理方法。
该系统通过将发电机内部的冷水循环引导到外部冷却设备进行冷却,然后再将冷却后的水送回发电机内部进行循环使用。
这样可以保持发电机内部的温度稳定,并防止冷水的浪费。
循环冷却系统通常包括水泵、冷却塔、冷却管道和控制装置等组成部分。
2. 蒸发冷却系统蒸发冷却系统是另一种常见的发电机内冷水处理方法。
该系统通过将发电机内的冷水加热至一定温度后,通过散热器进行蒸发,使水变为水蒸气,从而带走部分热量。
这样可以起到降温效果。
蒸发冷却系统通常包括喷嘴、散热器和控制装置等组成部分。
3. 过滤处理发电机内冷水中可能包含一些杂质,如沉积物、悬浮物和气体等。
这些杂质可能对发电机内部设备产生损害,因此需要进行过滤处理。
发电机的冷却系统通常配备有过滤器,通过过滤器可以将冷水中的杂质过滤掉,确保冷水的纯净度。
4. 防腐处理发电机内冷水中的水质可能会对发电机内部设备产生腐蚀作用,因此需要进行防腐处理。
常见的防腐方法包括在冷水中加入防腐剂、改变冷水的pH值、加装防腐层等。
这样可以减少冷水对发电机内部设备的腐蚀作用,延长设备的使用寿命。
5. 水位监测和控制发电机内冷水的水位监测和控制也是非常重要的一步。
过高或过低的冷水水位都可能对发电机的正常运行产生负面影响。
因此,需要对发电机内冷水的水位进行监测和控制,保持水位在合理范围内。
通常可以通过安装水位传感器和配备水位控制装置等来实现水位的监测和控制。
总结起来,处理发电机内冷水主要包括循环冷却系统、蒸发冷却系统、过滤处理、防腐处理和水位监测和控制等方法。
这些方法能够确保发电机内冷水的纯净度、温度控制以及设备的正常运行,从而保证发电机的稳定运行和延长其使用寿命。
发电机内冷水处理方法的研究及探究摘要:在发电机内冷水系统中增加微碱化处理装置,不仅可以提升发电机内冷水的pH值、降低内冷水Cu2+含量,还可以有效缓解内冷水系统内部铜导线的腐蚀情况,明显提高系统安全性,同时保证发电机组安全、经济、稳定地运行。
从操作与运行方面看,采用氢型+钠型双套小混床旁路的方法处理发电机内冷水,操作简单、安全性高、运行稳定,具有实际应用与推广意义。
关键词:发电机;内冷水;处理方法;研究及探究1国内主要内冷水处理方法发电机内冷水系统因水质原因而引起铜导线腐蚀问题,或者说因铜导线腐蚀而引起水质不合格问题,是国内外普遍存在的问题。
铜导线腐蚀产物使内冷水电导率增大,发生腐蚀产物堵塞系统等问题,危及发电机安全。
国内有关行业标准对内冷水的pH值、电导率和铜离子浓度作出规定,其中,pH值和铜离子浓度指标控制系统铜导线的腐蚀速率,电导率指标控制发电机的绝缘,3个指标相互关联、相互制约。
目前,国内电厂3个指标同时符合标准要求较困难。
用凝结水作水源,pH值可满足要求,但电导率难满足要求,用除盐水作水源,电导率可满足要求,但pH值偏低,内冷水系统铜含量不稳定,大部分处于超标状态。
目前,国内内冷水水质调节防腐处理方法主要有以下几种,其主要目的是降低内冷水中铜等杂质含量,提高内冷水pH值,防止内冷水系统铜导线腐蚀,确保发电机安全稳定运行。
1.1溢流排水法内冷水采用连续补入除盐水或凝结水,并维持溢流,控制内冷水电导率≤2.0μS/cm。
该方法简单易行,但只控制电导率,pH值未作调整,内冷水铜含量较大,连续补水造成水资源的严重浪费,用凝结水作补充水,系统安全性差,凝汽器泄漏会污染内冷水水质。
1.2混床旁路处理法将部分内冷水通过装有阴阳树脂的混合离子交换器,以除去内冷水中各种阴阳离子,达到净化内冷水水质的目的。
在300MW及以上机组出厂时均配置混床处理设备,可有效地降低内冷水电导率(≤0.2μS/cm),内冷水中铜离子与交换树脂反应,降低含铜量,但内冷水pH值偏低。
- 1 -发电机内冷却水处理新工艺的研究与新标准探讨孙本达 石雪松西安热工研究院有限公司 西安市兴庆路136号 邮编 710032达拉特发电厂 内蒙古 颚尔多斯达拉特旗 邮编 014300New technique for Cooling water treatment in units of generatorSun benda Shi xuesongABSTRACT: this paper describe the corrossiion & aggradation supercritical pressure units of generator ,and put forward new quality criterion of water,and new technics of Cooling water treatmentKEY WORD: supercritical ;supercritical ;Cooling water treatment摘要:本文介绍了超超临界发电机在运行时容易发生腐蚀和腐蚀产物沉积问题,提出了控制指标和水处理新工艺。
关键词:超临界;发电机;冷却水处理1 前言尽管发电机内冷却水处理方法有很多,例如,普通小混床法、出水为弱碱性小混床法、加药提高pH 法、真空除氧法等。
这些方法在实际运行过程中,增加运行的烦琐性,增加运行成本,更重要的是不能有效的控制铜的腐蚀。
实际上这些方法是,一方面水对铜发生一定的腐蚀,另一方面对铜的腐蚀产物进行旁路处理,使腐蚀产物的含量降到标准规定的值以下。
实际上水对铜的腐蚀依然存在,有时腐蚀速度还是比较高。
有的电厂发电机内冷却水的含铜量并不高,能够控制在标准规定的范围内,但是铜线棒的接头却发生了腐蚀损坏,见照片1。
这说明两个问题,一是这些普通的方法不能有效的抑制铜的腐蚀;二是电厂发电机内冷却水的含铜量标准定的过于宽松,特别是对超超临界的发电机组,由于线槽结构和电压等级的原因使得铜的腐蚀产物更容易沉积1),见照片2。
发电机内冷水的处理方法国内外控制发电机内冷水水质的方法很多,主要有:混床处理法、向内冷水补加凝结水法、碱化处理法、密闭式隔离水冷系统法和缓蚀剂法等。
本文将对这些方法逐一进行介绍。
1混床处理法小混床用于除去水中的阴、阳离子及内冷水系统运行中产生的杂质,可达到净化水质的目的,其主要存在的问题是运行周期短、运行费用较高,或可能由于运行终点未及时监测,反而释放大量的铜离子污染水质[2]。
小混床内装的普通型树脂常泄漏大量低分子聚合物,它们会污染系统并使小混床出水pH偏低,加重铜表面的腐蚀。
因此,可以增设一套RNa+ROH混床,组成双套小混床。
由于发电机内冷水铜导线的腐蚀产物主要含Cu2+和HCO-3,增设RNa+ROH混床后,在RNa+ROH混床内,会发生下列离子交换反应:Cu2++2RNaR2Cu+2Na+(1)HCO-3+ROHRHCO3+OH-(2)通过上述反应,内冷水中微量溶解的中性盐Cu(HCO3)2转化为NaOH,使溶液最终呈微碱性,从而改善了内冷水水质,抑制了铜的腐蚀。
运行时,交替投运RNa+ROH和RH+ROH小混床。
当pH低时,投运RNa+ROH小混床,此时电导率会随着Na+的泄漏逐渐升高;当电导率升到较高时,关闭RNa+ROH混床,投运RH+ROH混床,内冷水的pH值会降低;当pH低到一定值时,再投运RNa+ROH混床,如此反复操作以使内冷水各项指标合格。
双套小混床处理法对提高内冷水pH值、降低铜腐蚀的效果较好,但它也有不足之处,如:在RNa+ROH运行状态,如果补充水水质不良,将会有大量Na+短时泄漏,导致内冷水电导率快速上升[2],这样会使泄漏电流和损耗增加,严重时还会发生电气闪络,破坏内冷水的正常循环,甚至损坏设备。
2向内冷水补加凝结水法向内冷水补加凝结水相当于向内冷水中加入微量的氨,从而提高pH值,达到防腐的目的[3、4]。
采用该方法存在的问题是:敞开式内冷水系统容易使氨气挥发、二氧化碳溶解,使内冷水pH值降低。
浅析#5发电机定子内冷水处理方式摘要:本文以#5机组为例,通过揭示发电机铜线棒腐蚀的主要原因,探讨和分析发电机定子内冷水水质调控处置的三种方法的优劣,选取最佳的调控处置方法。
关键词:冷却水水质调控一、引言我厂一二期工程(#1-4机),装机容量为4×335MW,发电机冷却采用双水内冷方式,该机型定子内冷水采用的水质要求为:导电率(25℃)≤5.0μs/cm,铜含量≤40μg/L硬度(25℃)0μmol/L,pH值:7--9;三期工程(#5、6机),装机容量为2×600MW,发电机冷却采用水-氢-氢内冷方式,该机型定子内冷水采用的水质为:导电率(25℃)≤2.0μs/cm,铜含量≤40μg/L,硬度(25℃)0μmol/L,pH值:7--9;四期工程(#7、8机),装机容量为2×1000MW,发电机冷却采用水-氢-氢内冷方式,该机型定子内冷水采用的水质为:导电率(25℃)≤0.5μs/cm,铜含量≤20μg/L硬度(25℃)0μmol/L,pH值:7—9。
二、定子内冷却水的要求发电机内冷却水所接触的金属一般只有铜和不锈钢。
不锈钢材料是耐腐蚀的,而铜材料的耐腐蚀性能要差很多。
因此,一方面需要防止发电机铜线棒、铜接头发生腐蚀,另一方面要去除腐蚀产物,防止因腐蚀产物聚集发生沉积现象。
1.水质要求发电机内冷却水应采用除盐水或凝结水。
我厂为防止凝结器泄漏处理不及时,循环水进入凝结水而影响凝结水水质,将#1-8机的发电机内冷却水采用除盐水,而不用凝结水。
定子内冷水水质执行DL/T801-2010标准。
2.水质调控方法#1-4机通过添加缓蚀剂MBT法来调控内冷水水质。
#5、6机通过设置旁路小混床来调控内冷水水质。
#7、8机通过安装微碱化装置来调制内冷水水质。
添加缓蚀剂的方法现在已不推荐使用,内冷水导电和pH值不能同时兼顾,MBT无色粉末状,味苦有毒,在MBT配制和使用过程中,影响人身健康,同时不利于环保,且浪费水源。
发电机内冷水的处理方法发电机是一种将机械能转化为电能的设备,它在运行过程中会产生大量的热能。
为了确保发电机的正常运行和延长其寿命,需要对发电机内部的冷却系统进行合理的设计和维护。
其中,冷水的处理是维护冷却系统正常运行的重要环节。
一、冷水的处理目的及原因:发电机内部冷却系统中的冷水主要用于散热。
由于发电机在运行过程中产生大量的热能,因此需要不断地将这些热能散发出去,以保持正常的温度。
冷水的处理的主要目的是:1. 保持冷却系统的整洁和畅通。
2. 避免冷水中的杂质和污垢对发电机的内部组件造成腐蚀和磨损。
3. 提高冷却效果,确保发电机的正常运行。
二、冷水的处理方法:1. 过滤:冷却系统中的冷水往往带有一定的杂质和污垢,如果不加以有效的处理,这些杂质和污垢会附着在发电机内部的冷却管道和散热片上,导致冷却效果下降。
因此,必须对冷水进行过滤处理,将其中的杂质和污垢去除。
常用的过滤方式包括机械过滤和化学过滤。
机械过滤是通过设置过滤器,将冷水中的固体颗粒拦截下来,而化学过滤是通过向冷水中添加化学药剂,使其中的杂质和污垢凝结成为团状沉积物,然后再进行过滤。
2. 除垢:除垢是指去除冷水中的垢和水垢。
冷水中的垢和水垢主要由水中的无机物质和有机物质经长期加热沉积而成。
这些垢和水垢会附着在发电机内部的冷却管道和散热片上,造成冷却效果下降。
常用的除垢方法包括机械除垢、化学除垢和物理除垢。
机械除垢是通过设置刷子或高压水枪,将冷却管道和散热片上的垢和水垢刷洗或冲刷掉。
化学除垢是通过向冷水中添加化学药剂,使其中的垢和水垢溶解和分解,然后再进行冲洗。
物理除垢是将发电机内的冷却管道和散热片拆卸出来,进行清洗和冲洗。
3. 消防设施:由于发电机在运行过程中会产生大量的热能,因此必须设置消防设施,以防止火灾的发生。
常见的消防设施包括火灾报警器、灭火器和自动消防系统等。
火灾报警器用于及时发现火灾的踪迹,灭火器用于进行简单的初期灭火,而自动消防系统可以实现自动监测、报警和灭火,以保障发电机房的安全。
发电机内冷水的处理方法
发电机内冷水是一种可循环使用的水,它充当着散热装置的重
要参数。
对于发电机内冷水的处理,我们要做到以下几点:
一、监测发电机内冷水的水质
发电机内冷水的水质是保证散热效果的重要因素。
在处理发电
机内冷水前,需要先对其进行水质分析,以了解其中含有的水质指标,比如PH值、硬度、氨氮、亚硝酸盐、化学需氧量(COD)、总磷、总氮等。
如果水质指标超标,需要采取相应的处理措施。
二、采用适当的水处理技术
根据不同的水质指标,可以采用不同的水处理技术,例如:
1. 曝气法处理:曝气法处理可使水中过量的亚硝酸盐和铵盐转
化为氮气和二氧化碳。
2. 化学絮凝法:采用化学絮凝剂将水中悬浮的颗粒物进行聚凝,形成沉淀物或浮油,从而达到去除水中杂质的目的。
3. 反渗透技术:反渗透技术可有效去除水中的硬度物质和大分
子有机物,从而提高发电机内冷水的水质。
4. 离子交换技术:离子交换技术可以去除水中的钙、镁以及其
他多价离子,从而降低水的硬度。
三、保证水的循环使用
为了保证发电机内冷水的循环使用,需要采取以下措施:
1. 定期清洗水冷却系统,去除其中的沉淀物和杂质。
2. 定期更换水冷却系统中的水。
3. 建立水质监测体系,及时掌握发电机内冷水的水质状况,以便采取及时的处理措施。
4. 加强水冷却系统的维护管理,确保其正常运行。
对于发电机内冷水的处理,需要对水质进行严格监控,采取适当的水处理技术,保证水的循环使用。
这样不仅可以保证发电机内的温度稳定,还能节约用水。
2021新版发电机内冷水处理技
术的探讨
Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place.
( 安全管理 )
单位:______________________
姓名:______________________
日期:______________________
编号:AQ-SN-0444
2021新版发电机内冷水处理技术的探讨
1发电机内冷水的水质要求
大中型发电机组设备普遍采用水-氢冷却方式,发电机内冷水选用除盐水或凝结水作冷却介质。
冷却水的水质对保证发电机组设备的安全经济运行是非常重要的。
近年来随着大容量、亚临界、超临界发电机组的投入运行,为了确保发电机组设备的安全运行,对发电机内冷水品质的要求越来越高,国标GB/T12145-1999《火力发电机组及蒸汽动力设备水汽质量》,对发电机内冷水质量标准有如下规定:
a)对双水内冷和转子独立循环的发电机组,在25℃温度下,冷却水电导率不大于5μS/cm,铜的质量浓度不大于40μg/L,pH值大于6.8;
b)机组功率为200MW以下时,发电机冷却水的硬度(水中钙和
镁阳离子的总浓度)不大于10μmol/L,机组功率为200MW及以上时,发电机冷却水的硬度不大于2μmol/L;
c)汽轮发电机定子绕组采用独立密闭循环水系统时,其冷却水的电导率小于2.0μS/cm。
2目前国内外发电机内冷水处理的方法及存在问题
为了改善发电机内冷水的水质,目前国内外发电机组普遍采取的防腐、净化处理的方式主要有单纯补充除盐水或凝结水运行方式、内冷水加铜缓蚀剂法、小混床处理法和双小混床处理法。
这些方法在实际生产中难以解决内冷水中的电导率和pH值机内冷水的关键技术是解决现有小混床处理法中电导率、铜离子指标必须长期合格的问题,即发电机的内冷水pH不小于7.0,并稳定在7~8之间;解决小混床偏流、漏树脂而导致出水pH值偏低引起循环系统酸性腐蚀问题;解决小混床树脂交换容量小,机械强度低,易破碎问题;实现闭式循环系统及防止补水对循环内冷水产生受冲击性污染问题,实现长周期稳定运行及免维护等功能。
3发电机内冷水超净化处理的创新技术
西北电力试验研究院研究开发的发电机内冷水超净化处理技术,是在现有的小混床处理技术的基础上,实现发电机内冷水处理技术的创新。
3.1系统总体设计创新
系统设计时,在小混床进、出入口处加装树脂捕捉器,确保在运行或停运状态下,树脂不会漏入发电机内;水箱增加呼吸组件,有效减少空气中CO2对水质的污染,提高内冷水pH值;系统配置监测电导率和pH值的测量仪表。
3.2混床交换器内部结构创新
a)将混床的单室结构改造成双室结构,即将交换器内的多孔板分隔成上下两个室,孔上安装不锈钢水帽,上下两室中填充特制离子交换树脂,上、下两室可以独立再生和反洗,有效地解决了单室结构在反冲洗时,因上部失效树脂混入下部未失效高再生的树脂层中,影响出水水质的问题;
b)交换器进水安装了布水装置,使进水均匀分布,减少了水流冲击而产生的偏流;
c)下部出水孔板均匀钻孔,孔上加装特制不锈钢水帽,杜绝了漏树脂的问题;
d)床内加装树脂搅拌喷嘴,利用压力水或压缩空气从喷嘴喷射中产生的动力混合搅拌阴阳树脂,使两种树脂在罐体内均匀混合,从而提高出水水质。
3.3采用特制的离子交换树脂
采用特制的离子交换树脂代替目前采用的普通型离子交换树脂。
这种特制的高强度离子交换树脂是经水力分选、过筛、酸碱盐和有机溶剂反复处理后,再经大剂量优级纯试剂深度再生、检验等严格的工艺优选和处理后达到大幅度降低树脂中的低聚合物含量而成的树脂。
这种优选特制树脂机械强度高、颗粒均匀,经试验测定,优选的阳离子树脂交换容量比优选前提高一倍,阴离子树脂交换容量比
优选前提高近4倍,运行周期是小混床的4~6倍。
3.4运用实例
发电机内冷水超净化处理技术在秦岭发电厂220MW机组和蒲城
发电厂330MW机组的应用中,总体性能和技术指标达到很好的效果,实现长周期免维护运行,安全可靠性高。
改进后的超净化处理装置出水指标:实际运行中,电导率保持在0.06~0.1μS/cm之间,pH值在7~7.9之间。
发电机内冷水水质指标:实际运行中,电导率在0.1~0.5μS/cm之间,pH值在7~7.9之间。
根据科技查新资料显示,该技术综合性能指标已达到国际先进水平,填补了目前国内外大、中型发电机组不能同时满足发电机内冷水电导率和pH 值标准要求的技术空白。
4沙角A电厂和沙角C电厂发电机内冷水系统结构及运行状况分析
4.1沙角C电厂660MW机组发电机内冷水系统结构及运行状况沙角C电厂660MW机组发电机内冷水系统由内冷水箱、内冷水泵、冷却装置、过滤器和去离子小混床组成。
发电机内冷水处理方法是将发电机闭式循环7%的内冷水(流量为8m3/h)通过去离子器除去内冷水中的阴、阳离子,达到净化内冷水水质的小混床处理方式。
该系统原设计安装存在如下缺陷:
a)去离子器为单室结构,内部结构简单,存在偏流、漏树脂问题;
b)去离子器填充的是进口IRN160阴阳混合树脂,根据厂家提供的资料,IRN160树脂运行一年左右更换,其工作交换容量较小,运行周期短,树脂失效后须在体外再生,运行成本较高;
c)水箱内用于检测漏氢的压缩空气中的CO2会污染内冷水水质,pH值降低;
d)系统监测手段不够完善,没有安装pH值检测仪表。
沙角C电厂发电机内冷水处理采用的是小混床方式,由于系统及内冷水处理系统存在上述设计安装缺陷,从运行检测数据可知,虽然发电机内冷水电导率基本能够满足国标和厂家规定要求,但发电机内冷水pH值长期处于不稳定状态。
2000年1月份沙角C电厂1号发电机内冷水pH值在8.06~8.64之间,2月份pH值在8.06~8.23之间,2001年6月份pH值在6.08~8.76之间(在运行中,2号发电机和3号发电机内冷水pH值也不稳定),指标难以满足国家标准要求,系统存在酸性腐蚀的安全隐患。
4.2沙角A电厂200MW机组发电机内冷水系统结构及运行状况沙角A电厂200MW机组发电机内冷水发电机内冷水系统也由内冷水箱、内冷水泵、冷却装置、过滤器和离子交换阳床组成,但该系统的离子交换阳床只是处理补充的除盐水,对于闭式循环的发电机内冷水无法得到处理,当内冷水电导率或pH值不合格时,通过排、补除盐水方法,使内冷水电导率及pH值合格。
系统设计安装存在以下较严重的缺陷:
a)200MW机组投产后,采用pH值较高(pH不小于8.5以上)的凝结水作内冷水补充水源,循环的发电机内冷水电导率一直较高,维持在4~6μS/cm之间。
随着GB/T12145-1999国标的实施,原来的标准规定内冷水电导率不大于5μS/cm,现改为电导率不大于2μS/cm。
为了确保发电机内冷水水质,近两年来采用了少加氨的除盐水作内冷水补充水源,但电导率仍然处在2.5~3.5μS/cm
的较高水平中。
这种方式不但浪费排补的除盐水,而且难于达到内冷水电导率不大于2μS/cm的国标要求。
b)离子交换阳床设置不合理,它不能起到处理、净化循环内冷
水的作用,实际上该离子交换阳床从未投入运行。
c)离子交换器结构简单,内装设普通型阳树脂,树脂易破碎,泄漏进入内冷水循环系统,造成内冷水水质污染。
5改造发电机内冷水处理技术的建议
5.1沙角C电厂发电机内冷水处理系统必需进行技术改造
目前沙角C电厂660MW机组发电机内冷水电导率指标可以满足标准要求,但pH值指标长期不稳定,存在酸性腐蚀的安全隐患。
为确保发电机以下必要的技术改造,以满足发电机内冷水水质指标要求:
a)将单室去离子床改成双室去离子超净化装置,以提高去离子出水水质;
b)去离子床进、出口处加装树脂捕捉器,防止树脂漏入循环系统;
c)水箱加装CO2吸收组件,减少内冷水的污染;
d)系统加装pH监测仪表,完善发电机内冷水中pH值的监测;
e)采用国产特制的阴、阳离子交换树脂,使树脂运行更换周期
由1年延长至3年左右,以节约运行成本。
5.2采用内冷水超净化处理技术
沙角A电厂200MW机组发电机内冷水的电导率一直达不到国标要求,存在着较严重的安全隐患。
为确保200MW机组发电机内冷水电导率不大于2μS/cm和pH值长期稳定在7.0~8.0之间的国标要求,节约排补时浪费的大量除盐水,建议对内冷水系统采用内冷水超净化处理技术进行改造,在发电机内冷水循环系统中加装超净化处理装置,以截流内冷水循环总量约8%的内冷水进行去离子处理,取代目前的排补方式,取消补水系统中原有的阳离子交换器。
即:
a)在发电机内冷水循环系统中加装超净化处理装置,装置进出口树脂捕捉器;
b)水箱加装CO2吸收组件;
c)发电机内冷水入口安装在线电导率和在线pH测量仪,超净化处理装置出口安装在线电导率测量表;
d)采用国产特制的阴、阳离子交换树脂取代普通国产树脂,以
电力安全论文 | Power Safety Papers
电力安全论文达到净化内冷水水质,延长运行周期,节约运行成本的目的;
e)采用未加氨的除盐水作内冷水补充水源。
参考文献
[1]西北电力试验研究院.发电机内冷水超净化处理技术资料[R].陕西:西北电力试验研究院,2002.
[2]GB/T12145-1999,火力发电机组及蒸汽动力设备水汽质量[S].
XXX图文设计
本文档文字均可以自由修改
第10页。