-液压节流调速系统的PLC控制
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
机电综合实验重庆理工大学液压系统的PLC控制实验报告书姓名:王*班级:107040208学号:***********指导老师:张*实验时间:2011/2/22~2011/2/25目录一、实验目的与要求 (3)二、总体方案 (4)三、液压控制回路 (5)四、得失电状态表 (8)五、电气原理图 (9)六、I/O端口分配 (11)七、程序设计与系统流程图 (12)八、自我总结 (16)九、程序清单 (18)附录本组成员名单及任务分配 (23)一、实验目的与要求1、实验目的(1)能熟悉基于plc控制的液压系统开发流程,并设计一个具体的气动、液压系统。
(2)熟悉并掌握各种液压元件的技术参数和使用方法。
(3)熟练掌握plc编程方法。
(4)能熟练使用梯形图编写液压系统的控制软件。
(5)搭建具体硬件(含油、电路)连接,并完成软硬件的联调。
2、实验器材计算机、液压泵、各种液压阀、气动元件、油管、液压接头、plc实验板、导线。
3、实验要求根据本人在本次实验中学习到的相关知识作答。
(1)详细说明本次实验设计思路、方案,画出动作循环、系统油路、控制电路原理图,并文字说明。
(2)详细说明plc控制流程,确定输入/输出口,作I/O规划。
(3)画出plc控制梯形图,要求自锁、定时器。
(4)说明本次实验使用的传感器,与控制电路的接口。
(5)自我总结。
二、总体方案1、根据实验要求,本组最终确定的方案为能够在X-Y方向上铣削出工件的平面,机械本体如图(1)所示。
图(1)如图(1)是一个XY轴十字滑台,其上面有一个可以固定工件的平台。
此XY轴十字滑台是在铣平面的时候用的,采用液压缸控制。
其各个阶段的速度包括工进,快进,快退都是由液压回路里的调速阀控制。
由于铣床只要求铣完整个平面,而不要求其能够加工出各种图案。
故采用这样的方法来调速是可以的。
图中的ST1、ST2、ST3、ST4接近开关所在的位置是滑台整个的工作范围。
ST0是滑台的原点位置。
PLC在液压控制系统中的应用PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业自动化控制的数字计算机。
它以其高可靠性、强大的功能和灵活性,在各个领域得到了广泛应用。
在液压控制系统中,PLC的应用也越来越重要。
本文将重点探讨PLC在液压控制系统中的应用,并对其优势和挑战进行分析。
一、PLC在液压控制系统中的优势1. 高度可靠性PLC采用稳定可靠的硬件和系统设计,具有较长的寿命和高度抗干扰能力。
它能够在恶劣的工作环境下工作,并能够处理各种突发故障,确保系统的稳定性和可靠性。
2. 灵活性和可编程性PLC的最大优势在于其可编程性。
用户可以通过编程对PLC进行任意定制,满足各种不同的控制需求。
而且,PLC的编程语言相对简单易学,不需要过多的专业知识和技能,使得控制系统的开发和维护更加方便快捷。
3. 多功能性PLC除了具备基本的数字输入和输出控制功能外,还可以通过扩展模块实现模拟输入和输出控制、通信功能、运动控制等。
这使得PLC能够满足液压控制系统中各种复杂的控制要求。
二、PLC在液压控制系统中的应用案例1. 液压机械控制PLC可以通过控制液压泵、执行元件、传感器等设备,实现液压机械的运行控制。
例如,在一台液压冲床上,PLC可以接收传感器的信号,判断工件的位置和状态,并通过控制液压泵的输出压力和执行元件的动作,实现对冲床的准确定位、加工力度的控制等。
2. 液压系统监控与保护PLC可以对液压控制系统中的各个参数进行监测和保护。
例如,在一个液压升降机系统中,PLC可以实时监测液压油的温度、压力、流量等参数,并根据预设的阈值进行报警或紧急停机,以保护系统的安全运行。
3. 液压系统远程控制PLC可以与上位机或其他设备进行通信,实现液压系统的远程控制。
通过远程监控和控制,可以减少现场操作人员的工作量,提高系统的稳定性和可靠性。
例如,在一处石油钻机控制系统中,PLC可以接收来自地面控制中心的指令,实现液压系统的远程控制和监控,以提高钻井效率。
液压系统PLC控制教学设计概述液压系统广泛应用于各种机械及工业设备中,随着现代工业技术的不断发展,PLC(可编程序控制器)作为自动化控制领域的重要组成部分,已经被广泛应用于液压系统的控制和调节。
本文主要介绍一种针对液压系统的PLC控制教学设计,该教学设计旨在提高学生对液压系统中PLC控制和调节的认识和实践技能,使学生能够掌握基本的液压系统PLC控制原理和方法,为未来从事液压系统控制和调节相关工作打下坚实的基础。
教学内容基本原理液压系统是一种利用流体压力来传递能量并实现力的传递的动力系统,液压系统由液压泵、储油器、控制阀、执行器和管路等部分组成。
PLC是一种常用于自动化控制系统的电子控制器,它能够完成各种复杂的控制和调节功能。
在液压系统中,PLC主要用于控制和调节各种执行器的运动和位置。
教学目标1.熟悉液压系统的基本构成和工作原理;2.掌握PLC控制的基本原理和方法;3.学习搭建液压系统和PLC控制系统的实验平台;4.能够进行液压系统PLC控制的实验操作和故障排除;5.最终能够完成一个液压系统PLC控制的实验项目。
实验平台本次教学设计所使用的实验平台是基于PLC的液压控制系统,其中PLC采用西门子S7-200系列控制器,可实现对液压系统中某些执行器的运动和位置进行控制和调节。
实验步骤1.搭建液压系统实验平台,包括液压泵、储油器、控制阀、执行器和管路等部分;2.搭建PLC控制系统,包括PLC控制器、输入输出模块和人机界面等部分;3.设计液压系统PLC控制的控制程序,包括监测和读取系统状态、输出指令到执行器等部分;4.进行实验操作,测试液压系统PLC控制的功能和性能,如执行器的位置和速度控制等;5.分析和解决液压系统PLC控制的故障,如执行器的失控、传感器故障等;6.实现液压系统PLC控制的实验项目,如利用PLC控制液压缸的伸缩运动。
结论通过本次液压系统PLC控制的教学设计,学生可以深入了解液压系统中PLC的基础原理和实践技能,掌握液压系统中PLC控制的主要方法和技术;同时,学生在实验操作中还能够培养自己的实验技能和创新能力,为未来从事液压系统控制工作打下坚实的基础。
液压系统plc控制实例精解液压系统是一种重要的动力传动方式,广泛应用于各个领域。
而PLC(Programmable Logic Controller,可编程逻辑控制器)作为一种现代化的控制设备,能够对液压系统进行智能化的控制和管理。
本文将通过一个实例,详细介绍液压系统PLC控制的具体过程和应用。
我们来了解一下液压系统的基本原理。
液压系统通过液体的流动和压力传递来实现力的传递和工作机构的运动控制。
它由液压泵、执行元件、控制元件和液压储能装置等组成。
液压泵将机械能转化为液压能,通过液压管路将液压能传递给执行元件,从而实现工作机构的运动。
而PLC作为控制元件,通过对液压系统的各个部分进行控制和监测,实现对工作机构的精确控制。
接下来,我们以一个自动压力控制系统为例,详细介绍液压系统PLC控制的实现过程。
该系统主要包括液压泵、液压缸、电磁阀和传感器等组成。
其中,液压泵负责提供压力源,液压缸负责执行工作,电磁阀负责控制液压流向,传感器负责监测压力信号。
PLC作为控制中心,通过对传感器信号的采集和处理,以及对电磁阀的控制,实现对液压系统的自动控制。
PLC需要通过输入模块对传感器信号进行采集。
传感器安装在液压缸的压力管路上,能够实时监测液压系统的压力变化。
当压力达到设定的上下限时,传感器会将信号传递给PLC。
PLC通过输入模块接收到传感器信号后,会对信号进行处理和判断,判断液压系统的压力是否需要调整。
然后,PLC会根据预设的控制逻辑和算法进行计算和判断,确定是否需要调整液压系统的工作状态。
当判断需要调整时,PLC会通过输出模块对电磁阀进行控制。
电磁阀负责控制液压系统的流向,通过开启或关闭液压管路,实现对液压缸的运动控制。
当电磁阀被控制为开启状态时,液压泵提供的液压能够进入液压缸,使其产生相应的运动。
当液压系统的压力达到设定值时,传感器会再次将信号传递给PLC。
PLC会根据信号进行判断,如果压力已经达到设定值,则关闭电磁阀,停止液压泵的工作,从而实现对液压系统的自动控制。
基于PLC 控制的液压控制系统[摘要] 采用可编程控制器(PLC)代替继电器控制器,对机械手的液压驱动系统进行控制,通过输入输出接口建立与机械手液压系统开关量和模拟量的联系,实现机械手搬运工件的顺序动作和自动控制,达到准确度高、控制方便、可靠性好的目标,大大提高了生产率和自动化程度,减少了系统故障,具有很强的实用性。
[关键词]PLC;液压控制;机械手1、前言( Introduction)目前PLC 在工业生产过程控制自动化和传统产业技术改造等方面得到了广泛应用,与传统的继电器控制相比, PLC 具有控制系统构成简单、可靠性高、通用性强、抗干扰能力强、易于编程、体积小、可在线修改、设计与调试周期短、便于安装和维修等突出优点, 而且一般不需要采取什么特殊措施,就能直接在工业环境中使用,更加适合工业现场的要求,使用PLC 控制液压控制系统能提高系统的整体性能,具有较明显的优越性.本文介绍基于PLC 控制的某液压机械手的典型液压控制回路及其PLC 控制方法。
2、控制要求分析(Analys is of control demands )在生产现场工作开始后, 机械手在一个工作循环中需要依次完成以下顺序动作:下降、夹紧、上升、左移、下降、松开、上升、右移( 共8个顺序动作), 这是一个典型的顺序控制问题。
采用PLC 实现机械手的自动循环控制, 需要在某些动作位置设置位移传感器或行程开关来检测动作是否到位, 并确定从一个动作转入到下一个动作的条件。
根据机械手的动作要求,选用3 个液压缸来完成该8 个顺序动作:升降缸1 在工件两个位置( 原位与目标位置) 上方的下降和上升运动,移动缸2 的左移和右移运动, 夹紧缸3 的夹紧和松开动作。
缸1 下降或上升到位时应停止运动, 缸2 左移或右移到位时也应停止运动,故需分别设置一行程开关S1、S2、S3、S4。
根据机械手的动作过程和要求, 绘制出系统的控制功能流程图,如图1 所示。
PLC实验报告液压系统控制与调试PLC实验报告:液压系统控制与调试【引言】液压系统在现代工业中起着重要的作用,广泛应用于各种机械设备中。
本实验旨在通过PLC编程控制液压系统,实现系统的稳定运行和准确控制。
本文将对实验步骤、测试结果以及相关数据进行详细描述和分析。
【实验准备】1. 实验设备准备:液压系统、PLC控制器、电磁阀、传感器等;2. 实验布置:将液压系统和PLC控制器连接并正确接线;3. 软件环境准备:安装PLC编程软件,正确配置并创建相应的程序。
【实验过程】1. 系统初始化:启动液压系统和PLC控制器,并确保系统正常工作;2. PLC编程:使用PLC编程软件,根据实验要求编写控制程序;3. 程序下载:将编写好的程序下载到PLC控制器中,并进行参数设置;4. 实验操作:通过操作输入设备,如按钮、开关等,触发PLC控制器的相应输入信号,进而控制液压系统的动作;5. 数据采集:使用传感器等设备,对液压系统进行数据采集,包括压力、流量、温度等参数;6. 数据记录:将采集到的数据记录下来,以备后续分析和对比;7. 系统调试:根据实验结果,对液压系统的控制参数进行调整和优化;8. 实验结果:记录实验中获得的各项数据和观察到的现象。
【实验结果与分析】通过对液压系统的实验操作和数据采集,我们得到了以下实验结果和分析:1. 控制程序的设计:根据实验要求,我们编写了PLC控制程序,实现了液压系统的自动控制和相应的输出操作;2. 系统动作的准确性:使用PLC控制器,能够精确控制液压系统的动作执行时间和步骤,提高了系统的稳定性和可靠性;3. 数据采集与分析:通过传感器对系统的压力、流量、温度等参数进行采集和分析,得到了系统动态特性的数据;4. 调试优化:根据实验结果,我们对液压系统的控制参数进行了调整和优化,改进了系统的控制效果。
【实验总结】本实验通过PLC编程控制液压系统,并对系统进行调试和优化,取得了一定的实验成果。
利用PLC技术实现对液压节流调速系统的一种控制。
系统设计程序包括手动程序(实现主缸进、主缸退、主缸停、主缸进停、主缸退停、主缸升/停压、侧缸进/停),和连续自动控制程序。
指示灯包括电源指示灯、油泵指示灯、主缸左/右换向电磁阀指示灯、侧缸换向电磁阀指示灯、主缸左/右限位指示灯。
程序采用梯形图编程,实用且直观。
在总的编程方法上使用到了级式编程,分为手动和自动两个级。
关键词可编程控制器、液压节流调速系统、自动化、联网控制液压整体系统分析液压传动是用液压油作为工作介质,通过动力元件液压泵,将机械能转换为油液的压力能,然后再通过管道、控制元件,进入执行元件将油液压力能转换为机械能,驱动负载实现直线或回转运动。
若要执行机构能够连续地准确的动作,则必须对液压系统的压力、流量或方向进行精确的控制。
所以液压传动与控制是一个问题的两个方面。
从机械量的输出来讲就是对力、位移和速度的控制。
液压系统发展快,应用广,其原因在于液压技术有着优异的特点:1.单位功率的重量轻、结构尺寸小。
2.能在很大范围内实现无级调速。
调速方便,调速的范围比较大,达100:1至2000:1。
3.传递运动均匀平稳,反应速度快。
冲击小,能高速启动、制动和换向。
4.能传递较大的力或转矩。
传递较大的力或转矩是液压传动的突出优点。
5.易实现功率放大。
这在控制系统中是非常重要的一个特点,它可以减少执行部件所需要的操纵力,以微小的信号输入而得到较大的功率输出。
6.液压传动装置的控制、调节比较简单,操纵比较方便、省力,易于实现自动化。
尤其和电气控制结合起来,能实现复杂的顺序动作和远程控制。
7.液压系统易于实现过载保护。
8.液压元件已标准化、系列化和通用化,便于设计和选用。
机械电子工程实验室的液压传动装置主要由油泵、液压缸、控制阀、油缸、压力表及管道几部分组成,其实现的主要功能是通过电磁控制阀的通断,控制油路上油的流动,从而对液压缸的运动进行控制。
其液压回路主要由速度控制回路,压力控制回路,方向控制回路几部分组成,液压系统原理图如图(1-7):图1-71-油箱2-液压泵3-单向阀4-直动式溢流阀5-压力表6-二位二通电磁换向阀7-液压缸(侧缸)8-限位开关(左)9-限位开关(右)10-液压缸(主缸)11-压力表12-单向节流阀13-减压阀14-压力表15-三位四通电磁换向阀16-单向阀17-先导式溢流阀18-压力表19-单向阀20-二位二通电磁换向阀。
PLC在液压传动控制中的应用摘要:本文介绍了PLC在液压传动控制系统中的应用。
该系统已经应用于我们的实验教学中,它可以对液压传动系统PLC的运行状态进行实时监控。
实践证明该系统实用性强,使用方便。
关键词:PLC; 液压传动;组态软件Abstract:This paper introduces the application of PLC to Hydraulic transmission system . T his system has been put into operation in our experiment teaching, which can monitor the running state of Hydraulic transmission system. Practicability and convenience have bee n proved by application.Keywords:PLC; Hydraulic transmission; Configsoftwore本系统让液压缸实现自由进退动作,以便完成预想的…夹持‟和…震撞‟两个功能。
…夹持‟功能即:让液压缸的活塞杆根据物件的尺寸、承受压力能力等夹住物件,使物件不发生脱落或移位,以便对其进行固定或搬运。
…震撞‟方式即:让液压缸的活塞杆快速、高压地完成进退动作,以便使其对物件产生一定的冲击力,使其发生形变或破碎。
本系统是用上位机实现对液压系统的控制。
主要是控制液压系统完成基本的动作:液缸的自由进退,从而实现对物体的夹持或震撞。
总的控制系统的结构是:上位机用力控组态软件做人机界面,实现各种控制的可视化;下位用PLC实现电磁换向阀、变频器的控制;利用组态软件对PLC的监控实现系统的实时控制。
1.工艺简介液压传动在机床上应用很广,具体的结构也很复杂,下面简要介绍本系统动作情况。
如图1所示,液压缸固定不动,活塞连同活塞杆带动工作台可以作向左或向右的往复运动。
液压系统PLC控制课程设计一、课程设计背景随着工业自动化技术的快速发展,液压系统在工业生产中得到了广泛的应用。
而PLC控制技术则是工业自动化中应用最为广泛的一种技术,PLC控制器具有编程灵活、可靠性高等优点,使得其在工业控制系统中得到了广泛的应用。
为了加强学生对液压系统和PLC控制技术的理论知识的掌握,提高学生的实践能力和综合能力,本课程设计将液压系统和PLC控制技术相结合,通过设计一个带有电磁铁的液压动力夹具的控制系统,让学生在理论学习的基础上,掌握PLC程序编写的方法和液压系统的基本运行原理,从而达到培养学生解决实际问题的能力的目的。
二、课程设计内容本次课程设计主要内容包括以下几个方面:1.液压系统的基础知识:液压元件的基本构造、原理及其工作方式;2.PLC控制器的编程知识:介绍PLC各个模块的基本功能和输入输出口的使用方法;3.液压系统的PLC控制:设计带有电磁铁的液压动力夹具的控制系统,通过利用PLC编程控制液压系统中的各个元件的控制信号,实现液压系统的动作和运行。
三、课程设计步骤1.系统设计:在设计掌握液压元件的基本结构和原理的基础上,对液压系统的设计进行详细的规划,包括系统概述、系统设计目标、系统设计方案和系统设计方案的遵从原则等方面的内容;2.系统建模:根据掌握的液压系统的基础知识和设计方案,对系统进行建模。
在建模过程中,应当充分考虑控制器的选择、系统运行稳定性的保证等方面的问题;3.系统控制程序设计:在分析液压系统的运行方式、PLC控制器的基本功能和输入输出口的使用方法等方面的基础上,设计控制程序并实现液压系统的控制; 4.系统测试:合理利用实验室设备对系统进行测试,发现系统存在的不足之处并进行改进。
四、课程设计要求1.掌握液压系统的基本知识,理解液压系统的工作原理;2.掌握PLC控制器的基本原理和编程方法; 3.设计具有实际应用价值的液压系统,并能够进行PLC控制器编程实现系统的控制; 4.根据课程设计流程进行规划、建模、设计和测试,只有保证每个流程都得到充分的实施,才能够达到课程设计的实质目的。
利用PLC技术实现对液压节流调速系统的一种控制。
系统设计程序包括手动程序(实现主缸进、主缸退、主缸停、主缸进停、主缸退停、主缸升/停压、侧缸进/停),和连续自动控制程序。
指示灯包括电源指示灯、油泵指示灯、主缸左/右换向电磁阀指示灯、侧缸换向电磁阀指示灯、主缸左/右限位指示灯。
程序采用梯形图编程,实用且直观。
在总的编程方法上使用到了级式编程,分为手动和自动两个级。
关键词
可编程控制器、液压节流调速系统、自动化、联网控制
液压整体系统分析
液压传动是用液压油作为工作介质,通过动力元件液压泵,将机械能转换为油液的压力能,然后再通过管道、控制元件,进入执行元件将油液压力能转换为机械能,驱动负载实现直线或回转运动。
若要执行机构能够连续地准确的动作,则必须对液压系统的压力、流量或方向进行精确的控制。
所以液压传动与控制是一个问题的两个方面。
从机械量的输出来讲就是对力、位移和速度的控制。
液压系统发展快,应用广,其原因在于液压技术有着优异的特点:
1.单位功率的重量轻、结构尺寸小。
2.能在很大范围内实现无级调速。
调速方便,调速的范围比较大,达100:1至2000:
1。
3.传递运动均匀平稳,反应速度快。
冲击小,能高速启动、制动和换向。
4.能传递较大的力或转矩。
传递较大的力或转矩是液压传动的突出优点。
5.易实现功率放大。
这在控制系统中是非常重要的一个特点,它可以减少执行部件所
需要的操纵力,以微小的信号输入而得到较大的功率输出。
6.液压传动装置的控制、调节比较简单,操纵比较方便、省力,易于实现自动化。
尤
其和电气控制结合起来,能实现复杂的顺序动作和远程控制。
7.液压系统易于实现过载保护。
8.液压元件已标准化、系列化和通用化,便于设计和选用。
机械电子工程实验室的液压传动装置主要由油泵、液压缸、控制阀、油缸、压力表及管道几部分组成,其实现的主要功能是通过电磁控制阀的通断,控制油路上油的流动,从而对液压缸的运动进行控制。
其液压回路主要由速度控制回路,压力控制回路,方向控制回路几部分组成,液压系统原理图如图(1-7):
图1-7
1-油箱2-液压泵3-单向阀
4-直动式溢流阀5-压力表6-二位二通电磁换向阀
7-液压缸(侧缸)8-限位开关(左)9-限位开关(右)
10-液压缸(主缸)11-压力表12-单向节流阀
13-减压阀14-压力表15-三位四通电磁换向阀
16-单向阀17-先导式溢流阀18-压力表
19-单向阀20-二位二通电磁换向阀。