余热余压利用相关技术介绍
- 格式:doc
- 大小:117.00 KB
- 文档页数:13
科技成果——硝酸生产反应余热余压利用技术适用范围化工行业硝酸生产流程的能量回收行业现状2014年我国浓硝酸产量(折纯100%)为288.21万t。
在硝酸的生产过程中需要提供压力能,以通常装置的平均生产水平计,每万吨成品约需要消耗功率20万kW,能耗巨大。
该技术旨在对硝酸生产的余热余压进行利用,具有较好的节能效果。
成果简介1、技术原理将硝酸生产工艺流程中产生的反应余热、余压进行回收,转化的机械能直接补充在轴系上,用于驱动机组,可减少能量多次转换损耗,提高能量利用效率。
同时,向装置外供送蒸汽,使余热余压最大化利用。
该技术配合双加压法稀硝酸生产工艺,与采用综合法和中压法的硝酸生产相比,可显著降低生产电耗。
2、关键技术(1)系统与尾气能量回收及关联技术回收硝酸生产流程中的氨氧氧化反的反应热及氮氧化物吸收后的余压,驱动机组做功,并向装置界外输送副产蒸汽。
(2)多跨轴系转子动力学及转子可靠性分析技术多跨轴系能量回收机组的每个单机的弯振及整个轴系的扭振分析,以保证机组安全运行。
(3)多跨轴系能量回收机组自动控制及防喘振技术实现能量回收机组启动、运行、停机及防喘振自动控制,以及机组运行状况远程监测技术。
(4)高温及硝酸腐蚀性环境材料选用技术选择耐高温及硝酸的材料,防止有害物质泄漏和零部件的酸性腐蚀,延长机组使用寿命。
(5)能量回收机组与系统工艺匹配及轴流与离心压缩机性能匹配技术根据系统工艺合理选择压缩机设计参数;对空压机与NOx压缩机压力进行合理分配,达到优化能量回收机组性能,使之运行效率更高,更节能。
3、工艺流程图1 硝酸生产流程反应余热余压利用技术工艺示意图轴流压缩机将空气压缩至4.5-6bar,与气氨按照一定的比例混合,送入氧化炉进行氨氧化反应。
NOx压缩机将氮氧化物加压至11-13bar,用于NO2的吸收。
回收系统反应热,产生中温中压蒸汽;用于驱动汽轮机拖动机组,并外供至装置界外。
回收NOx吸收后的剩余能量,将余热、余压转换为机械能,与汽轮机共同驱动机组。
描述蒸汽锅炉压差发电节能技术全国的热电公司承担着对外供应蒸汽和热水的业务。
他们的运行方式一般是:1、由热电公司自己的换热站置换成热水或冷水供给用户,这一部分需要对蒸汽降压使用。
2、把蒸气直接供给用户用于生产需要或自行换热采暖。
有相当的一部分需要降压使用热力公司外供蒸气和换热站对蒸汽参数的要求是各有不同的。
在供热锅炉和热水\汽用户之间对蒸汽和热水的温度\压力要求不同。
常常有0.8-1兆帕的压力差白白的浪费掉,可以利用它发电。
不影响用户用汽和热。
使用我们已经掌握的蒸汽锅炉压差发电节能技术,对锅炉供热系统进行技术改造,采用小型背压机组根据不同用户需要的蒸气压力差,进行热能-电能的转换以获取低成本的电能,实现了能源的梯级利用,减少厂用电,增加外供电量。
该项目具有投资小、收益大,具有节能增值,以较少的成本增加和较低煤耗情况下,增加单位的经济效益。
国家在《热电联产项目可行性研究技术规定》[2000]1268号文件规定:“单台锅炉额定蒸发量≥20t/h,参数为次中压及以上,热负荷年利用小时≥4000小时的较型集中供热锅炉房,经技术经济比较具有明显经济效益的,应改造成为热电厂”。
修订后的《中华人民共和国节约能源法》第三十二条规定:“电网企业应当按照国务院有关部门制定的节能发电调度管理的规定,安排清洁、高效和符合规定的热电联产、利用余热余压发电的机组以及其他符合资源综合利用规定的发电机组与电网并网运行,上网电价执行国家有关规定。
”对现有的锅炉房实施锅炉蒸气压差发电节能技术改造、热电联产后向用户供热供汽,此举既满足了用户的需要,又可使供热公司经济效益的提高。
同时也能够因此工程的建设具有明显的经济、社会和环境效益,改善产业区的投资环境,对促进产业区的经济发展起着十分重要的作用。
例如:一家供热企业有5×20t/h百吨锅炉,对它的运行负荷进行分析,5台20t/h工业蒸汽锅炉,其额定蒸汽压力为1.27MPa(g)而用户生产及空调所需蒸汽压力为0.70MPa (a),特别是采暖期所需汽水热交换器的用汽压力仅为0.2~0.5MPa(a),充分利用两者之间的压差发电,是本项取得节能的主要内容。
余热余压利用工艺和系统解决方案余热余压是指工业生产过程中产生的废热和废压。
这些废热和废压通常会被浪费掉,造成能源的浪费和环境的污染。
然而,通过合理的利用余热余压,可以实现能源的节约和环境的保护。
本文将介绍一些常见的余热余压利用工艺和系统解决方案。
一、余热利用工艺1. 蒸汽回收利用:在工业生产过程中,常常会产生大量的高温高压蒸汽。
通过安装蒸汽回收装置,可以将蒸汽中的热能回收利用,用于加热水或发电。
这样既可以提高能源利用效率,又可以降低生产成本。
2. 烟气余热利用:烟气中含有大量的热能,常常会被排放到大气中造成能源的浪费和环境的污染。
通过安装烟气余热利用设备,可以将烟气中的热能回收利用,用于加热水或发电。
这样可以实现能源的节约和环境的保护。
3. 废水余热利用:在工业生产过程中,常常会产生大量的废水。
通过安装废水余热利用设备,可以将废水中的热能回收利用,用于加热水或发电。
这样不仅可以实现能源的节约,还可以解决废水处理的问题。
二、余压利用工艺1. 高压蒸汽回收利用:在工业生产过程中,常常会产生大量的高压蒸汽。
通过安装高压蒸汽回收装置,可以将蒸汽中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样既可以提高能源利用效率,又可以降低生产成本。
2. 燃气余压利用:在工业生产过程中,常常会产生大量的燃气余压。
通过安装燃气余压利用设备,可以将燃气中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样可以实现能源的节约和环境的保护。
3. 液体余压利用:在工业生产过程中,常常会产生大量的液体余压。
通过安装液体余压利用设备,可以将液体中的压力能回收利用,用于驱动涡轮发电机或其他设备。
这样不仅可以实现能源的节约,还可以解决液体的排放问题。
三、系统解决方案1. 废热余压综合利用系统:通过将余热和余压综合利用,可以实现能源的最大化利用效果。
该系统包括废热回收装置、废压回收装置、能量转换装置等。
通过合理的设计和配置,实现余热余压的综合利用,可以大幅度提高能源利用效率和经济效益。
中国钢铁行业余热余压回收利用途径分析北极星节能环保网2014/5/30 11:51:22 我要投稿关键词:余热回收设备烟气余热余热余压北极星节能环保网讯:现阶段,钢铁工业各生产工序已回收余热余压资源情况及利用途径分析如下:焦化工序。
焦化工序现阶段已回收利用的余热余压资源包括焦炭显热、焦炉煤气潜热、烟道气显热和初冷水显热。
焦炭显热主要是采用干熄焦技术回收利用产生蒸汽用于发电,目前干熄焦发电技术在国内钢铁联合企业的应用普及率已很高。
焦炉煤气热值高,是一种优质燃料,目前已得到充分利用,放散率很低,主要利用途径是供各生产用户使用,富余资源用于驱动锅炉发电。
同时,由于焦炉煤气富含氢气和甲烷,提升利用品位,将其作为化工原料生产甲醇、合成氨等化工产品和天然气资源的利用方式近年来得到了更多的关注。
烟道气显热的温度一般是250 C ~300 C,目前主要采用余热回收设备回收蒸汽供生产、生活用户或作为煤调湿热源。
焦化初冷水显热温度一般是60 C ~70 C,主要采用换热器回收热量用于北方地区冬季采暖。
烧结工序。
烧结工序现阶段已回收利用的余热余压资源包括烧结矿显热和烧结烟气显热。
烧结矿显热的回收主要在环冷机部分,按烟气温度分高、中、低三部分,目前高温段烟气余热回收利用较为充分,主要采用余热锅炉产生蒸汽用于发电或者供生产用户;中、低温烟气余热一般采用直接利用方式,用于预热混料或热风烧结等。
对于烧结烟气显热的回收利用近几年开始起步,在部分企业已有应用,主要集中在烧结大烟道高温区(300 C ~400 C )的回收,采用余热锅炉或热管换热器回收产生蒸汽。
球团工序。
球团工序现阶段已回收利用的余热余压资源包括球团矿显热、烟气显热和冷却水显热。
球团矿显热主要通过获取热风回用于生产,作为烘干、预热等热源。
烟气显热温度较低(约120 C ),少数企业采用热管换热器回收热量用于职工洗浴等生活用户。
竖炉大水梁冷却水显热通常采用汽化冷却方式替代水冷方式,避免循环冷却水消耗,并回收产生蒸汽。
余热余压梯级利用技术原理
余热余压梯级利用技术是一种能源利用技术,其原理基于能量
的转化和传递。
在工业生产过程中,许多设备会产生余热和余压,
如果这些能量不加以利用就会浪费。
因此,余热余压梯级利用技术
就是利用这些废热和废压能够提高能源利用率,减少能源消耗,从
而实现节能减排的目的。
首先,余热余压梯级利用技术利用了热力学上的热力循环原理。
在一个闭合的热力循环系统中,余热和余压能够被转化为机械能或
者其他形式的能量。
这种能量转化的过程遵循热力学定律,通过合
理设计循环系统,可以实现能量的高效转化。
其次,余热余压梯级利用技术还涉及到传热和传质的原理。
通
过换热器、蒸汽轮机、发电机等设备,余热和余压可以被传递和利用。
在这个过程中,热量和压力的传递是根据热力学和流体力学的
原理进行的,需要考虑传热介质的特性、流体的运动规律等因素。
此外,余热余压梯级利用技术还涉及到工程技术和系统集成的
原理。
在实际应用中,需要考虑设备的选型、系统的设计、运行参
数的调节等工程技术问题,同时还需要考虑不同设备之间的协调配
合,以及与整个生产系统的集成。
总的来说,余热余压梯级利用技术的原理是基于热力学、传热传质和工程技术的原理,通过合理设计和运行系统,实现废热和废压的高效利用,从而达到节能减排的目的。
这项技术对于工业生产和能源利用具有重要意义,也是未来能源可持续利用的重要方向之一。
余热余压发电项目简介1、水泥余热发电水泥生产工业是高能耗行业。
采用新型干法工艺,其可回收利用热量占总热耗的48%左右,具有极高的“变废为宝”的价值。
中国循环能源公司通过对水泥厂的生产状况和全厂热平衡进行严谨、全面的分析,采用水泥余热回收专利技术,可以依照生产工艺和厂区布置的具体特点,为客户量身设计配套的余热发电系统。
水泥窑纯低温余热发电系统水泥窑余热发电系统具有如下特点:◎采用专利技术,双进汽热力系统,实现能量梯级利用◎通过建立废气参数数据库,优化取热方式和系统参数设定,保证系统稳定、可靠。
◎投资少,效益高,投资回收快。
以5000t/d生产线为例,其配套余热发电的投资回收期平均为2到3年。
◎社会效益显著。
10MW余热电站每年节约标煤2.2万吨,减少CO2排放6.6万吨。
2、玻璃窑余热发电玻璃熔窑是浮法玻璃生产工艺中发生能量交换的主要场所,燃料的燃烧、玻璃液的形成、澄清及均化都在窑内完成,从熔窑排出的烟气温度为400~550℃,携带的热量约占生产总热耗30~45%,具有很大的回收价值。
配套余热发电系统后,可提供玻璃生产用电的40~80%,大幅提高燃料利用率,降低玻璃的生产电耗。
3、硫酸余热发电硫酸生产过程中产生大量热能,余热的利用主要可以分为三部分:沸腾焙烧炉沸腾层内的余热回收、SO2炉气余热回收以及沸腾焙烧炉矿渣余热回收。
其最佳的利用方式是发电,可大大降低生产成本。
沸腾焙烧炉沸腾层内的余热回收:为维持沸腾床内沸腾层的温度在800~900℃之间,必须从床层中导走大量多余的热量。
每生产1吨硫酸(100%浓度)从沸腾层中导出的热量可达1.5MJ,折合蒸汽约为0.55吨。
年产10万吨硫铁矿制酸的生产线,可从沸腾炉中回收的蒸汽量约为5.50万吨/年。
SO2炉气余热回收:从沸腾炉出来的高温炉气温度约为750~850℃,在进接触室前须降至400℃左右,因而通过余热回收装置吸热降温,每生产1吨硫酸可回收热量1.3MJ。
余热利用工艺引言:在工业生产中,大量的热能会以余热的形式散失到环境中。
为了提高能源利用效率和减少环境污染,余热利用工艺应运而生。
余热利用工艺是指利用生产过程中产生的热能余热,经过一系列的转换和传递,使其能够被有效地再利用的技术方法。
本文将介绍余热利用工艺的原理和应用。
一、余热利用工艺的原理余热利用工艺的原理是基于能量守恒定律。
在工业生产中,许多工艺过程都会产生大量的热能,其中一部分以余热的形式散失到环境中。
而利用余热利用工艺,可以将这些散失的热能进行回收和再利用。
1.1 热能回收余热利用工艺中最基本的原理是通过热交换器将产生的余热回收。
热交换器是一种能够将热能从一个流体传递到另一个流体的设备。
通过热交换器,可以将高温流体中的热能传递给低温流体,从而实现热能的回收利用。
1.2 热能转换在余热利用工艺中,热能的转换是一个重要的环节。
常见的热能转换方式有蒸汽发电、热水供暖等。
通过将余热中的热能转换为其他形式的能量,可以满足不同领域的能源需求。
二、余热利用工艺的应用余热利用工艺在工业生产中有广泛的应用。
下面将介绍几个常见的应用领域。
2.1 发电行业在发电行业中,余热利用工艺可以将火力发电厂、钢铁厂等产生的高温烟气中的余热转化为蒸汽,再通过蒸汽发电机组产生电能。
这种方式可以提高发电厂的能源利用效率,减少烟气排放对环境的污染。
2.2 化工行业在化工行业中,许多工艺过程会产生大量的余热。
通过余热利用工艺,可以将这些余热转化为热水、蒸汽等能源形式,用于供暖、蒸馏等工艺需求。
这不仅可以降低能源消耗,还可以减少对环境的污染。
2.3 钢铁行业在钢铁行业中,高炉炼铁过程会产生大量的高温烟气。
通过余热利用工艺,可以将这些高温烟气中的余热回收,用于蒸汽发电、供热等用途。
这不仅可以提高能源利用效率,还可以降低钢铁生产对环境的影响。
2.4 纺织行业在纺织行业中,许多工艺过程会产生大量的废水和废热。
通过余热利用工艺,可以将这些废水和废热进行处理和回收利用。
2024年空压机余热利用技术要求____年空压机余热利用技术要求一、引言随着环境保护意识的增强和能源资源的日益紧缺,余热利用技术成为了各个工业领域研究的热点之一。
空压机作为广泛应用于各个行业的设备,其产生的余热利用将对能源消耗和环境保护产生积极的影响。
针对____年空压机余热利用技术的要求,本文将介绍一些相关技术和要求。
二、空压机余热利用技术分类空压机产生的余热主要包括冷凝水热量、热力传导热量和压缩热量。
根据不同的热量利用方式,可以将空压机余热利用技术分为以下几类:1. 蒸汽发生器技术利用空压机产生的压缩热量,可以直接为蒸汽发生器提供热源,使其蒸汽发生能力提高,从而提高热效益。
2. 空调热水技术通过空压机产生的冷凝水热量,可以为空调热水提供热源,实现冷热集中供应,提高能源利用效率。
3. 温室供暖技术将空压机产生的热力传导热量引入温室,为温室提供热源,实现供暖效果。
三、____年空压机余热利用技术要求1. 高效能随着能源资源的日益紧缺,空压机余热利用技术需要具备高效能的特点,就是要求利用余热的过程中,能够最大限度地将其转化为有用的能量,减少能源的浪费。
2. 稳定性空压机作为一个连续运行的设备,其余热利用技术需要具备稳定性的特点,即在不同的工况下,能够稳定地进行余热利用,保证利用效果的稳定性和可靠性。
3. 环保性随着环境保护的不断提升,空压机余热利用技术需要具备环保性的特点,就是要求在利用余热的过程中,能够减少对环境的污染,降低碳排放,实现绿色能源利用。
4. 经济性在____年的背景下,空压机余热利用技术需要具备经济性的特点,就是要求在利用余热的过程中,能够降低能源消耗,减少运营成本,提高经济效益。
5. 智能化随着科技的不断发展,空压机余热利用技术需要实现智能化的特点,就是要求能够通过先进的控制系统和传感器技术,实现对余热的智能化管理和监控,提高利用效率。
6. 可持续性空压机余热利用技术需要具备可持续性的特点,就是要求能够长期稳定地进行余热利用,不仅满足当前的能源需求,还能够满足未来的能源需求,实现可持续发展。
余热余压利用相关技术介绍一:概述1.1:概念:余热余压:是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。
余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。
余热余压利用工程:主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。
这类工程除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来较大困难。
1.2利用领域介绍:(与我公司有关)(1)在钢铁行业,逐步高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、蓄热式轧钢加热炉技术。
建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。
(2)在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。
(3)在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。
(4)在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。
(5)在电力行业,推广热电联产,热电冷联供等技术,提高电厂综合效益。
(6)在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。
在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。
1.3发展前景:(1)由于一次性投资较高,部分企业余热余热利用工程还未得到充分发展,尤其是中小型企业。
余热利用技术简介一、热管技术简介1.热管简介热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
热管技术目前已广泛应用于宇航、军工、钢铁、机械等行业。
2. 工作原理热管是一种新型高效的传热元件,按较精确的定义应称之为“封闭的两相传热系统”,即在一个抽成真空的封闭的体系内,依赖装入内部的流体的相态变化(液态变为汽态和汽态变为液态)来传递热量的装置。
热管放在热源部分的称之为蒸发段(热端),放在冷却部分的称之为冷凝段(冷端)。
当蒸发段吸热把热量传递给工质后,工质吸热由液体变成汽体,发生相变,吸收汽化潜热。
在管内压差作用下,汽体携带潜热由蒸发段流到冷凝段,把热量传递给管外的冷流体,放出凝结潜热,管内工质又由汽体凝为液体,在重力作用下,又回到蒸发段,继续吸热汽化。
如此周而复始,将热量不断地由热流体传给冷流体。
3. 热管优点①金属、非金属材料本身的导热速率取决于材料的导热系数、温度梯度,正交于温度梯度的截面面积。
以金属银为例,其值为415W/m2٠K 左右,经测定,热管的导热系数是银的几百倍到上千倍,故热管有热超导体之称。
②由于热管内的传热过程是相变过程,而且工质的纯度很高,因此热管内蒸汽温度基本上保持恒温,经测定:热管两端的温差不超过5℃,与其它传热元件相比,热管具有良好的等温性能。
③热管能适应的温度范围与热管的具体结构、采用的工作流体及热管的环境工作温度有关。
目前,热管能适应的温度范围一般为-200℃~2000℃,这也是其它传热元件所难以达到的。
4、热管式余热回收装置1)原理热管式余热回收装置的核心部件是热管。
热管式余热回收装置原理图基本结构:热管蒸汽发生器是由若干根特殊的热管元件组合而成。
其基本结构如图所示。
热管的受热段置于热流体风道内, 热风横掠热管受热段,热管元件的放热段插在水—汽系统内。
工业余热回收利用途径与技术工业余热是指在工业生产过程中产生的废热能。
传统的做法是将废热通过冷却装置排放到大气中,造成了严重的能源浪费和环境污染。
因此,工业余热的回收利用具有重要的经济和环境意义。
本文将重点介绍工业余热回收利用的途径与技术。
1.直接利用工业余热直接利用是指将废热直接用于其他工业过程或提供空调、供热等服务。
常见的直接利用方法包括:1.1热传导法:通过热传导将废热直接传递给需要加热的物体,如暖气片、水暖设备等。
1.2蒸汽回收:将产生的低温废热用于蒸汽发生器,生成高温高压蒸汽,用于驱动发电机组或其他工业过程。
1.3空调回收:将废热用于空调系统中的冷凝器,提高冷凝效果,减少能源消耗。
1.4包装、纺织等行业的暖房:利用废热为产品提供加热设备,提高生产效率和产品质量。
2.热能转化为电能热能转化为电能是将废热通过发电机转化为电能,具体的技术包括:2.1ORC技术:有机朗肯循环技术是指将废热用于加热工质,工质在密闭系统中气化成蒸汽驱动发电机产生电能。
2.2燃气轮机技术:将废热用于燃气轮机,获得高温高压蒸汽,驱动燃气轮机产生电能。
3.废热回收再利用除了直接利用和热能转化为电能外,还可以通过废热回收再利用来提高能源利用效率。
常见的回收再利用方法包括:3.1热交换器:将废热通过热交换器与传质体进行热交换,将工业余热转移到其他介质中,为其他工业过程或生活提供热能。
3.2热泵技术:将低品质废热通过热泵的工作循环将其提高温度,转化为高品质的热能。
3.3储热技术:将废热用于热能储存系统中,储存并再利用。
4.废热联合发电废热联合发电是指将工业余热利用于燃气轮机或蒸汽轮机等发电设备,将废热转化为电能的同时,回收废气中的热能供应其他工业过程。
废热联合发电技术在大型化工、钢铁、石油、电力等行业得到广泛应用。
5.其他技术此外,还有一些新兴的工业余热回收利用技术:5.1热管技术:利用热管的传热性能和传热特性,将废热转移到需要加热的目标区域,实现能量利用。
余热余压利用资料初步总结余热余压利用资料初步总结一工业余热余压利用主要形式目前余热回收形式主要有三种,第一种是余热锅炉回收余热制蒸汽,用于工艺用饱和蒸汽或用于发电;第二种是采用热泵或溴化锂吸收式机组回收余热,制取热水或蒸汽,用于工艺、空调及生活采暖;第三种是利用螺杆膨胀机回收余热,直接驱动发电机发电或驱动水泵、风机、压缩机。
螺杆膨胀机除可回收余热之外,还应用在余压回收利用上。
1、中高温余热利用:余热锅炉制取蒸汽余热锅炉的作用是通过回收生产过程中的余热来制取蒸汽。
目前余热锅炉主要用于回收高温烟气、可燃废气等气态余热。
产生的蒸汽有两种使用方向,一是可直接用于生产、生活用汽,二是蒸汽可用于汽轮发电机组发电。
余热锅炉回收余热用于发电的原理如下图所示:2、低温余热利用:热泵机组及溴化锂吸收式制冷机组包含两种形式的机组,一是溴化锂吸收式制冷机组利用工业废余热,为工业提供工艺所需冷水或空调制冷。
二是热泵机组(如溴化锂吸收式热泵)通过吸收低品位热源余热制取热水或蒸汽,供工业或城市供热用。
溴化锂吸收式热泵的驱动热源为蒸汽、高温烟气、直接燃烧燃料(燃气、燃油)产生的热量、废热热水、废热蒸汽等。
与余热锅炉相比,溴化锂吸收式热泵机组普遍用于低温余热回收,而余热锅炉更多用于中高温余热回收。
其次,应用领域不一样,溴化锂吸收式热泵提供的热水和蒸汽用于工艺用、空调制冷采暖用,而余热锅炉提供的蒸汽可以用于汽轮机组发电。
三是,目前余热回收项目中,余热锅炉多用于回收气态余热,而溴化锂热泵机组除可回收气态余热,还可回收废液(如废热热水、燃油)余热。
3、余压利用:螺杆膨胀机螺杆膨胀机可利用蒸汽、高温热水、汽液两相流体等介质为动力,将热能转换为机械能驱动发电机发电或直接驱动水泵、风机、压缩机等做功。
目前,对螺杆膨胀机的应用主要有以下两种方式:一是回收蒸汽余压,二是采用有机工质朗肯循环系统,回收废热。
3.1回收蒸汽压差1)案例:如从锅炉产生的蒸汽经降压后供工业用汽的过程中,可使用螺杆膨胀机回收余压用于发电。
重点节能技术、产品和设备-汽轮机余热余压利用淄博迈特汽轮机有限公司紧跟时代步伐,积极参与国家节能、环保事业,以致力于节能事业的发展为己任,争取为社会做出更大贡献。
现我从以下五个方面详细说明:1、公司简介2、余热余压利用汽轮机原理3、余热余压利用汽轮机应用范围及节能效益4、产品市场价格范围、使用寿命、维修服务5、上年度公司市场销量及客户评价一、公司简介淄博迈特汽轮机有限公司隶属于淄博柴油机总公司,是淄博柴油机总公司汽轮机分厂改制而成的企业。
淄博柴油机厂是一个生产大功率中速柴油机、小功率汽轮机的现代化企业, 1970年,经国家计委批准,组建淄博柴油机厂,2006年10月正式更名为淄博柴油机总公司。
建厂40多年,企业先后经历了创业、调整和加快发展的不同历史时期,淄博柴油机总公司已经成为当今具备一定规模实力的骨干企业。
1997年成立汽轮机分厂,开始开发和研制小功率汽轮机发电机组及工业汽轮机,2003年对汽轮机分厂进行改制,成立淄博迈特汽轮机有限公司,以小功率汽轮机制造、销售、安装、调试、大修和汽轮机配件经营为主。
主要产品以功率为背压12000KW以下、凝汽6000KW以下的汽轮发电机组和拖水泵用汽轮机为主。
公司现已开发多种类型的新产品,以满足市场的不同需要。
现在生产的汽轮机已经出口到泰国、巴西、土耳其、韩国等国家。
近几年,随着集中供热在城市建设中的快速发展,采用工业汽轮机来拖动热网循环水泵逐渐得以应用和推广,并成为节能降耗,提高社会效益、经济效益的一条重要途径。
作为供热系统中主要部件的热网循环水泵以前都是由电动机拖动的,随着城市规模的扩大,热负荷不断增长,输送距离不断加大,水泵电动机的功率也越来越大,这就使得供热企业的耗电成本在生产成本中占很大的比重,严重降低了企业的经济效益。
而采用工业汽轮机代替大功率电动机拖动热网循环水泵就可有效降低耗电成本,大大提高企业的经济效益。
在城市集中供热系统中,拖动循环水泵的工业汽轮机进汽可以是供热锅炉的新蒸汽,也可以是热电厂的外供热抽汽,排汽可以进入热交换器加热热网循环水,不会因此增加用汽成本。
余热余压利用相关技术介绍一:概述1.1:概念:余热余压:是指企业生产过程中释放出来多余的副产热能、压差能,这些副产热能、压差能在一定的经济技术条件下可以回收利用。
余热余压回收利用主要来自高温气体、液体、固体的热能和化学反应产生的热能。
余热余压利用工程:主要是从生产工艺上来改进能源利用效率,通过改进工艺结构和增加节能装置以最大幅度的利用生产过程中产生的势能和余热。
这类工程除了一次性投资较高外,在余热余压利用过程中,使用的生产方法、生产工艺、生产设备以及原料、环境条件的不同,给余热余压利用带来较大困难。
1.2利用领域介绍:(与我公司有关)(1)在钢铁行业,逐步高炉炉顶压差发电技术、纯烧高炉煤气锅炉技术、低热值煤气燃气轮机技术、蓄热式轧钢加热炉技术。
建设高炉炉顶压差发电装置、纯烧高炉煤气锅炉发电装置、低热值高炉煤气发电-燃汽轮机装置、干法熄焦装置等。
(2)在有色金属行业,推广烟气废热锅炉及发电装置,窑炉烟气辐射预热器和废气热交换器,回收其他装置余热用于锅炉及发电,对有色企业实行节能改造,淘汰落后工艺和设备。
(3)在煤炭行业,推广瓦斯抽采技术和瓦斯利用技术,逐步建立煤层气和煤矿瓦斯开发利用产业体系。
(4)在化工行业,推广焦炉气化工、发电、民用燃气,独立焦化厂焦化炉干熄焦,节能型烧碱生产技术,纯碱余热利用,密闭式电石炉,硫酸余热发电等技术,对有条件的化工企业和焦化企业进行节能改造。
(5)在电力行业,推广热电联产,热电冷联供等技术,提高电厂综合效益。
(6)在其他行业中,玻璃生产企业也推广余热发电装置,吸附式制冷系统,低温余热发电-制冷设备;推广全保温富氧、全氧燃烧浮法玻璃熔窑,降低烟道散热损失;引进先进节能设备及材料,淘汰落后的高能耗设备。
在纺织、轻工等其他行业推广供热锅炉压差发电等余热、余压、余能的回收利用,鼓励集中建设公用工程以实现能量梯级利用。
1.3发展前景:(1)由于一次性投资较高,部分企业余热余热利用工程还未得到充分发展,尤其是中小型企业。
(2)余热余压利用不仅节能,还有利用环境保护,是企业实现循环经济的新尝试,随着余热余压利用新技术的推广,余热余压利用必将有着广阔的应用前景。
二:工业余热2.1资源特点(1)余热资源属于二次能源,是一次能源或可燃物料转换后的产物,或是燃料燃烧过程中释放的热量在完成某一工艺过程后剩下的热量。
按照温度品位,工业余热一般分为600℃以上的高温余热,300~600℃的中温余热和300℃以下的低温余热三种;按照来源,工业余热又可分为:烟气余热,冷却介质余热,废汽废水余热,化学反应热,高温产品和炉渣余热,以及可燃废气、废料余热。
(2)余热资源来源广泛、温度范围广、存在形式多样,从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。
因此工业余热资源利用系统或设备运行环境相对恶劣,要求有稳定的运行范围,能适应多变的工艺要求,设备部件可靠性高,初期投入成本高。
从经济性出发,需要结合工艺生产进行系统整体的设计布置,以提高余热利用系统设备的效率。
2.2 工业余热利用技术余热温度范围广,能量载体形式多样,又由于所处环境和工艺流程不同及场地固有条件的限制,设备型式多样,如有空气预热器,窑炉蓄热室,余热锅炉,低温汽轮机等。
工业余热回收利用有多种分类方式,根据余热资源在利用过程中能量的传递或转换特点,可以将国内目前的工业余热利用技术分为热交换技术、热功转换技术、余热制冷制热技术。
2.2.1. 热交换技术余热回收应优先用于本系统设备或本工艺流程,尽量减少能量转换次数。
对余热的利用不改变余热能量的形式,只是通过换热设备将余热能量直接传递给自身工艺的耗能流程,降低一次能源消耗的技术设备,可统称为热交换技术,这是回收工业余热最直接、效率较高的经济方法,相对应的设备是各种换热器,既有传统的各种结构的换热器、热管换热器,也有余热蒸汽发生器(余热锅炉)等。
(1)间壁式换热器工业用的换热器按照换热原理基本分为间壁式换热器、混合式换热器和蓄热式换热器。
其中间壁式和蓄热式是工业余热回收的常用设备,混合式换热器是依靠冷热流体直接接触或混合来实现传递热量,如工业生产中的冷却塔、洗涤塔、气压冷凝器等,在余热回收中并不常见。
间壁式换热器主要有管式、板式及同流换热器等几类,管式换热器虽然热效率较低,平均仅26%~30%,紧凑性和金属耗材等方面也逊色于其他类型换热器,但它具有结构坚固、适用弹性大和材料范围广的特点,是工业余热回收中应用最广泛的热交换设备。
冶金企业40%的换热器设备为管式换热器,允许入口烟气温度达1 000℃以上,出口烟温约600℃,平均温差约300℃。
板式换热器有翅片板式、螺旋板式、板壳式换热器等,与管式换热器相比,其传热系数约为管壳式的二倍,传热效率高,结构紧凑,节省材料。
冶金行业的联合、中小企业多采用板式换热器预热助燃空气,热回收率平均为28%~35%,入口烟气温度700℃左右,出口温度达360℃。
但由于板式换热器的使用温度、压力比管式换热器的限制大,应用范围受到限制。
对于各种工业炉窑的高温烟气回收,还常采用同流热交换器,主要有辐射式和对流式两类,应用较为广泛,多用在均热炉、加热炉等设备上回收烟气余热,预热助燃空气或燃料,降低排烟量和烟气排放温度。
常见的辐射同流换热器入口烟气温度可达1 100℃以上,出口烟气温度亦高达600℃,可将助燃空气加热到400℃,助燃效果好;温度效率可达40%以上,但热回收率较低,平均在26%~35%。
(2)蓄热式热交换器蓄热式热交换设备原理是冷热流体交替流过蓄热元件进行热量交换,属于间歇操作的换热设备,适宜回收间歇排放的余热资源,多用于高温气体介质间的热交换,如加热空气或物料等。
根据蓄热介质和热能储存形式的不同,蓄热式热交换系统可分为显热储能和相变潜热储能。
显热储能应用已久,简单换热设备如常见的回转式换热器,复杂设备如炼铁高炉的蓄热式热风炉。
由于显热储能热交换设备储能密度低、体积庞大、蓄热不能恒温等缺点,在工业余热回收中有局限性。
相变潜热储能换热设备利用蓄热材料固有热容和相变潜热储存传递能量,高出显热储能设备至少一个数量级的储能密度,因此在储存相同热量的情况下,相变潜热储能换热设备比传统蓄热设备体积减少30%~50%。
此外,热量输出稳定,换热介质温度基本恒定,换热系统运行状态稳定是相变潜热储能换热设备的另一优点。
相变储能材料根据其相变温度大致分为高温相变材料和中低温相变材料,前者相变温度高、相变潜热大,主要是由一些无机盐及其混合物、碱、金属及合金等和陶瓷基体或金属基体复合制成,适合于450~1 100℃及以上的高温余热回收,应用较为广泛;后者主要是结晶水合盐或有机物,适合用于低温余热回收。
(3)基于热管的换热设备热管是一种高效的导热元件,通过全封闭真空管内工质的蒸发和凝结的相变过程以及二次间壁换热来传递热量,属于将储热和换热装置合二为一的相变储能换热装置。
热管导热性优良,传热系数比传统金属换热器高近一个量级,还具有良好的等温性、可控制温度、热量输送能力强、冷热两侧的传热面积可任意改变、可远距离传热、无外加辅助动力设备等一系列优点。
热管工作需要根据不同的使用温度选定相应的管材和工质。
其中碳钢—水重力热管的结构简单、价格低廉、制造方便、易于推广,使得此类热管得到了广泛的应用。
实际应用中热管使用温度在50~400℃之间,用于干燥炉、同化炉和烘炉等的热回收或废蒸汽的回收,以及锅炉或炉窑的空气预热器。
(4)余热锅炉采用蒸汽发生器,即余热锅炉回收余热是提高能源利用率的重要手段,冶金行业近80%的烟气余热是通过余热锅炉回收,节能效果显著。
余热锅炉中不发生燃烧过程,而是利用高温烟气余热、化学反应余热、可燃气体余热以及高温产品余热等,生产蒸汽或热水,用于工艺流程或进入管网供热。
同时,余热锅炉是低温汽轮机发电系统中的重要设备,为汽轮机等动力机械提供做功蒸汽工质。
实际应用中,利用350~1 000℃高温烟气的余热锅炉居多,和燃煤锅炉的运行温度相比,属于低温炉,效率较低。
由于余热烟气含尘量大,含有较多腐蚀性物质,更易造成锅炉积灰、腐蚀、磨损等问题,因此防积灰、磨损是设计余热锅炉的关键。
直通式炉型、大容积的空腔辐射冷却室、设置的密封炉墙、除尘室、大量振打吹灰装置都是余热锅炉为解决积灰、磨损问题在结构上的考虑。
另外由于受生产场地空间限制,余热锅炉把换热部件分散安装在工艺流程各部位,而不是像普通锅炉一样组装成一体。
近十年随着节能减排工作的推进,国内主要余热锅炉设计制造企业加速发展,余热锅炉正朝着大型化、高参数方向发展,如有色冶金行业每小时蒸发量50 吨、工作压力4.2兆帕的余热锅炉,钢铁冶金行业每小时蒸发量100吨、工作压力12.5 兆帕的干熄焦余热锅炉等。
此外,进一步提高锅炉传热效果、热利用率,减轻积灰、磨损等问题,在锅炉循环方式、受热面结构、锅炉内烟气流道及清灰方式等方面进行改造、革新是余热锅炉技术进步的主要内容。
2.2.2. 热功转换技术热交换技术通过降低温度品位仍以热能的形式回收余热资源,是一种降级利用,不能满足工艺流程或企业内外电力消耗的需求。
此外,大量存在的中低温余热资源采用热交换技术回收,效益并不显著。
因此,利用热功转换技术提高余热的品位是回收工业余热的又一重要技术。
按照工质分类,热功转换技术可分为传统的以水为工质的蒸汽透平发电技术和低沸点有机工质发电技术。
由于工质特性显著不同,相应的余热回收系统及设备组成也各具特点。
目前主要的应用是以水为工质,以余热锅炉+蒸汽透平或者膨胀机组成低温汽轮机发电系统。
低温汽轮机发电可利用的余热资源主要是高于350℃的中高温烟气,如玻璃、水泥等建材行业炉窑烟气或经一次利用后降温到400~600℃的烟气,单机功率在几兆瓦到几十兆瓦,包括钢铁行业氧气转炉余热发电、烧结余热发电,焦化行业干熄焦余热发电,水泥行业低温余热发电等多种余热发电形式。
但从余热资源的温度范围来看,该技术属于中高温余热发电技术。
此外,通过余热锅炉或换热器从工艺流程中回收的大量蒸汽,其中1兆帕左右的低压饱和蒸汽或热水占很大比例,大量剩余常被放散。
目前这类低压饱和蒸汽发电利用,主要是采用螺杆膨胀动力机技术。
该技术具有以下特点:可用多种热源工质作为动力源,适用于过热蒸汽、饱和蒸汽、汽液两相混合物,也适用于烟气、含污热水、热液体等;结构简单紧凑,可自动调节转速,寿命长,振动小;机内流速低,除泄露损失外,其他能量损失少,效率高;双转子非接触式的特性,运转时形成剪切效应具有自清洁功能、自除垢能力。
螺杆膨胀动力机属于容积式膨胀机,受膨胀能力限制,直接驱动螺杆膨胀动力机的热源应用范围为压力0.15~3.0兆帕、温度低于300℃的蒸汽或压力0.8兆帕以上、温度高于170℃的热水等,由于结构特点,螺杆膨胀动力机单机功率有限,多数在1 000千瓦以下,主要用于余热规模较小的场合。