相交线与平行线竞赛精彩试题
- 格式:docx
- 大小:215.21 KB
- 文档页数:8
竞赛数学:相交线与平行线在竞赛试题中,平行和垂直是做为基础知识应用在一些综合性的题目之中,单独出题的情况很少,但当平行和垂直的性质与实际情况结合时,往往也会被做为新题型来考查.【例1】请说明在同一平面内三条直线的位置关系及交点个数.【思考与分析】本题有多种分类,如以两条直线的位置关系分类,再考虑第三条直线的位置;又如以三条直线交点的个数分类等.下面我们就第二种分类加以说明.解:(1)如图1,三条直线互相平行,此时交点个数为0;(2)如图2,三条直线相交于同一点,此时交点个数为1;(3)如图3,三条直线两两相交且不交于同一点,此时交点个数为3;(4)如图4,其中两条直线平行,都与第三条直线相交,此时交点个数为2.综上所述,平面内三条直线的交点个数为0或1或2或3个.(如果按第一种情况进行分类研究,又该如何呢?请大家思考一下.)反思:求解中(2)、(3)两种情况称为三条直线两两相交.当题目中图形不全或不确定时,我们一定要注意分类.【例2】(1)请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线相交,并简单说明画法.(2)能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交,如果能,请画出一例,如果不能,请简述理由. 【思考与分析】“6条直线相交且任意3条都不共点”,要解决这个问题,我们可以首先画出两条相交直线,这样可以发现若不出现3条直线共点可以出现平行线.对于(2)中所求,可以根据(1)得到的结论先对其进行推理,不要盲目的画图.解:(1)在平面上任取一点A,过A作两直线m1与n1.在n1 上取两点B、C,在m1上取两点D、G.过B作m2∥m1,过C作m3∥m1,过D作n2∥n1,过G作n3∥n1,这时m2、m3、n2、n3交得E、F、H、I四点,如图所示.由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交.(2)在平面上不能画出没有3线共点的7条直线,使得其中每条直线都恰与另外3条直线相交.理由如下:假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又因没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点.根据直线去数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为因为这与交点个数应为整数矛盾.所以,满足题设条件的7条直线是画不出来的.反思:本题在说明理由时应用了假设法.利用假设推导出结果是否与题中条件冲突.这与我们以后要学的反证法相类似.【例3】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF 和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例4】有10条公路(假设公路是笔直的,并且可以无限延伸),无任何三条公路交于同一个岔口,现有31名交警,刚好满足每个岔口有且只有一名交警执勤,请你画出公路示意图.【思考与解】我们可以把公路想象成直线,岔口想象成交点,由警察的人数及题意可知,10条直线刚好有31个交点.根据前面所学知识,平面上的10条直线,若两两相交,最多出现45个交点,现在只要求出现31个交点,就要减去14个交点,这种情况下,通常采取两种办法:(1)多条直线共点;(2)出现平行线.根据题意,方法(1)不能实现,所以想到使用平行线.在某一方向上有5 条直线互相平行,则减少10个交点,若6条直线平行,则可减少15个交点,所以这个方向上最多可取5条平行线,这时还有4个点要去掉,换一个方向取3条平行线,即可再减少3个交点,这时还剩下2条直线与1个要减去的点,只须让其在第三个方向上互相平行即可,如图所示:【小结】本题考查我们对知识的综合应用能力,在做题时,要牢牢把握平行线的性质,与图形结合,从简单的图形推理找出问题的入手点.【例5】把正方形ABCD边AD平移得到EF,作出平移后的正方形能有几种作法?【思考与分析】据题意,平移是指正方形整体平移,只有一个.我们根据以前学过的作图方法和本周学的平移作图,作法有如下几个:作法1:过E作EF的垂线,截取EG=EF,过G点作EF的平行线,截取GH=EF(注意截取方向),连接FH就得到平移后的正方形.如图(1).作法2:过E、F分别作EF的垂线,截取EG=EF,FH=EF(注意截取方向),连接GH,就得到平移后的正方形.如图(1).作法3:过F作EF的垂线,截取FH=EF,过H点作EF的平行线,截取GH=EF(注意截取方向),连接EG就得到平移后的正方形.如图(1).作法4:过E作AC的平行线,过F作BD的平行线,截取EH=AC,FG=BD (注意截取方向).连接EG,GH,HF,就得到平移后的正方形.如图(2).作法5:连接EA,FD,过B点作EA的平行线,过C作FD的平行线.截取BG=EA,CH=FD(注意截取方向).如图(3).连接EG,GH,HF,就得到平移后的正方形.【小结】平移变换不改变图形的形状、大小和方向.连结对应点的线段平行且相等.要描述一个平移变换,必须指出平移的方向和移动的距离.【例6】电脑游戏上有一种俄罗斯方块的游戏,游戏规则:在所给各种各样的方块中,通过平移、旋转的方式,罗列方块使之排满每一横行,每排满一行,便消去一行,得100分,依次类推(本题特殊规定,只准平移),小方块在屏幕顶端居中出现(奇数列时居中偏左).现在电脑屏幕上显示(如图所示).(1)若按规定,想得分,甲方块需要怎样平移,才可能直接得分或为以后打下得分基础?乙方块呢?(2)若你把甲方块放到左侧,发现屏幕已暗示出丙方块为形状,在这种情况下,丙方块只需如何移动,便可得多少分?(注:屏幕上一共有10行10列)【思考与分析】第(1)题观察甲方块与底部方块的特点,我们可得出平移方式.第(2)题将丙方块通过平移嵌入空隙之中,即可得分.解:(1)甲方块可左移3个单位,下移7个单位放到屏幕左侧;乙方块需向右平移3个单位,下移8个单位,放到屏幕右侧.(可用其他平移方式)(2)丙方块下移7个单位,便可排满2行,得200分.【小结】解本题的关键是将各个方块通过平移嵌成一个长方形,需根据方块和现有图形选择合理的平移方式.【例7】如图1,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?【思考与分析】若P点在C、D之间运动时,我们只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C、D两点的外侧运动时(P点与点C、D不重合),则可以分为如图2和如图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD.解:若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图1,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE =∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:(1)如图2,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB =∠BPE-∠APE,即∠APB=∠PBD-∠PAC.(2)如图3,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB =∠APE-∠BPE,即∠APB=∠PAC-∠PBD.【小结】我们做这类题的时候可以发现:点的移动带动角的位置变化,角的位置变化决定了角之间的关系.因此我们可以利用分类思想来分析题意,解决多种情况的讨论.。
初一体育相交线与平行线测试题含答案
一、选择题
1. 若两条直线相交,那么相交线的特征是什么?
- A. 相交线的交点为直角
- B. 相交线的交点为锐角
- C. 相交线的交点为钝角
- D. 相交线的交点为等角
答案:B. 相交线的交点为锐角
2. 以下哪些情况下两条直线相互平行?
- A. 两条直线夹角为45度
- B. 两条直线夹角为60度
- C. 两条直线夹角为90度
- D. 两条直线夹角为180度
答案:D. 两条直线夹角为180度
3. 使用圆规和直尺将下列几何图形画出来,哪些是平行线?
答案:AB || CD,EF || GH
二、填空题
1. AB线与CD线相交于点E,则可以得出结论:∠AEC + ∠BED = ____。
答案:180度
2. 若两线段AB和CD平行,且AB = 5cm,CD = 8cm,则可以推断出BC的长度为 ____。
答案:8cm
三、解答题
1. 画出下列几何图形中的所有平行线:
答案:EF || GH,AB || CD,BC || DE,FG || HI
2. 对于下图中的线段AB和CD:
(a) 写出AB与CD是否平行的判定条件。
(b) 若判定条件成立,请写出证明方法。
若不成立,请说明理由并给出正确的判定条件。
答案:
(a) 判定条件:AB与CD的斜率相等。
(b) 证明方法:比较AB和CD的斜率,若斜率相等,则AB与CD平行。
如果斜率不相等,则AB与CD不平行。
以上是初一体育相交线与平行线测试题的答案。
装订线(C)(B)(A)ADCBBDC1E D相交线、平行线测试题(满分120分)一、选择题(每小3分,共30分)1、下面四个图形中,∠1与∠2是对顶角的是2、如图,AB∥CD,∠A=70°,则∠1的度数是A、700B、1000C 、1100 D.、13003、下列说法正确的是A、在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB、在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC、在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD、在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c4、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠ADB的度数是(第4题图)A.45°B、30° C .50° D. 36°5、.两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有一个角是直角;④有一对邻补角相等,其中能判定这两条直线垂直的有A.1个B.2个C.3个D.4个6、在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整的图案,使其自动消失.A.向右平移1格B.向左平移1格C.向右平移2格D.向右平移3格7、下列各命题中,是真命题的是(A)同位角相等(B)内错角相等(C)邻补角相等(D)对顶角相等8、如图,直线a,b被直线c所截,则下列说法中错误的是(A)∠1与∠2是邻补角(B)∠1与∠3是对顶角(C)∠2与∠4是同位角(D)∠3与∠4是内错角9、如图,一条“U”型水管中AB∥CD,若∠B=75°,则∠C应该等于(A)75°(B)95°(C)105°(D)125°10、如图,将三个相同的三角板不重叠不留空隙地拼在一起,观察图形,,CA,AE中,相互平行的线段有(A)4组(B)3组(C)2组(D)1组二、填空题(每小题4分,共24分)11、如图,(1)要证AD∥BC,只需∠B= .根据是。
专题24 相交线与平行线阅读与思考在同一平面内,两条不同直线有两种位置关系:相交或平行.当两条直线相交或两条直线分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,善于从相交线中识别出以上不同名称的角是解相关问题的基础,把握对顶角有公共顶点,而同位角、内错角、同旁内角没有公共顶点且有一条边在截线上,这是识图的关键. 两直线平行的判定方法和重要性质是我们研究平行线问题的主要依据. 1.平行线的判定(1)同位角相等、内错角相等,或同旁内角互补,两直线平行; (2)平行于同一直线的两条直线平行;(3)在同一平面内,垂直于同一直线的两条直线平行. 2.平行线的性质(1)过直线外一点,有且只有一条直线和这条直线平行; (2)两直线平行,同位角相等、内错角相等、同旁内角互补;(3)如果一条直线和两条平行线中的一条垂直,那么它和另一条也垂直. 熟悉以下基本图形:例题与求解【例1】 (1) 如图①,AB ∥DE ,∠ABC =080,∠CDE =0140,则∠BCD =__________.(安徽省中考试题)(2) 如图②,已知直线AB ∥CD ,∠C =0115,∠A =025,则∠E =___________.(浙江省杭州市中考试题)DB图②FECA解题思路:作平行线,运用内错角、同旁内角的特征进行求解.【例2】如图,平行直线AB ,CD 与相交直线EF ,GH 相交,图中的同旁内角共有( ). A .4对 B .8对 C .12对 D .16对(“希望杯”邀请赛试题)解题思路:每一个“三线八角”基本图形都有两对同旁内角,从对原图进行分解入手.A BCDGHEFF DE BCA例2题图 例3题图【例3】 如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC //ED ,CE 是∠ACB 的平分线,求证:∠EDF =∠BDF .(天津市竞赛试题)解题思路:综合运用垂直定义、角平分线、平行线的判定与性质,由于图形复杂,因此,证明前注意分解图形.【例4】 如图,已知AB ∥CD ,∠EAF =41∠EAB ,∠FCF =41∠ECD .求证:∠AFC =43∠AEC . (湖北省武汉市竞赛试题)DEC AB 图1解题思路:分别过点E ,F 作平行线,利用平行线的性质找角之间的关系.ABFCD E例4题图 例5题图【例5】如图,已知∠1= ∠2,∠C =∠D ,求证:∠A =∠F .解题思路:从角出发,导出两直线的位置关系,再推出新的角的关系,新的两直线的位置关系,是解这类问题的基本思路.【例6】(1)已知平面内有4条直线a ,b ,c 和d ,直线a ,b 和c 相交于一点,直线b ,c 和d 也相交于一点,试确定这4条直线共有多少个交点?并说明你的理由.(2)作第5条直线e 与(1)中的直线d 平行. 说明:以这5条直线的交点为端点的线段有多少条?(“希望杯”邀请赛试题)解题思路:(1)先设直线a ,b ,c 的交点为P ,直线b ,c ,d 的交点为Q ,证得P 与Q 实为同一点,得出结论.(2)绘出图形,帮助解答,注意平行线的性质.FA BC1 DE 2能力训练A 级1.在同一平面内有1a ,2a ,3a …,10a 十条直线,如果1a //2a ,2a ⊥3a ,3a //4a ,4a ⊥5a ,5a //6a ,6a ⊥7a ,…,那么1a 与10a 的位置关系是____________.2.如图,已知AE ∥BD ,∠1=0130,∠2=030,则∠C =__________.(湖南省常德市中考试题)3.如图,直线a ,b 都与直线c 相交,下列命题中,能判断a ∥b 的条件是_____________(把你认为正确的序号填在横线上)①∠1=∠2; ②∠3=∠6; ③∠1=∠8;④∠5+∠8=0180.(陕西省中考试题)第4题图21第3题图第2题图7865432121DA ECBab4. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一边上,则∠1+∠2__________.(山东省烟台市中考试题)5.下面四个命题中正确的是( ).A .相等的两个角是对顶角B .和等于0180的两个角互为邻补角 C .连结两点的最短线是过这两点的直线D .两条直线相交所成的四个角都相等,则这两条直线互相垂直(“希望杯”邀请赛试题)6.下列命题①两条相交直线组成的四个角相等,则这两直线垂直.②两条相交直线组成的四个角中,若有一个直角,则四角都相等. ③两条直线相交,一角的两邻补角相等,则这两直线垂直. ④两条直线相交,一角与其邻补角相等,则这两直线垂直. 其中正确的有( ).A .4个B .3个C .2个D .1个7.如图,DH ∥EG ∥BC ,且DC ∥EF ,那么图中与∠BFE 相等的角(不包括∠BFE )的个数是( ). A.2 B .4 C .5 D .6(山东省菏泽地区中考试题)8.如图,AB ∥CD ∥EF ∥GH ,AE ∥DG ,点C 在AE 上,点F 在DG 上,设与∠ɑ相等的角的个数为m (不包括∠a 本身),与∠β互补的角的个数为n .若a ≠β,则m +n 的值是( ).A. 8B. 9C. 10D. 11第8题图第7题图βαCFG AGDHBBEDHE9.如图,已知AB ∥ED ,∠NCB =030,CM 平分∠BCE ,CN ⊥CM ,求∠B 的度数.10.如图,已知E 是AB ,CD 外一点,∠D =∠B +∠E ,求证:AB ∥CD .ABED NCM11.平面上有10条直线,无任何3条交于一点,要使它们出现31个交点,怎样安排才能办到?(吉林省竞赛试题)ABEDC12.如图,已知CD ∥EF ,∠1+∠2=∠ABC ,求证:AB //GF .(重庆市竞赛试题)B 级1. 如图,∠A =060,∠1=∠2,则∠ADC 的度数是___________. 2.如图,直线a ∥b ,那么x 的度数是____________.(五城市联赛试题)ba第1题图第2题图第3题图x48°30°30°120°21C'D'EABADBCDC F3.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠EFB =065,则∠AED '=__________.(山东省中考试题)4.如图,已知DE ∥BC ,∠2=070,∠1=040,那∠EBA 的度数是_____________.AC21EBDlk4321第4题图 第5题图5. 如图,直线k ∥l ,∠4-∠3=∠3-∠2=∠2一∠3=d >0.其中∠3<090,∠1=050,则∠4最大可能的整数值是( ).A. 1070B .1080C .1090D .11006. 如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC +∠ACE +∠CEH 等于( ). A .1800B .2700C .3600D .4500(北京市竞赛试题)7.如图,两直线AB ,CD 平行,则∠1+∠2+∠3+∠4+∠5+∠6= ( ). A .6300B. 7200C .8000D. 9000(“希望杯”邀请赛试题)BDFAC654321HACBDEF GH第6题图 第7题图8.两条直线a ,b 互相平行,直线a 上顺次有10个点A 1,A 2…,A 10,直线b 上顺次有9个点B 1,B 2,…,B 3,将a 上每一个点与b 上每一个点相连可得线段.若没有三条线段相交于同一点,则这些线段的交点个数是( )A. 90B.1620C.6480D.20069.如图,已知两条平行线AB ,CD 被直线EF 所截,交点分别为G ,H ,P 为HD 上任意一点,过P 点的直线交HF 于O 点,求证:∠HOP =∠AGF -∠HPO .O PA BCD10.如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD .求FC 的长.(2013年“《数学周报》”杯竞赛试题)D FMBC11.平面上有七条两两不平行的直线,试证:其中必有直线的交角小于260.(莫斯科八年级竞赛试题)12.⑴如图①,MA 1∥NA 2,则∠A 1+∠A 2=_________.如图②,MA 1∥NA 3,则∠A 1+∠A 2+∠A 3=_________. 如图③,MA 1∥NA 4,则∠A 1+∠A 2+∠A 3+∠A 4=_________. 如图④,MA 1∥NA 5,则∠A 1+∠A 2+∠A 3+∠A 4+∠A 5=_________.从上述结论中你发现了什么规律?请在图②,图③,图④中选一个证明你的结论.(2)如图5,n NA ||MA 1,则=∠++∠+∠+∠n A A A A 321 .(3)利用上述结论解决问题:如图已知CD ||AB ,AB E ∠和CDE ∠的平分线相交于F ,140E =∠,求B FD ∠的度数.A 6A nA 5A 4A 2A 1 MNA 2(第21题)A 1MNA 3A 2 A 1MNA 3A 4A 2 A 1MNA 3 A 5A 4 A 2 A 1MNA 3 图①图②图③ 图④图⑤FEBACD图⑥专题24 相交线与平行线例1 (1)40° 过点 C 作CF ∥AB ,则∠BCF =∠ABC =80°.∠DCF =180°—140°=40°,∴∠BCD =80°-40°=40°.(2)90° 过点E 作EM ∥AB ,∴AB ∥CD ,∴EM ∥CD ,∠AEM =180°—25°=155°. ∠CEM =180°—115°=65°,∴∠E =∠AE —∠CEM =155°-65°=90°.例2 D 提示:原图可分解为8个基本图形.例3 提示:由DF ∥CE 得,∠BDF =∠BCE ,∠FDE =∠DEC ,AC ∥DE ,得∠DEC =∠ECA .例4 过E 作EM ∥AB .∴AB ∥于CD ,∴EM ∥CD . ∴∠AEC =∠AEM +∠CEM =∠EAB +∠ECD .同理:∠AFC =∠FAB +∠FCD .∴∠AEC =∠FAB +∠FCD +∠EAF +∠ECF =∠AFC +¼∠EAB +14+∠ECD =∠AFC +¼∠AEC .故∠AFC =¾∠AEC .例5 提示:先证BD ∥CE ,再证DF ∥BC .例6 (1)直线a ,b ,c ,d 共有1个交点,理由如下:设直线a ,b ,c 的交点为P ,直线b ,c ,d 的交点为Q .这意味着点P 和点Q都是直线b 和c 的交点.而两条不同直线至多有一个交点.因此P和Q 必为同一个点.即4条直线a ,b ,c 和d 相交于同一个点.因此这4条直线只有一个交点.(2)不妨设(1)中交点为O .因为作的第5条直线e 与(1)中的直线d 平行,所以直线e 和直线d 没有公共点,因此这些e 不过点O .而直线a ,b ,c 与直线e 必然都相交.如图所示.设直线e 与直线a ,b ,c 分别相交于点A ,B ,C .这时有A ,B ,C ,O 共四个不同的点.可以连出OA ,OB ,OC ,AB ,AC ,BC 共6条不同的线段.A 级1. 1a //10a2.20°3.①②③④4.90°5.D6.B7.C8.D提示:m =5,n =6,m +n =5+6=11. 9.60° 10.提示:过点E 作EF ∥AB . 11如图所示.12.作CK ∥FG ,延长GF ,CD 交于H 点,则∠1+∠2=∠ABC ,故∠ABC +∠BCK =180°,即CK ∥AB ,AB ∥GF .B级1.120°2.72°3.50°4.30°5.C 提示:∠2=50°+d,∠3=50°+2d,∠4=50°+3d,又∵∠3=50°+2d<90°,∴d<20°,∠4=50°+3d<110°.故∠4的最大整数值为109°.6.B7.D8.B 提示:由题意知每一个交点由a上两点和b上两点所确定.在a上取两点有种情况,在b上取两点有种情况,故交点个数为45*36=1620个.9.提示:过点O作CD的平行线.10.如图,设N是AC的中点,连接MN,则MN∥AB.又MF∥AD,∴∠FMN=∠BAD=∠DAC=∠MFN.∴FN=MN=½AB.因此FC=FN+NC=½AB+12AC=½(AB+AC)=½(7+11)=9.11.提示:在平面上任取一点O,将已知的七条直线平移过点O,它们把以O为圆心的圆周角分成14个彼此相邻的角a₁,a₂,……,。
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
A BAB第二章平行线与相交线的竞赛题一、求角的度数1、已知AB ∥CD ,分别探讨下列四个图形(图①、图②、图③、图④)中∠APC 和∠PAB 、∠PCD 的关系,请用等式表示出它们的关系。
并证明它们。
解: ①过P 点作, ②过P 点作,∵ ∵∴ ∴ 又∵, 又∵,∴ ∴∴ ∴∴ ∴即: 即:③过P 点作, ∴∵ ∴∴ ∴又∵, 即:④过P 点作, ∴∵∴∴∴PFFF FCPACPBDCA图②图①B DPDC图④图③D E EE E24A BF321A BFAEMHGNCB又∵,即:2、如图,,求的度数?解:过E点作, 过F点作,∵,∴∵,∴∴,,∴3、如图所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C?解: ∵∠1=3∠2,∠2=25°∴∠1=75°∵AE∥BD∴∴∵与是对顶角, ∴过F点作,∴,即:,解得:4、如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数? 解: ∵CD是∠ACB的平分线,∠ACB=40°∴又∵∴∵∴又∵∴5、如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG?DGCDE1EDCFB100°CAFGEDNM987654321解: ∵AB∥CD∴又∵∴∴∵平分∴又∵∴∴∵AB∥CD ∴∴6、如图,直线,直线AB交与于A,B,CA平分∠1,CB平分∠2,求∠C的度数?解: 过C点作又∵∴又∵CA平分∠1,CB平分∠2∴又∵∴∴7、如图,已知:CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,试说明:DA⊥AB解: ∵平分,平分∴,又∵∴∵∴又∴∴即:∴∴8、如图是一个的正方形,求图中的和?解:由于沿AB作对折时,图形能够重合,恰有E12DECBABA2DGC1二、角的关系1、如图所示.∠1=∠2,∠D=90°,EF ⊥CD 请说明∠3和∠B 的关系。
2020-2021学年人教版七年级数学下册第五章《相交线与平行线》竞赛题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共8小题)1.如图,AB∥CD,BF,DF 分别平分∥ABE 和∥CDE,BF∥DE,∥F 与∥ABE 互补,则∥F 的度数为A.30°B.35°C.36°D.45°【答案】C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∵ED又∵DF 平分∵CDE,∵∵CDE=2∵F,∵BF∵ED∵∵CGF=∵EDF=2∵F,∵AB∵CD∵∵ABF=∵CGF=2∵F,∵BF平分∵ABE∵∵ABE=2∵ABF=4∵F,又∵∵F 与∵ABE 互补∵∵F +∵ABE =180°即5∵F=180°,解得∵F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.2.如下图,下列条件中:∥∥B+∥BCD=180°;∥∥1=∥2;∥∥3=∥4;∥∥B=∥5,能判定AB∥CD的条件为()A.∥∥∥∥B.∥∥∥C.∥∥∥D.∥∥∥【答案】C【详解】解:∵∵∵B+∵BCD=180°,∵∵∵1=∵2,∵AD∵BC;∵∵∵3=∵4,∵AB∵CD;∵∵∵B=∵5,∵AB∵CD;∵能得到AB∵CD的条件是∵∵∵.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.3.∥如图1,AB∥CD,则∥A +∥E +∥C=180°;∥如图2,AB∥CD,则∥E =∥A +∥C;∥如图3,AB∥CD,则∥A +∥E-∥1=180° ;∥如图4,AB∥CD,则∥A=∥C +∥P.以上结论正确的个数是( )A.1个B.2个C.3个D.4个【答案】C【详解】∵如图1,过点E作EF∵AB,因为AB∵CD,所以AB∵EF∵CD,所以∵A+∵AEF=180°,∵C+∵CEF=180°,所以∵A+∵AEC+∵C=∵A+∵AEF+∵C+∵CEF=180°+180°=360°,则∵错误;∵如图2,过点E作EF∵AB,因为AB∵CD,所以AB∵EF∵CD,所以∵A=∵AEF,∵C=∵CEF,所以∵A+∵C=∵AEC+∵AEF=∵AEC,则∵正确;∵如图3,过点E作EF∵AB,因为AB∵CD,所以AB∵EF∵CD,所以∵A+∵AEF=180°,∵1=∵CEF,所以∵A+∵AEC-∵1=∵A+∵AEC-∵CEF=∵A+∵AEF=180°,则∵正确;∵如图4,过点P作PF∵AB,因为AB∵CD,所以AB∵PF∵CD,所以∵A=∵APF,∵C=∵CPF,所以∵A=∵CPF+∵APC=∵C+∵APC,则∵正确;故选C.4.如图,∥1=70°,直线a平移后得到直线b,则∥2-∥3()A.70°B.180°C.110°D.80°【答案】C【解析】【分析】作AB∵a,先证AB∵a∵b,由平行线性质得∵2=180°-∵1+∵3,变形可得结果.【详解】作AB∵a,由直线a平移后得到直线b,所以,AB∵a∵b所以,∵2=180°-∵1+∵3,所以,∵2-∵3=180°-∵1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.5.下列说法:∥两点确定一条直线;∥连接两点的线段叫做两点的距离;∥两点之间,线段最短;∥由两条射线组成的图形叫做角;∥若AB=BC,则点B是线段AC的中点.其中正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】分析:根据直线公理对∵进行判断;根据两点之间的距离的定义对∵进行判断;根据线段公理对∵进行判断;根据角的定义对∵进行判断;根据线段的中点的定义对∵进行判断.详解:根据直线公理:两点确定一条直线,所以∵正确;连接两点的线段的长度叫做两点的距离,所以∵错误;两点之间,线段最短,所以∵正确;有一个公共端点的两条射线组成的图形叫做角,所以∵错误;若AB =BC ,且B 点在AB 上,则点B 是AC 的中点,所以∵错误.故选B .点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º【答案】A【解析】【分析】 依据∵OGD=148°,可得∵EGO=32°,根据AB∵CD ,可得∵EGO =∵GOF ,根据GO 平分∵EOF ,可得∵GOE =∵GOF ,等量代换可得:∵EGO=∵GOE=∵GOF=32°,根据FH OE ⊥,可得:OFH ∠=90°-32°-32°=26°【详解】解:∵ ∵OGD=148°,∵∵EGO=32°∵AB∵CD ,∵∵EGO =∵GOF,∵EOF ∠的角平分线OG 交CD 于点G ,∵∵GOE =∵GOF,∵∵EGO=32°∵EGO =∵GOF∵GOE =∵GOF,∵∵GOE=∵GOF=32°,∵FH OE ⊥,∵OFH ∠=90°-32°-32°=26°故选A.【点睛】本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等.7.如图,已知AB∥CD∥EF ,则∥x 、∥y 、∥z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y【答案】B【分析】根据平行线的性质可得∵CEF=180°-y,x=z+∵CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∵EF,∵∵C+∵CEF=180°,∵∵CEF=180°-y,∵AB∵CD,∵x=z+∵CEF,∵x=z+180°-y,∵x+y-z=180°,故选:B.8.如图a是长方形纸带,∥DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∥CFE的度数是()A.102°B.108°C.124°D.128°【答案】A【解析】【分析】先由矩形的性质得出∵BFE=∵DEF=26°,再根据折叠的性质得出∵CFG=180°-2∵BFE,∵CFE=∵CFG-∵EFG即可.【详解】∵四边形ABCD是矩形,∵AD∵BC,∵∵BFE=∵DEF=26°,∵∵CFE=∵CFG-∵EFG=180°-2∵BFE-∵EFG=180°-3×26°=102°,故选:A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.二、填空题(本大题共6小题)9.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∥A=120°,∥B=150°,则∥C 的度数是________【答案】150°【解析】如图,过点B作BG∵AE,因为AE∵CD,所以AE∵BG∵CD.所以∵A=∵2,∵1+∵C=180°.因为∵A=120°,所以∵2=120°,所以∵1=150°-120°=30°.所以∵C=180°-30°=150°,故答案为150°.10.如图,AB∥CD,点P为CD上一点,∥EBA、∥EPC的角平分线于点F,已知∥F =40°,则∥E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∵FMA=12∵CPE=∵F+∵1,∵ANE=∵E+2∵1=∵CPE=2∵FMA,即∵E=2∵F=2×40°=80°.故答案为80.11.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.【答案】24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E 有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键. 12.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM 于点C,AB平分∥DAC,直线DB平分∥FBC,若∥ACB=100°,则∥DBA的度数为________.【答案】50°【解析】解:如图,设∵DAB=∵BAC=x,即∵1=∵2=x.∵EF∵GH,∵∵2=∵3.在∵ABC内,∵4=180°﹣∵ACB﹣∵1﹣∵3=180°﹣∵ACB﹣2x=80°﹣2x.∵直线BD平分∵FBC,∵∵5=12(180°﹣∵4)=12(180°﹣80°+2x)=50°+x,∵∵DBA=180°﹣∵3﹣∵4﹣∵5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.13.如图,有两个正方形夹在AB与CD中,且AB//CD,若∥FEC=10°,两个正方形临边夹角为150°,则∥1的度数为________度(正方形的每个内角为90°)【答案】70.【解析】【详解】作IF∵AB,GK∵AB,JH∵AB因为AB∵CD所以,AB∵CD∵ IF∵GK∵JH所以,∵IFG=∵FEC=10°所以,∵GFI=90°-∵IFG=80°所以,∵KGF=∵GFI=80°所以,∵HGK=150°-∵KGF=70°所以,∵JHG=∵HGK=70°同理,∵2=90°-∵JHG=20° 所以,∵1=90°-∵2=70°故答案为70 【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.14.如图,在直角梯形ABCD 中,AD BC ∥,AD AB ⊥,5BC =,将直角梯形ABCD 沿AB 方向平移2个单位得到直角梯形EFGH ,HG 与BC 交于点M ,且1CM =,则图中阴影部分面积为______.【答案】9 【分析】由平移得到直角梯形ABCD 与直角梯形EFGH 全等,所以它们的面积相等,都减去直角梯形BMHE 的面积,得到阴影部分的面积等于直角梯形FGMB 的面积,再根据已知条件求得BM 、BF 、GF 的长度,代入梯形面积的公式即可求得结果. 【详解】由平移得直角梯形ABCD 与直角梯形EFGH 全等,∵S梯形ABCD=S梯形EFGH,∵S阴影=S梯形FGMB,∵GF=BC=5,CM=1,∵BM=4,∵BF=2,∵S阴影= 11()(45)29 22BM GF BF+⋅=+⨯=.故此题填9.【点睛】此题考查平移的性质,图形平移前后的面积不变,因此将不规则的阴影面积转化为规则图形的面积,降到了难度,这是解此题的关键.三、解答题(本大题共4小题)15.如图,BCE、AFE是直线,AB∥CD,∥1=∥2,∥3=∥4,求证:AD∥BE.【答案】证明见解析.【解析】试题分析:先根据平行线的性质得出∵4=∵BAE.再根据∵3=∵4可知∵3=∵BAE.由∵1=∵2,得出∵1+∵CAE=∵2+∵CAE即∵BAE=∵CAD,故∵3=∵CAD,由此可得出结论.试题解析:证明:∵AB∵CD,∵∵4=∵BAE.∵∵3=∵4,∵∵3=∵BAE.∵∵1=∵2,∵∵1+∵CAE=∵2+∵CAE,即∵BAE=∵CAD,∵∵3=∵CAD,∵AD∵BE.16.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB∥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD∥AC时,∥ODA的角平分线与∥CAE 的角平分线的反向延长线交于点P,求∥APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM∥AD交BC于M点,∥BMD、∥DAO 的平分线交于N点,则点D在运动过程中,∥N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.【答案】(1) C(5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∵a﹣3=0,b+4=0,∵a=3,b=﹣4,∵A(3,0),B(0,﹣4),∵OA=3,OB=4,∵S四边形AOBC=16.∵0.5(OA+BC)×OB=16,∵0.5(3+BC)×4=16,∵BC=5,∵C是第四象限一点,CB∵y轴,∵C(5,﹣4);(2)如图,延长CA,∵AF是∵CAE的角平分线,∵∵CAF=0.5∵CAE,∵∵CAE=∵OAG,∵∵CAF=0.5∵OAG,∵AD∵AC,∵∵DAO+∵OAG=∵PAD+∵PAG=90°,∵∵AOD=90°,∵∵DAO+∵ADO=90°,∵∵ADO=∵OAG,∵∵CAF=0.5∵ADO,∵DP是∵ODA的角平分线,∵∵ADO=2∵ADP,∵∵CAF=∵ADP,∵∵CAF=∵PAG,∵∵PAG=∵ADP,∵∵APD=180°﹣(∵ADP+∵PAD)=180°﹣(∵PAG+∵PAD)=180°﹣90°=90°即:∵APD=90°(3)不变,∵ANM=45°理由:如图,∵∵AOD=90°,∵∵ADO+∵DAO=90°,∵DM∵AD,∵∵ADO+∵BDM=90°,∵∵DAO=∵BDM,∵NA是∵OAD的平分线,∵∵DAN=0.5∵DAO=0.5∵BDM,∵CB∵y轴,∵∵BDM+∵BMD=90°,∵∵DAN=0.5(90°﹣∵BMD),∵MN是∵BMD的角平分线,∵∵DMN=0.5∵BMD,∵∵DAN+∵DMN=0.5(90°﹣∵BMD)+0.5∵BMD=45°在∵DAM中,∵ADM=90°,∵∵DAM+∵DMA=90°,在∵AMN中,∵ANM=180°﹣(∵NAM+∵NMA)=180°﹣(∵DAN+∵DAM+∵DMN+∵DMA)=180°﹣[(∵DAN+DMN)+(∵DAM+∵DMA)] =180°﹣(45°+90°)=45°,∵D点在运动过程中,∵N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.17.如图,已知AM∥BN,∥A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∥ABP和∥PBN,分别交射线AM于点C,D,(1)∥CBD=(2)当点P运动到某处时,∥ACB=∥ABD,则此时∥ABC=(3)在点P运动的过程中,∥APB与∥ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.【答案】(1)60°;(2)30°;(3)不变.【分析】(1)由AM∵BN可得∵ABN=180°-∵A,再由BC、BD均为角平分线可求解;(2)由AM∵BN可得∵ACB=∵CBN,再由∵ACB=∵ABD可得∵ABC =∵DBN;(3)由AM∵BN可得∵APB=∵PBN,再由BD为角平分线即可解答.【详解】解:(1)∵AM∵BN,∵∵ABN=180°﹣∵A=120°,又∵BC,BD分别平分∵ABP和∵PBN,∵∵CBD=∵CBP+∵DBP=12(∵ABP+∵PBN)=12∵ABN=60°,故答案为60°.(2)∵AM∵BN,∵∵ACB=∵CBN,又∵∵ACB=∵ABD,∵∵CBN=∵ABD,∵∵ABC=∵ABD﹣∵CBD=∵CBN﹣∵CBD=∵DBN,∵∵ABC=∵CBP=∵DBP=∵DBN,∵∵ABC=12∵ABN=30°,故答案为30°.(3)不变.理由如下:∵AM∵BN,∵∵APB=∵PBN,∵ADB=∵DBN,又∵BD平分∵PBN,∵∵ADB=∵DBN=12∵PBN=12∵APB,即∵APB:∵ADB=2:1.【点睛】本题考查了平行线的性质.18.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∥EFG=90°,∥EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∥2=2∥1,求∥1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∥AEF与∥FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∥AEG =α,则∥CFG等于______(用含α的式子表示).【答案】(1)∵1=40°;(2)∵AEF+∵GFC=90°;(3)60°﹣α.【分析】(1)依据AB∵CD,可得∵1=∵EGD,再根据∵2=2∵1,∵FGE=60°,即可得出∵EGD1 3 =(180°﹣60°)=40°,进而得到∵1=40°;(2)根据AB∵CD,可得∵AEG+∵CGE=180°,再根据∵FEG+∵EGF=90°,即可得到∵AEF+∵GFC=90°;(3)根据AB∵CD,可得∵AEF+∵CFE=180°,再根据∵GFE=90°,∵GEF=30°,∵AEG=α,即可得到∵GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∵CD,∵∵1=∵EGD.又∵∵2=2∵1,∵∵2=2∵EGD.又∵∵FGE=60°,∵∵EGD13=(180°﹣60°)=40°,∵∵1=40°;(2)如图2.∵AB∵CD,∵∵AEG+∵CGE=180°,即∵AEF+∵FEG+∵EGF+∵FGC=180°.又∵∵FEG+∵EGF=90°,∵∵AEF+∵GFC=90°;(3)如图3.∵AB∵CD,∵∵AEF+∵CFE=180°,即∵AEG+∵FEG+∵EFG+∵GFC=180°.又∵∵GFE=90°,∵GEF=30°,∵AEG=α,∵∵GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.试卷第21页,总21页。
A BDC第5题图 平行线相交线常见题型过关练习一、选择题一、如图,l 1∥l 2,∠1=120°,那么∠2= . (第1题图)二、如图,AB ∥CD ,∠DCE=80°,那么∠BEF=3、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E 的大小为 (第2题图) (第3题图) (第4题图)4、如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.那么∠C 等于 五、如图,AB ∥CD ,∠C =80°,∠CAD =60°,那么∠BAD 等于 六、如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,那么∠BCE 等于(第6题图) (第7题图) (第8题图) (第9题图)7、如图,AB∥CD,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.那么∠D 的大小是 八、如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于九、如图,己知AB∥CD,BE 平分∠ABC,∠CDE=150°,那么∠C 的度数是 10、如图,已知AB ∥CD ,那么图中与∠1互补的角有 个。
1一、如图,CD ∥AB ,∠1=120°,∠2=80°,那么∠E 的度数是(第10题图)(第11题图) (第12题图) (第13题图)1二、如图,已知直线a ∥b ,∠1=40°,∠2=60°.那么∠3等于13、如图,已知AB∥CD,∠E=︒28,∠C=︒52,那么∠EAB 的度数是 14、如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,那么∠BCE 等于 1五、如下图,AB ∥CD ,∠E =37°,∠C =20°,那么∠EAB 的度数为1六、如图,已知AB ∥CD ,∠A =60°,∠C =25°,那么∠E 等于 (第15题图)B AD CEF 15446 (第14题图)(第16题图)(第17题图)(第18题图)17、如下图,直线a∥b.直线c与直线a,b别离相交于点A、点B,AM b⊥,垂足为点M,假设158∠=︒,那么2∠=_________1八、如图:CD平分∠ACB,DE∥AC且∠1=30°,那么∠2=度.1九、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.(辅助线已画)(第19题图)答案及解析一、分析:由邻补角的概念,即可求得∠3的度数,又由l1∥l2,依照两直线平行,同位角相等,即可求得∠2的度数.解答:∵∠1=120°,∴∠3=180°﹣∠1=60°,∵l1∥l2,∴∠2=∠3=60°.点评:此题考查了平行线的性质与邻补角的概念.注意两直线平行,同位角相等.二、分析:依照平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.解答:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.点评:此题要紧考查对平行线的性质,邻补角的概念等知识点的明白得和把握,依照平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.3、分析:依照两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.4、分析:由∠A=40°,∠AOB=75°,依照三角形内角和定理,即可求得∠B的度数,又由AB∥CD,依照两直线平行,内错角相等,即可求得∠C的值.解答:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.五、分析:依照三角形的内角和为180°,即可求出∠D的度数,再依照两直线平行,内错角相等即可明白∠BAD的度数.解答:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°。
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个B.2个C.1个D.0个3.如图所示,同位角共有()A.6对B.8对C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3= .7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB 和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?112.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED 的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.试卷第2页,总6页20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF= .(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE ∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+=180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.3(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2= °.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN 交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()试卷第4页,总6页34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF 的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3= .5∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC= .(2)如图②,若∠A=100°,∠C=120°,则∠AEC= .(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
相交线与平行线竞赛题讲解1、如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有个.(安徽省中考题)2、如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有().A.4对B.8对C.12对D.16对(“希望杯”邀请赛试题)3、如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°求征:AB∥EF.4、、如图,在ΔABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线.求证:∠EDF=∠BDF.(天津市竞赛题)5、探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l的条数为().A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3)B.(2)、(4) C.(1)、(3)、(4)D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A =∠C ,AD 平分∠BDF .求证:BC 平分∠DBE .11.在同—平面内有2002条直线a 1,a 2,…,a 2002,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5,…,那么a 1与a 2002的位置关系是 .12.若平面上4条直线两两相交且无三线共点,则共有同旁内角 对.(江苏省竞赛题)13.如图,已知21//l l ,AB ⊥1l ,∠ABC=130°,则∠α= .14.如图,直线AB ∥CD ,∠EFA=30°,∠FGH=90°,∠HMN =30°,∠CNP= 50°,则∠GHM 的大小是 .(“希望杯”邀请赛试题)15.如图,D 、G 是ΔABC 中AB 边上的任意两点,DE ∥BC ,GH ∥DC ,则图中相等的角共有( ).A ,4对B .5对C .6对D .7对(“数学新蕾”竞赛题)16.如图,若AB ∥CD ,则( ).A .∠1=∠2+∠3B .∠1=∠3一∠2C .∠1+∠2+∠3=180° ∠l 一∠2十∠3=180°17.如图,AB ∥CD ∥EF ,EH ⊥CD 于H ,则∠BAC+∠ACE+∠CEH 等于( ).A .180°B .270°C . 360°D . 450°18.如图,AB ∥EF ,∠C =90°,则α、β和γ的关系是( ).A . β=α+γB .α+β+γ=180°C .α+β-γ=180°D .β+γ-α=180°19.如图,已知AB ∥CD,P 为HD 上任意一点,过P 点的直线交HF 于O 点,试问:∠HOP 、∠AGF 、∠HPO 有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.21.平面上有7条不同的直线,如果其中任何三条直线都不共点.(1)请画出满足上述条件的一个图形,并数出图形中各直线之间的交点个数;(2)请再画出各直线之间的交点个数不同的图形(至少两个);(3)你能否画出各直线之间的交点个数为n的图形,其中n分别为6,2l,15?(4)请尽可能多地画出各直线之间的交点个数不同的图形,从中你能发现什么规律?22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE 平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.23、四边形ABCD中,∠A =140,∠D =80.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE AD∥,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.DB A EDBAEDBAC图2图1第23题图3。
相交线与平行线技巧及练习题含答案一、选择题1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.2.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.7.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.8.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p,q)为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A .37.5°B .75°C .50°D .65°【答案】D【解析】【分析】 先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE 在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a∴S △ODE 22 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2122=142 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.17.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .18.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°【答案】B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;。
相交线与平行线100题一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.43.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠58.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3 14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.828.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN 32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE=.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=°,∠AOE=°.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度;若OF平分∠DOB,则∠EOF的度数是度.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=度.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是.55.看图填空:(1)∠1和∠4是角;(2)∠1和∠3是角;(3)∠2和∠D是角;(4)∠3和∠D是角;(5)∠4和∠D是角;(6)∠4和∠B是角.56.如图所示,AB与BC被AD所截得的内错角是;DE与AC被AD所截得的内错角是;∠1与∠4是直线被直线截得的角,图中同位角有对.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有对对顶角.58.(2014春•富顺县校级期末)如图所示,同位角一共有对,内错角一共有对,同旁内角一共有有对.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有对.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有个.61.如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于和.62.(2014春•东城区期末)如图,直线a,b被直线c所截,现给出四个条件:①∠1=∠5;②∠2=∠7;③∠2+∠8=180°;④∠4=∠7.其中能说明a∥b的条件序号为.63.(2014•湘潭)如图,直线a、b被直线c所截,若满足,则a、b平行.64.(2011•开县校级模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A=.65.(2014春•丰城市校级期中)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.66.(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.67.(2014春•兴业县期末)如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是.68.(2011秋•东营期末)如图,若AB∥DE,BC∥FE,∠E+∠B=度.69.(2009•沙坪坝区校级模拟)如图,EF∥GH,点A在EF上,AP,AQ分别交GH于点B、C,且AP⊥AQ,∠PBG=35°,则∠FAC=.70.(2012•温州模拟)如图,AB∥CD,CD∥EF,∠A=110°,∠E=30°,则∠ACE=.71.(2012•开县校级模拟)如图,直线a∥b,直线m分别交a、b于A、B两点,CB⊥m,垂足为B,若∠1=25°,则∠2=.72.(2014•广东模拟)将三角板ABC按如图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且CF恰好平分∠ACB.若∠CBA=30°,则∠DAC的度数是.73.如图,如果AB∥EF,BC∥DE,那么∠E和∠B满足的关系.74.如图,直线a∥b,∠1=72°,∠2=130°,那么∠3+∠4=.75.(2009•荆州校级模拟)如图,a∥b,∠1=105°,∠2=140°,则∠3的度数是.76.(2012•湛江模拟)如图所示,AB平行CD,AE与CE相交于点E,∠BAE=30°,∠DCE=40°.∠1=,∠2=.77.(2014•孝南区校级模拟)如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=度.78.(2011•北京模拟)如图,已知AB∥CD,BE平分∠ABC,∠CDE=140°,则∠C=.79.(2013•深圳模拟)如图,AB∥CD,∠CFE=112°,ED平分∠BEF,交CD于D,则∠EDF=度.80.(2012•河南模拟)如图直线a与直线b平行,则|x﹣y|的值是.81.(2013秋•云阳县期末)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.82.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.83.(2009•荆州二模)如图,直线MN∥PQ,∠ABM=30°,∠D=40°,∠EFQ=70°,则∠C+∠E=.84.(2011•鸠江区校级自主招生)如图,DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,则∠B=度.85.(2009•琼海模拟)如图,∠1=∠2,要判断AB∥DF,需要增加条件.86.(2013秋•翠屏区校级期末)将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有(填序号).87.(2012•诸城市校级模拟)如图,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE 的面积为.88.(2012春•盐都区期末)如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=度.89.(2014•鹿城区校级二模)如图,在四边形纸片ABCD中,∠A=100°,∠C=40°,现将其右下角向内翻折得△FGE,折痕为EF,恰使GF∥CD,GE∥AD,则∠B=度.90.如图(1)是长方形纸条,将纸条沿EF折叠成图(2),再沿AF折叠成图(3),已知图(3)中的∠CFE=120°,则图(1)中∠DEF的度数是.三.解答题(共10小题)91.(2014•益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.92.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠2=∠3(已知),∴∥()(2)∵∠2=∠5(已知),∴∥()(3)∵∠2+∠1=180°(已知),∴∥()(4)∵∠5=∠3(已知),∴∥()(5)∵∠4+∠6=180°(已知),∴∥()(6)∵AB∥CD,AB∥EF(已知),∴∥()93.如图,∠PCN=45°,直线CP与CN分别交AQ、EF于点B、D,∠ABC=20°,∠CDE=25°,试说明:AQ∥EF.94.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.95.如图所示,两平面镜OM、ON的夹角为∠θ,入射光线AB沿着与镜面ON平行的方向照射到镜面OM上,经过两次反射后的反射光线CD平行于镜面OM,求∠θ的度数.96.如图,已知∠3+∠DCB=180°,∠1=∠2,∠CME:∠GEM=4:5,求∠CME的度数.97.如图,已知BD∥AC,CE∥BA,且D、A、E在同一条直线上,设∠BAC=x,∠D+∠E=y.(1)试用x的一次式表示y;(2)当x=90°,且∠D=2∠E时,DB与EC具有怎样的位置关系?98.(1)阅读填空:如图1,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则∠B=∠1【】又∵AB∥DE,AB∥CF,∴CF∥DE∴∠E=∠2【】∴∠B+∠E=∠1+∠2,即∠B+∠E=∠BCE.(2)应用解答:观察上面图形与结论,解决下面的问题:如图2,∠DAB+∠B+∠BCE=360°,作∠BCF=∠BCG,CF与∠BAH的平分线交于F,若∠F的余角等于2∠B的补角,求∠BAH的度数.(3)拓展深化:如图3,在前面的条件下,若点P是AB上一点,Q是GE上任一点,QR平分∠PQR,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变,可以证明,只有一个是正确的,请你做出正确的选择并求值.99.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF 的关系(不要求证明).100.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.相交线与平行线100题参考答案与试题解析一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.4解答:解:平面内两两相交的三条直线,最多有3个交点,最少有1个交点,即m=3,n=1,∴m+n=4.故选D.3.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个解答:解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角解答:解:∵∠DOE=90°,∴∠EOC=90°,即∠AOC+∠AOE=90°,∵∠AOC=∠DOB,∴∠DOB+∠AOE=90°,即∠AOE与∠DOB互余.故选C.6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°解答:解:根据对顶角相等,可知∠2=60°∠4=30°.由平角的定义知,∠3=180°﹣∠2﹣∠4=90°,所以∠1=∠3=90°.故选D.7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5解答:解:∠1的同位角是∠5,故选:D.8.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°解答:解:A、∵CD∥AB,AB⊥MN,∴CD⊥MN.B、∵∠CFE=∠AEM,∴CD∥AB(同位角相等,两直线平行).∵AB⊥MN,∴CD⊥MN.C、∵∠CFE+∠AEF=180°,∴CD∥AB,(同旁内角互补两直线平行)∵AB⊥MN,∴CD⊥MN.D、∵∠CFE与∠CFN是邻补角,当然有∠CFE+∠CFN=180°,不能得到CD⊥MN.故选D.9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°解答解:∵∠A=135°,∠B=45°,∴∠A+∠B=135°+45°=180°,∴AD∥BC.故选:A.11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离解答:解:A、对顶角的角平分线成180°的角,它们互为反向延长,所以A选项的说法正确;B、在同一平面内,垂直于同一直线的两条直线互相平行,所以B选项的说法正确;C、如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,所以C选项的说法正确;D、同时垂直于两条平行线,并且夹在这两条平行线间的线段长叫做这两条平行线的距离,所以D选项的说法错误.故选D.12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个解答:解:①只有两直线平行,同位角才相等,故本小题错误;②凡直角都相等,正确;③根据定义,一个角的余角比补角小90°,所以一个角的余角一定比它的补角小,正确;④在直线、射线和线段中,只有线段有长短,直线是向两方无限延伸的,没有长度,故本小题错误;⑤两点之间的线段的长度就是这两点间的距离,正确;⑥如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故本小题错误;所以,正确的有②③⑤共3个.故选D.13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3解答:解:A、由MA∥NB,能够得到∠1+∠2=∠3+∠4(两直线平行,同位角相等),若∠1,∠2的大小不确定,则不能判定∠1=∠3;故A错误.B、因为∠2=∠4,则MC∥ND(同位角相等,两直线平行);故B正确.C、由∠1=∠3,不能判定MA∥NB,因为∠1、∠3不是NB、MA两直线截得的同位角;故C错误.D、由MC∥ND,可得∠2=∠4,而不能得到∠1=∠3;故D错误.故选B.14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等解答:解:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠EBC=∠BCF,∴∠ABE=∠FCD.故选:B.15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个解答:解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选B.16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断解答:解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE =S△ABD=5.故选:B.17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故选:B.18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°解答:解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度解答:解:A、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AB=CD,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵AB是线段,∴A、B两点间距离就是线段AB的长度,故本选项正确;D、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误.故选D.21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°解答:解:∵∠1=120°,∠2=60°,120°+60°=180°,∴这两个角所在的两条直线平行,∴∠4=∠3=65°.故本题选C.22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°解答:解:∵∠1=∠2,2=∠5(对顶角相等)∴∠1=∠5,∴a∥b,(内错角相等,两直线平行)∴∠4=∠3=60°,故选C.23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°解答:解:∵AC⊥CD,ED⊥CD,∴∠C=∠D=90°,∴AC∥DE,∴∠CAE=∠DEF=25°,∵AB∥EF,∠BAE=10°,∴∠BAE=∠CEF=10°,∴∠DEF=∠DEA+∠CEA=25°+10°=35°,故选B.24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°解答:解:∵∠1=100°,∠3:∠1=6:5,∴∠3=120°.∵∠1=100°,∠2=100°,即∠1=∠2,∴a∥b,∴∠4=∠3=120°.故选C.25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°解答:解:∵∠1与∠3互余,∠2与∠3的余角互补,∴∠1+∠3=90°,∠2+(90°﹣∠3)=180°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠5=180°,又∵∠5=∠4=115°,∴∠3=180°﹣115°=65°.故选C.26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°解答:解:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠BCF,∴EB∥CF,∴∠F=∠E=50°.故选B.27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.8解答:解:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.28.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°解答:解:∵AB∥CD,∴∠BFD=∠B=110°.又∵∠D=∠E,∴∠D=110°÷2=55°.故选C29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°解答:解:∵在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=40°由对称性可知∠GEF=∠DEF=40°.∴∠AEG=180°﹣∠GEF﹣∠DEF=100°.故选C.30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°解答:解:∵∠BCD=50°,CA平分∠BCD,∴∠BCA=∠BCD=25°,∵AD∥BC,∴∠CAD=∠BCA=25°;∵∠B=80°,∴∠BAC=180°﹣∠B﹣∠BCA=75°.故选:A.31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN解答:解:A、由∠1=∠2可得FN∥EM;故结论正确;B、由AB∥CD可得∠BED=∠CFE,由A证得的结论可推得:∠MEB=∠NFC;故结论正确;C、由AB∥CD可得∠AEF+∠CFE=180°,故原结论错误;D、由AB∥CD可得∠AEF=∠DFE,由A证得的结论可推得:∠AEM=∠DFC;故结论正确.故选C.32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°解答:解:∵AB∥CD,∠C=60°,∴∠BOC=∠C=60°,∴∠AOC=180°﹣∠BOC=180°﹣60°=120°,∵OE平分∠AOC,∴∠BOC=∠AOC=×120°=60°,∵OE⊥OF,∴∠COF=90°﹣60°=30°,∴∠BOF=∠BOC﹣∠COF=60°﹣30°=30°.故选B.33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°解答:解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C、∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D、∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°解答:解:∵l1∥l2,∠3=∠1,∴∠2=∠6,∠3+∠6=180°,即∠1+∠6=180°,选项C错误;而AB与AC不平行,故∠5≠∠6,即∠5+∠1≠180°,选项A错误;∠4+∠6≠180°,即∠4+∠2>180°,选项B正确,选项D错误;故选B35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°解答:解:如图,分别过点C,D作AB的平行线CG,DH,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故选D.36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选C.37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°解答:解:过点E作EF∥AB∴∠α+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FED=∠EDC(两直线平行,内错角相等)∵∠β=∠AEF+∠FED又∵∠γ=∠EDC(已知)∴∠α+∠β﹣∠γ=180°.故选A.38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD,∴∠AEM=α,∠CFN=β,∠FEM+∠EFN=180°,∴∠EFN=γ﹣β,∴∠FEM=180°﹣∠EFN=180°﹣γ+β,∴θ=∠AEM+∠FEM=α+(180°﹣γ+β)=180°+α+β﹣γ.故选A.39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°解答:解:作CM∥AB,DN∥AB,由AB∥EF,得到AB∥CM∥DN∥EF,∴∠ABC=∠BCM=30°,∠DEF=∠GDE=45°,∠MCD=∠CDG,∵BC⊥CD,∴∠BCD=90°,∴∠MCD=∠CDG=60°,∴∠CDE=∠CDG+∠GDE=105°.故选A41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°解答:解:如图,延长CD,∵EF∥CD,∴∠4=180°﹣∠3,∵AB∥CD,∴∠1=∠2+∠4,∴∠1=∠2+180°﹣∠3,整理得,∠1﹣∠2+∠3=180°.故选A.43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°解答:解:∵∠AFE=180°﹣∠1=180°﹣155°=25°,又∵EF∥AC,∴∠CAF=∠AFE=25°,∵AF是∠BAC的平分线,∴∠BAC=2∠CAF=50°,∵EF∥AC,∴∠BEF=∠BAC=50°.故选A.44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°解答:解:延长FC,AB,交于点E,如图所示,∵AD∥CE,∴∠A=∠E=110°,∵∠ABC为△BCE的外角,∴∠BCE=∠ABC﹣∠E=40°,∴∠BCF=140°.故选C45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④解答:解:①中,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠DCA的平分线相交于点G,∴∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,∵∠GAC+∠GCA+AGC=∠180°,∴AG⊥CG;②中,根据等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;③中,根据三角形的面积公式,∵AF=CF,∴S△AFG =S△CFG;④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180°.又∵∠EGH:∠ECH=2:7,∴∠EGH=180°×=40°,∠ECH=180°×=140°.∵CG平分∠ECH,∴∠FCG=∠ECH=70°,根据直角三角形的两个锐角互余,得∠EGC=20°.∵FG=FC,∴∠FGC=∠FCG=70°,∴∠EGF=50°.故上述四个都是正确的.故选D.二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=15°.解答:解:∵OA⊥OB,∠BOE=2∠AOE.∴∠AOE=30°,∴∠AOF=180°﹣∠AOE=180°﹣30°=150°,∵OC平分∠AOF,∴∠AOC=75°,∴∠BOD=180°﹣∠BOA﹣∠AOC=180°﹣90°﹣75°=15°故答案为:15°.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE= 25°.解答:解:∵OG⊥AD,∴∠GOD=90°,∵∠EOF=∠BOC=35°,又∵∠FOG=30°,∴∠DOE=∠GOD﹣∠EOF﹣∠GOF=90°﹣35°﹣30°=25°,故答案为:25°.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=20°,∠AOE= 140°.解答:解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=60°,∵∠1=2∠2,∠1+∠2=60°,∴∠2=20°;∵∠AOC+∠BOD=180°,∴∠BOD=180°﹣∠AOC=120°,∵∠AOE=∠AOD+∠EOD=120°+20°=140°,故答案为:20,140.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= 52度,∠COB=128度.解答:解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为115°.解答:解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∵OP平分∠AOD,∴∠POD=∠AOD=×130°=65°,∴∠COP=180°﹣∠POD=180°﹣65°=115°.故答案为:115°.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=35度;若OF平分∠DOB,则∠EOF的度数是107.5度.解答:解:∵OE⊥AB,∠1=55°,∴∠AOC=90°﹣∠1=90°﹣55°=35°,又∵∠BOD=∠AOC,∴∠BOD=35°;∵OE⊥AB,∴∠EOB=90°,又∵OF平分∠DOB,∴∠BOF=∠DOB=×35°=17.5°,∠EOF=∠EOB+∠BOF=90°+17.5°=107.5°.故答案分别为:35°;107.5°.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为∠1<∠3<∠2.解答:解:根据图形,∠1=180°﹣60°﹣70°=180°﹣130°=50°,根据对顶角相等,∠2=70°,∠3=60°,所以∠1<∠3<∠2.故答案为:∠1<∠3<∠2.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=120度.解答:解:设∠α=x,则∠β=3x,根据题意得:解得:,解得:x=40°,∴∠β=3x=120°,故答案为:120.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴过点A作河岸的垂线段,理由是垂线段最短.55.看图填空:(1)∠1和∠4是邻补角;(2)∠1和∠3是对顶角;(3)∠2和∠D是内错角;(4)∠3和∠D是同旁内角;(5)∠4和∠D是同位角;(6)∠4和∠B是同位角.解答:解:(1)∠1和∠4是邻补角,故答案为:邻补;(2)∠1和∠3是对顶角,故答案为:对顶;(3)∠2和∠D是内错角,故答案为:内错;(4)∠3和∠D是同旁内角,故答案为:同旁内;(5)∠4和∠D是同位角,故答案为:同位;(6)∠4和∠B是同位角,故答案为:同位.56.如图所示,AB与BC被AD所截得的内错角是∠1与∠3;;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有6对.解答:解:,AB与BC被AD所截得的内错角是∠1与∠3;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有4对,故答案为:∠1与∠3,∠2与∠4,AE、ED,AD,6.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有4对对顶角.解答:解:如图,在顶点H处有2对对顶角,在顶点C处有2对对顶角,所以,共有2+2=4对对顶角.故答案为:4.58.(2014春•富顺县校级期末)如图所示,同位角一共有6对,内错角一共有4对,同旁内角一共有有4对.解答:解:同位角一共有6对,分别是∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;内错角一共有4对,分别是∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9;同旁内角一共有4对,分别是∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9.故答案为:6,4,4.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有3对.解答:解:观察图形可知:∠1的同位角是∠4,∠3的同位角是,5,∠7的同位角是∠6,∴图中同位角有3个.故答案为:3.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有5个.。
5. ________________________________________________________________________ 如图,DB// FG// EC, / ACE=36 , AP 平分/ BAC / PAG=12 ,则/ ABD= _________________ 度.6. 已知:如图, DG!BC, AC 丄BC, EF 丄AB, / 1=/ 2,求证:CDL AB.7. 如图,已知/ 1+/2=180° , / 3=/ B,试判断/ AED 与/ ACB 的大小关系, 并说明理由.1.如图,将三角板的直角顶点放在直角尺的一边上, 则/ 3的度数为( )A 80B 50C 30D 20 / 仁30°,2. 将一个直角三角板和一把直尺如图放置,如果/a =43°,则数是( ) A 43° B 47° C 、30° D 60° 3. 如图,直线a // b ,那么/ x 的度数是 _____________ .4. 如图,AB// CD / ABF=/ DCE 试说明:/ BFE=Z FEC5.如图,已知 AB//CD , BE 平分 ABC DE 平分 ADC(1)求 EDO 的度数;(2)若 BCD=40,试求 BAD=7(O , BED 的度数.8. 如图,已知/ 1 = / 2,/ 3=/ 4,/ 5=/ 6,试判断ED与FB的位置关系,并说明为什么.9. 如图,/ 1+/2=180°,/ DAE/ BCF DA平分/ BDF(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分/ DBE吗?为什么?10. 四边形ABCD中,/ B= / D=90 ° AE、CF分别是/ BAD和/ DCB的内角平分线和外角平分线,(1 )分别在图1、图2、图3下面的横线上写出AE与CF的位置关系;13•如图,已知 / HDC与/ ABC互补,/ HFD= / BEG , / H=20 °求/ G的度数.16•如图,点E、F、M、N 分别在线段AB、AC、BC 上,/ 1+ / 2=180° Z 3= / B,判断/ CEB 与/ NFB是否相等?请说明理由.17•如图,已知0A // BE, OB平分/AOE , / 4= / 5, / 2与/3互余;那么DE和CD有怎样的位置关系?为什么?18. 如图,DH交BF于点E, CH交BF于点G, /仁/ 2, / 3= / 4, / B= / 5 .试判断CH 和DF的位置关系并说明理由.19•如图,已知 / 3= / 1 + / 2,求证:/ A+ / B+ / C+Z D=180 °20 如图,已知:点A 在射线BG 上,Z 1 = Z 2, Z 1+ Z 3=180° Z EAB= Z BCD . 求证:EF// CD .21. 如图,六边形ABCDEF 中,Z A= Z D, Z B= Z E, CM 平分Z BCD 交AF 于M , FN 平分Z AFE交CD于N .试判断CM与FN的位置关系,并说明理由.__F22. 如图,在四边形ABCD中,AB // CD,点E、F分别在AD、BC边上,连接AC交EF于G, Z 1 = Z BAC .(1)求证:EF / CD ;(2 )若/ CAF=15 ° Z 2=45 ° Z 3=20 ° 求Z B 和Z ACD 的度数.23. 如图,在梯形ABCD中, AD// BC, AD=6cm CD=4cm BC=BD=10cm 点P 由B 出发沿BD方向匀速运动,速度为1cm/s ;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s ,交BD于Q连接PE若设运动时间为t( s)( O v t v 5).解答下列问题:(1 )当t为何值时,PE// AB(2)设厶PEQ的面积为y (cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使处PEQ=225S\ BCD若存在,求出此时t的值;若不存在,说明理由;(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生1•如图,要把角钢<112.如图,把矩形沿EF对折后使两部分重合,若 1 50°则AEF =()3•如图,将三角尺的直角顶点放在直尺的一边上, 1 30° 2 50°,贝U 3的度数等于( )4. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果/ 仁32o,那么/ 2的度数是( )5. 如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与/ 2互余的角是第5题第6题6. 光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角,即/ 1 = Z 6,Z 5=Z 3,/ 2=Z 4。
相交线与平行线测试题及答案难一、选择题1. 在同一平面内,两条直线的位置关系是()。
A. 相交或平行B. 相交或重合C. 平行或重合D. 相交、平行或重合答案:D2. 如果两条直线都与第三条直线平行,那么这两条直线的关系是()。
A. 相交B. 平行C. 重合D. 不确定答案:B3. 两条直线相交成90度角,这两条直线是()。
A. 相交线B. 垂直线C. 平行线D. 异面直线答案:B二、填空题4. 如果两条直线都与第三条直线相交,且交角相等,则这两条直线()。
答案:平行5. 在平面几何中,如果两条直线不相交,则它们被称为()。
答案:平行线三、判断题6. 两条平行线被第三条直线所截,同位角相等。
()答案:正确7. 垂直于同一直线的两条直线一定平行。
()答案:错误四、解答题8. 已知直线AB与直线CD相交于点O,且∠AOB=90°,求证:AB⊥CD。
证明:因为∠AOB=90°,所以AB与CD相交成直角,根据垂直的定义,AB⊥C D。
9. 若直线m平行于直线n,直线n平行于直线p,求证:直线m平行于直线p。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
因此,直线m平行于直线p。
五、综合题10. 在平面直角坐标系中,直线l1的方程为y=2x+3,直线l2的方程为y=-x+5,求证:l1与l2相交。
证明:首先,我们可以将两个方程联立求解。
\begin{cases}y = 2x + 3 \\y = -x + 5\end{cases}将第一个方程中的y代入第二个方程,得到:2x + 3 = -x + 5解得:x = 1将x=1代入任意一个方程求得y,例如第一个方程:y = 2(1) + 3 = 5因此,l1与l2的交点为(1,5),所以l1与l2相交。
11. 已知直线l1平行于直线l2,直线l2平行于直线l3,求证:直线l1平行于直线l3。
证明:根据平行公理,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
相交线与平行线一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个B.2个 C.1个 D.0个3.如图所示,同位角共有()A.6对B.8对 C.10对D.12对二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成块.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3= .7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.评卷人得分三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB ∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D 在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF= .(用含x的代数式表示)②求∠AOC的度数.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH ﹣∠BOD=90°,求证:OE∥GH.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴∥()(2)∵∠DBE=∠CAB(已知)∴∥()(3)∵∠ADF+=180°(已知)∴AD∥BF()27.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.28.将一副三角板拼成如图所示的图形,∠DCE的平分线CF交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.29.看图填空,并在括号内注明说理依据.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以∥().又因为AC⊥AE(已知),所以∠EAC=90°.()所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2= °.所以∠EAB=∠FBG().所以∥(同位角相等,两直线平行).30.已知如图所示,∠B=∠C,点B、A、E在同一条直线上,∠EAC=∠B+∠C,且AD平分∠EAC,试说明AD∥BC的理由.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.33.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()34.已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.35.已知:如图,AB∥CD,FE⊥AB于G,∠EMD=134°,求∠GEM的度数.36.如图,∠B和∠D的两边分别平行.(1)在图1 中,∠B和∠D的数量关系是,在图2中,∠B和∠D 的数量关系是;(2)用一句话归纳的命题为:;并请选择图1或图2中一种情况说明理由;(3)应用:若两个角的两边分别互相平行,其中一个角是另一个角的2倍,求这两个角的度数.37.已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°.①求证:∠ABC=∠ADC;②求∠CED的度数.38.如图,已知a∥b,ABCDE是夹在直线a,b之间的一条折线,试研究∠1、∠2、∠3、∠4、∠5的大小之间有怎样的等量关系?请说明理由.39.如图,AB∥DC,增加折线条数,相应角的个数也会增多,∠B,∠E,∠F,∠G,∠D之间又会有何关系?40.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED 之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.41.(1)如图,直线a,b,c两两相交,∠3=2∠1,∠2=155°,求∠4的度数.(2)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数.42.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DA B=90°.()∴∠CDA=∠DAB.(等量代换)又∠1=∠2,从而∠CDA﹣∠1=∠DAB﹣.(等式的性质)即∠3= .∴DF∥AE.().43.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)说明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.(3)若将折线继续折下去,折三次,折四次…折n次,又会得到怎样的结论?请写出你的结论.44.如图,已知∠1=60°,∠2=60°,∠MAE=45°,∠FEG=15°,EG平分∠AEC,∠NCE=75°.求证:(1)AB∥EF.(2)AB∥ND.45.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的角平分线.求证:DF∥AB.46.已知,直线AB∥CD,E为AB、CD间的一点,连结EA、EC.(1)如图①,若∠A=30°,∠C=40°,则∠AEC= .(2)如图②,若∠A=100°,∠C=120°,则∠AEC= .(3)如图③,请直接写出∠A,∠C与∠AEC之间关系是.47.如图,已知AB∥CD,EF⊥AB于点G,若∠1=30°,试求∠F的度数.48.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,如图两幅图都是由同一副三角板拼凑得到的:(1)请你计算出图1中的∠ABC的度数.(2)图2中AE∥BC,请你计算出∠AFD的度数.49.如图,将一张矩形纸片ABCD沿EF对折,延长DE交BF于点G,若∠EFG=50°,求∠1,∠2的度数.50.如图所示,在长方体中.(1)图中和AB平行的线段有哪些?(2)图中和AB垂直的直线有哪些?参考答案及解析一.选择题(共3小题)1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A【点评】灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有()A.3个B.2个 C.1个 D.0个【分析】由OE⊥AB,OF⊥CD可知:∠AOE=∠DOF=90°,而∠1、∠AOF都与∠EOF互余,可知∠1=∠AOF,因而可以转化为求∠1和∠AOF的余角共有多少个.【解答】解:∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,即∠AOF+∠EOF=∠EOF+∠1,∴∠1=∠AOF,∴∠COA+∠1=∠1+∠EOF=∠1+∠BOD=90°.∴与∠1互为余角的有∠COA、∠EOF、∠BOD三个.故选A.【点评】本题解决的关键是由已知联想到可以转化为求∠1和∠AOF的余角.3.如图所示,同位角共有()A.6对B.8对 C.10对D.12对【分析】在基本图形“三线八角”中有四对同位角,再看增加射线GM、HN 后,增加了多少对同位角,求总和.【解答】解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,射线GM和直线CD被直线EF所截,形成2对同位角;射线GM和直线HN被直线EF所截,形成2对同位角;射线HN和直线AB被直线EF所截,形成2对同位角.则总共10对.故选C.【点评】本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.二.填空题(共4小题)4.一块长方体橡皮被刀切了3次,最多能被分成8 块.【分析】一块长方体橡皮被刀切了3次,最多能被分成23=8块.【解答】解:长方体橡皮可以想象为立体图形,第一次最多切2块,第二次在第一次的基础上增加2倍,第三次在第二次的基础上又增加2倍,故最多能被分成8块.【点评】本题考查了学生的空间想象能力,分清如何分得到的块数最多是解决本题的关键.5.如图,P点坐标为(3,3),l1⊥l2,l1、l2分别交x轴和y轴于A点和B点,则四边形OAPB的面积为9 .【分析】过P分别作x轴和y轴的垂线,交x轴和y轴与C和D.构造全等三角形△PDB≌△PCA(ASA)、正方形CODP;所以S四边形OAPB=S正方形ODPC=3×3=9.【解答】解:过P分别作x轴和y轴的垂线,交x轴和y轴于点C和D.∵P点坐标为(3,3),∴PC=PD;又∵l1⊥l2,∴∠BPA=90°;又∵∠DPC=90°,∴∠DPB=∠CPA,在△PDB和△PCA中∴△PDB≌△PCA(ASA),=S△PCA,∴S△DPBS四边形OAPB=S正方形ODPC+S△PCA﹣S△DPB,即S四边形OAPB=S正方形ODPC=3×3=9.故答案是:9.【点评】本题综合考查了垂线、坐标与图形性质、三角形的面积.解答此题时,利用了“割补法”求四边形OAPB的面积.6.如图,直线l1∥l2,∠1=20°,则∠2+∠3= 200°.【分析】过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.【解答】解:过∠2的顶点作l2的平行线l,如图所示:则l∥l1∥l2,∴∠4=∠1=20°,∠BAC+∠3=180°,∴∠2+∠3=180°+20°=200°;故答案为:200°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是75°.【分析】根据平行线的性质得到∠EDC=∠E=45°,根据三角形的外角性质得到∠AFD=∠C+∠EDC,代入即可求出答案.【解答】解:∵∠EAD=∠E=45°,∵AE∥BC,∴∠EDC=∠E=45°,∵∠C=30°,∴∠AFD=∠C+∠EDC=75°,故答案为:75°.【点评】本题主要考查对平行线的性质,三角形的外角性质等知识点的理解和掌握,能利用性质进行推理是解此题的关键,题型较好,难度适中.三.解答题(共43小题)8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB ∥CD,H,P分别为直线AB和线段EF上的点.(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.【分析】(1)首先作MQ∥AB,根据平行线的性质,推得∠M=(∠FHP+∠HFP);然后根据HP⊥EF,推得∠FHP+∠HFP=90°,据此求出∠M的度数即可.(2)①首先判断出∠NEQ=∠NEF+∠QEF=(∠HEF+∠DEF)=∠HED,然后根据NQ⊥EM,可得∠NEQ+∠ENQ=90°,推得∠ENQ=(180°﹣∠HED)=∠CEH,再根据AB∥CD,推得∠FHE=2∠ENQ即可.②首先判断出∠NEQ=∠QEF﹣∠NEF=(∠DEF﹣∠HEF)=∠HED,然后根据NQ⊥EM,可得∠NEQ+∠ENQ=90°,推得∠ENQ=(180°﹣∠HED)=∠CEH,再根据AB∥CD,推得∠FHE=180°﹣2∠ENQ即可.【解答】解:(1)如图1,作MQ∥AB,,∵AB∥CD,MQ∥AB,∴MQ∥CD,∴∠1=∠FHM,∠2=∠DEM,∴∠1+∠2=∠FHM+∠DEM=(∠FHP+∠FED)=(∠FHP+∠HFP),∵HP⊥EF,∴∠HPF=90°,∴∠FHP+∠HFP=180°﹣90°=90°,∵∠1+∠2=∠M,∴∠M=.(2)①如图2,,∠FHE=2∠ENQ,理由如下:∠NEQ=∠NEF+∠QEF=(∠HEF+∠DEF)=∠HED,∵NQ⊥EM,∴∠NEQ+∠ENQ=90°,∴∠ENQ=(180°﹣∠HED)=∠CEH,∵AB∥CD,∴∠FHE=∠CEH=2∠ENQ.②如图3,,∠FHE=180°﹣2∠ENQ,理由如下:∠NEQ=∠QEF﹣∠NEF=(∠DEF﹣∠HEF)=∠HED,∵NQ⊥EM,∴∠NEQ+∠ENQ=90°,∴∠ENQ=(180°﹣∠HED)=∠CEH,∵AB∥CD,∴∠FHE=180°﹣∠CEH=180°﹣2∠ENQ.综上,可得当H在直线AB上运动(不与点F重合)时,∠FHE=2∠ENQ或∠FHE=180°﹣2∠ENQ.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.9.我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.【分析】分别求出2条、3条、4条、5条、6条直线相交时最多的交点个数,找出规律即可解答.【解答】解:如图:2条直线相交有1个交点;3条直线相交有1+2个交点;4条直线相交有1+2+3个交点;5条直线相交有1+2+3+4个交点;6条直线相交有1+2+3+4+5个交点;…n条直线相交有1+2+3+4+5+…+(n﹣1)=个交点.【点评】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交有个交点.10.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数.(2)若∠EOC:∠EOD=4:5,求∠BOD的度数.【分析】(1)根据角平分线的定义求出∠AOC的度数,根据对顶角相等得到答案;(2)设∠EOC=4x,根据邻补角的概念列出方程,解方程求出∠EOC=80°,根据角平分线的定义和对顶角相等计算即可得到答案.【解答】解:(1)∵∠EOC=70°,OA平分∠EOC,∴∠AOC=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=4x,则∠EOD=5x,∴5x+4x=180°,解得x=20°,则∠EOC=80°,又∵OA平分∠EOC,∴∠AOC=40°,∴∠BOD=∠AOC=40°.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.11.如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?【分析】(1)、(2)根据平角的性质求得∠AOF,又有角平分线的性质求得∠FOC;然后根据对顶角相等求得∠EOD=∠FOC;∠BOE=∠AOB﹣∠AOE,∠BOD=∠EOD﹣∠BOE;(3)由(1)、(2)的结果找出它们之间的倍数关系.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);而∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);而∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α;(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.【点评】本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.12.如图1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D 在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.(1)若∠ADQ=130°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).【分析】(1)过点E作EF∥PQ,由平行线的性质及角平分线求得∠DEF和∠FEB,即可求出∠BED的度数,(2)过点E作EF∥PQ,由平行线的性质及角平分线求得∠DEF和∠FEB,即可求出∠BED的度数,【解答】解:(1)如图1,过点E作EF∥PQ,∵∠CBN=100°,∠ADQ=130°,∴∠CBM=80°,∠ADP=50°,∵DE平分∠ADC,BE平分∠ABC,∴∠EBM=∠CBM=40°,∠EDP=∠ADP=25°,∵EF∥PQ,∴∠DEF=∠EDP=25°,∵EF∥PQ,MN∥PQ,∴EF∥MN.∴∠FEB=∠EBM=40°∴∠BED=25°+40°=65°;(2)如图2,过点E作EF∥PQ,∵∠CBN=100°,∴∠CBM=80°,∵DE平分∠ADC,BE平分∠ABC,∴∠EBM=∠CBM=40°,∠EDQ=∠ADQ=n°,∵EF∥PQ,∴∠DEF=180°﹣∠EDQ=180°﹣n°,∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=40°,∴∠BED=180°﹣n°+40°=220°﹣n°.【点评】本题主要考查了平行线的性质,运用角平分线与平行线的性质相结合来求∠BED解题的关键.13.如图,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=26°(1)求∠2的度数(2)若∠3=19°,试判断直线n和m的位置关系,并说明理由.【分析】(1)根据平角等于180°,列式计算即可得解;(2)根据三角形的外角性质求出∠4,然后根据同位角相等,两直线平行解答.【解答】解:(1)∵∠ACB=90°,∠1=26°,∴∠2=180°﹣∠1﹣∠ACB,=180°﹣90°﹣26°,=64°;(2)结论:n∥m.理由如下:∵∠3=19°,∠A=45°,∴∠4=45°+19°=64°,∵∠2=64°,∴∠2=∠4,∴n∥m.【点评】本题考查了平行线的判定与性质,三角形外角性质的运用,熟练掌握平行线的判定方法与性质是解题的关键.14.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.15.如图,已知AB∥PN∥CD.(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.【分析】(1)由平行线的性质得出∠ABC=∠BMN=∠BCD,∠CPN+∠PCD=180°,即可得出结论;(2)由(1)的结论代入计算即可.【解答】解:(1)∠ABC﹣∠BCP+∠CPN=180°;理由如下:延长NP交BC于M,如图所示:∵AB∥PN∥CD,∴∠ABC=∠BMN=∠BCD,∠CPN+∠PCD=180°,∵∠PCD=∠BCD﹣∠BCP=∠ABC﹣∠BCP,∴∠ABC﹣∠BCP+∠CPN=180°.(2)由(1)得:∠ABC﹣∠BCP+∠CPN=180°,则∠BCP=∠ABC+∠CPN﹣180°=155°+42°﹣180°=17°.【点评】本题考查了平行线的性质;熟记平行线的性质是解决问题的关键.16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.【分析】(1)根据平行线的性质和等量关系可得∠EAD+∠D=180°,根据同旁内角互补,两直线平行即可证明;(2)根据平行线的性质可得∠AEB=∠C,根据三角形内角和定理和等量关系即可得到∠B的度数.【解答】(1)证明:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∴∠AEB=∠C,∵∠FEC=∠BAE,∴∠B=∠EFC=50°.【点评】考查了平行线的判定和性质,三角形内角和定理,解题的关键是证明AE∥CD.17.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【分析】(1)首先作EF∥AB,根据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.(2)首先作EF∥AB,即可判断出∠B=∠1;然后根据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再根据EF∥AB,可得AB∥CD,据此判断即可.(3)首先过E作EF∥AB,即可判断出∠BEF+∠B=180°,然后根据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.(4)首先根据AB∥CD,可得∠B=∠BFD;然后根据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.(5)首先作EM∥AB,FN∥AB,GP∥AB,根据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,所以∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;然后根据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.【解答】解:(1)如图1,作EF∥AB,,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图2,作EF∥AB,,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图3,过E作EF∥AB,,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图4,,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.(5)如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.18.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=∠BEP,∠DFQ=∠DFP,推得∠Q=×(360°﹣∠P),即可判断出∠P+3∠Q=360°.(4)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=∠BEP,∠DFQ=∠DFP,推得∠Q=×(360°﹣∠P),即可判断出∠P+n∠Q=360°.【解答】(1)证明:如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+3∠Q=360°.(4)由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+n∠Q=360°.故答案为:∠P+n∠Q=360°.【点评】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.19.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.【分析】设∠1=x,根据题意表示出∠2,再表示出∠3,然后根据邻补角的和等于180°列式求出x,再根据对顶角相等求出∠4即可.【解答】解:设∠1=x,则∠2=x,∠3=8x,依题意有x+x+8x=180°,解得x=18°,则∠4=18°+18°=36°.故∠4的度数是36°.【点评】本题考查了对顶角、邻补角的定义,准确识图,设出未知数并列出方程是解题的关键.20.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【分析】根据同位角相等,两直线平行证明OB∥AC,根据同旁内角互补,两直线平行证明OA∥BC.【解答】解:OA∥BC,OB∥AC.∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.【点评】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.21.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;(2)若OF平分∠COE,∠BOF=15°,若设∠AOE=x°.①则∠EOF= .(用含x的代数式表示)②求∠AOC的度数.【分析】(1)由对顶角的性质可知∠BOD=70°,从而可求得∠FOB=20°,由角平分线的定义可知∠BOE=∠BOD,最后根据∠EOF=∠BOE+∠FOB 求解即可;(2)①先证明∠AOE=∠COE=x,然后由角平分线的定义可知∠FOE=;②∠BOE=∠FOE﹣∠FOB可知∠BOE=x﹣15°,最后根据∠BOE+∠AOE=180°列出方程可求得x的值,从而可求得∠AOC的度数.【解答】解:(1)由对顶角相等可知:∠BOD=∠AOC=70°,∵∠FOB=∠DOF﹣∠BOD,∴∠FOB=90°﹣70°=20°,∵OE平分∠BOD,∴∠BOE=∠BOD=×70°=35°,∴∠EOF=∠FOB+∠BOE=35°+20°=55°,(2)①∵OE平分∠BOD,∴∠BOE=∠DOE,∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,∴∠COE=∠AOE=x,∵OF平分∠COE,∴∠FOE=x,故答案为:;②∵∠BOE=∠FOE﹣∠FOB,∴∠BOE=x﹣15°,∵∠BOE+∠AOE=180°,∴x﹣15°+x=180°,解得:x=130°,∴∠AOC=2∠BOE=2×(180°﹣130°)=100°.【点评】本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力.22.如图,直线AB、CD相交于点O,已知∠AOC=75°,OE把∠BOD分成两个角,且∠BOE:∠EOD=2:3.(1)求∠EOB的度数;(2)若OF平分∠AOE,问:OA是∠COF的角平分线吗?试说明理由.【分析】(1)根据对顶角相等求出∠BOD的度数,设∠BOE=2x,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF的度数即可.【解答】解:(1)设∠BOE=2x,则∠EOD=3x,∠BOD=∠AOC=75°,∴2x+3x=75°,解得,x=15°,则2x=30°,3x=45°,∴∠BOE=30°;(2)∵∠BOE=30°,∴∠AOE=150°,∵OF平分∠AOE,∴∠AOF=75°,∴∠COF=∠AOC,∴OA是∠COF的角平分线.【点评】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.23.如图,直线AB、CD相交于点O,∠AOC=72°,射线OE在∠BOD的内部,∠DOE=2∠BOE.(1)求∠BOE和∠AOE的度数;(2)若射线OF与OE互相垂直,请直接写出∠DOF的度数.【分析】(1)设∠BOE=x,根据题意列出方程,解方程即可;(2)分射线OF在∠AOD的内部和射线OF在∠BOC的内部两种情况,根据垂直的定义计算即可.【解答】解:(1)∵∠AOC=72°,∴∠BOD=72°,∠AOD=108°,设∠BOE=x,则∠DOE=2x,由题意得,x+2x=72°,解得,x=24°,∴∠BOE=24°,∠DOE=48°,∴∠AOE=156°;(2)若射线OF在∠BOC的内部,∠DOF=90°+48°=138°,若射线OF在∠AOD的内部,∠DOF=90°﹣48°=42°,∴∠DOF的度数是138°或42°.【点评】本题考查的是对顶角和邻补角的概念和性质以及垂直的定义,掌握对顶角相等、邻补角的和是180°是解题的关键.24.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH ﹣∠BOD=90°,求证:OE∥GH.【分析】(1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.25.如图,直线AB.CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【解答】解:(1)∵OE平分∠BOC,∠BOE=70°,∴∠BOC=2∠BOE=140°,∴∠AOC=180°﹣140°=40°,又∠COF=90°,∴∠AOF=90°﹣40°=50°;(2)∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°﹣36°=54°.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.26.几何推理,看图填空:(1)∵∠3=∠4(已知)∴CD ∥AB (内错角相等,两直线平行)(2)∵∠DBE=∠CAB(已知)∴AC ∥BD (同位角相等,两直线平行)(3)∵∠ADF+∠5 =180°(已知)∴AD∥BF(同旁内角互补,两直线平行)【分析】(1)由∠3=∠4根据平行线的判定推出CD∥AB;(2)由∠DBE=∠CAB,根据同位角相等,两直线平行得出答案;(3)根据同旁内角互补,两直线平行即可得到答案.【解答】解:(1)∵∠3=∠4(已知),∴CD∥AB(内错角相等,两直线平行),(2)∵∠DBE=∠CAB(已知),∴AC∥BD(同位角相等,两直线平行),(3)∵∠ADF+∠5=180°(已知),∴AD∥BF(同旁内角互补,两直线平行).故答案为:(1)AB∥CD,内错角相等,两直线平行,(2)AC∥BD,同位角相等,两直线平行,(3)∠5,同旁内角互补,两直线平行.【点评】本题主要考查对同位角,内错角,同旁内角,平行线的判定等知识点的理解和掌握,能识别同位角,内错角,同旁内角和利用平行线的判定进行证明是解此题的关键.。
1.如图,将三角板的直角极点放在直角尺的一边上,∠1=30°,∠2=50°,则∠ 3 的度数为()A、 80B、 50C、 30D、 202.将一个直角三角板和一把直尺如图搁置,假如∠α =43°,则∠ β的度数是()A、43°B、47°C、30°D、60°3.如图,直线 a∥ b,那么∠ x 的度数是_________ .4.如图, AB∥ CD,∠ ABF=∠ DCE。
试说明:∠ BFE=∠ FEC。
A BFEC D5. 如图,已知AB//CD, BE 均分ABC, DE均分ADC,O BAD=70,(1) 求EDC的度数; (2)若O BED的度数.BCD=40,试求5. 如图, DB∥FG∥ EC,∠ACE=36°, AP均分∠ BAC,∠PAG=12°,则∠ ABD= _________度.6.已知:如图, DG⊥BC, AC⊥BC, EF⊥AB,∠ 1=∠ 2,求证: CD⊥ AB.7.如图,已知∠ 1+∠2=180°,∠ 3=∠ B,试判断∠ AED与∠ ACB的大小关系,并说明原因.8.如图,已知∠ 1=∠2,∠ 3=∠ 4,∠ 5=∠ 6,试判断 ED与 FB 的地点关系,并说明为何.9. 如图,∠ 1+∠2=180°,∠ DAE=∠BCF,DA均分∠ BDF.(1) AE 与 FC会平行吗?说明原因.(2) AD与 BC的地点关系如何?为何?(3) BC均分∠ DBE吗?为何?10.四边形 ABCD 中,∠ B= ∠ D=90 °,AE 、CF 分别是∠ BAD 和∠ DCB 的内角均分线和外角均分线,(1)分别在图1、图 2、图 3 下边的横线上写出AE 与 CF 的地点关系;(2)选择此中一个图形,证明你得出的结论.11 已知,如图,∠1=∠ACB ,∠ 2=∠ 3, FH⊥AB 于 H.问 CD 与 AB 有什么关系?12.已知:如图,AE ⊥ BC, FG⊥ BC,∠ 1=∠ 2,求证: AB ∥ CD.13.如图,已知∠HDC 与∠ ABC 互补,∠ HFD= ∠ BEG ,∠ H=20 °,求∠ G 的度数.14.如图 AB ∥CD ,∠ 1=∠2,∠ 3=∠ 4,试说明AD ∥ BE.15.如图,∠ 1= ∠ 2,∠ 2=∠ G,试猜想∠ 2 与∠ 3 的关系并说明原因.16.如图,点 E、F、M 、N 分别在线段 AB 、AC 、BC 上,∠ 1+ ∠ 2=180°,∠ 3=∠ B,判断∠CEB 与∠ NFB 能否相等?请说明原因.17.如图,已知 OA ∥ BE,OB 均分∠ AOE ,∠ 4=∠ 5,∠ 2 与∠ 3 互余;那么 DE 和 CD 有如何的地点关系?为何?18.如图, DH 交 BF 于点 E, CH 交 BF 于点 G,∠ 1= ∠2,∠ 3=∠4,∠ B=∠ 5.试判断 CH 和DF 的地点关系并说明原因.19.如图,已知∠3=∠1+∠ 2,求证:∠ A+ ∠ B+ ∠ C+∠ D=180 °.20 如图,已知:点 A 在射线 BG 上,∠ 1=∠ 2,∠ 1+ ∠ 3=180°,∠ EAB= ∠ BCD .求证: EF∥ CD .21.如图,六边形 ABCDEF 中,∠ A= ∠ D,∠ B=∠ E,CM 均分∠ BCD 交 AF 于 M , FN 均分∠AFE 交 CD 于 N.试判断 CM 与 FN 的地点关系,并说明原因.22.如图,在四边形 ABCD 中, AB ∥ CD ,点 E、F 分别在 AD 、BC 边上,连结 AC 交 EF 于G,∠ 1=∠ BAC .(1)求证: EF∥ CD ;(2)若∠ CAF=15 °,∠ 2=45°,∠ 3=20 °,求∠ B 和∠ ACD 的度数.23. 如图,在梯形 ABCD中, AD∥BC, AD=6cm, CD=4cm, BC=BD=10cm,点 P 由 B 出发沿BD方向匀速运动,速度为 1cm/s ;同时,线段 EF 由 DC出发沿 DA方向匀速运动,速度为 1cm/s ,交 BD于 Q,连结 PE.若设运动时间为 t ( s)( 0< t < 5).解答以下问题:(1)当 t 为何值时, PE∥ AB;(2)设△ PEQ的面积为y( cm2),求 y 与 t 之间的函数关系式;(3)能否存在某一时辰t ,使 S△ PEQ=225S△ BCD?若存在,求出此时 t 的值;若不存在,说明原因;(4)连结 PF,在上述运动过程中,五边形PFCDE的面积能否发生变化?说明原因.1.如图,要把角钢(1)弯成 120°的钢架( 2),则在角钢( 1)上截去的缺口是____度。
A E1D2312B C1F第 1 题第 2 题第 3 题第 4 题2.如图,把矩形沿EF对折后使两部分重合,若 1 50°,则AEF =()3.如图,将三角尺的直角极点放在直尺的一边上, 1 30°, 2 50°,则 3 的度数等于()4.如图,把一块直角三角板的直角极点放在直尺的一边上,假如∠1=32o,那么∠ 2 的度数是()5. 如图,将直尺与三角尺叠放在一同,在图中标志的全部角中,与∠ 2 互余的角是.A435621a42B 1653C D第5题第6题6.光芒 a 照耀到平面镜CD上,而后在平面镜AB 和 CD之间往返反射,这光阴线的入射角等于反射角,即∠1=∠ 6,∠ 5=∠ 3,∠ 2=∠ 4。
若已知∠ 1=55°,∠ 3=75°,那么∠ 2 等于()适用文档7.、把一块直尺与一块三角板如图搁置,若∠A 、 115° B、 120° C、 145° D、 1351=45°,则∠2 的度数为()8、如图,将三角板的直角极点放在两条平行线的度数是()a、b 中的直线 b 上,假如∠1=40 °,则∠2 A 、 30° B 、45° C、 40° D 、 50°第 7 题第 8 题第 9 题第10题9、如图, l ∥ m,等腰直角三角形 ABC 的直角极点 C 在直线 m 上,若∠β=20 °,则∠ α的度数为()A 、 25°B 、30° C、 20° D 、 35°10、如图, AB ∥ EF∥ CD ,∠ ABC=46 °,∠ CEF=154°,则∠ BCE 等于()A 、 23°B 、16° C、 20° D 、 26°11、将一个直角三角板和一把直尺如图搁置,假如∠α =43 °,则∠ β的度数是()A 、 43°B 、47° C、 30° D 、 60°12、如图,已知L1∥ L2,MN 分别和直线l1 、l2 交于点 A 、B,ME 分别和直线l1、l2交于点 C、D,点 P 在 MN 上( P 点与 A、B、M 三点不重合).(1)假如点 P 在 A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数目关系请说明原因;(2)假如点 P 在 A 、B 两点外侧运动时,∠ α、∠β、∠γ有何数目关系(只须写出结论).13.如图( 6), DE ⊥ AB , EF∥AC ,∠ A=35 °,求∠ DEF 的度数。
14.如图 14,AD是CAB的角均分线, DE//AB ,DF // AC , EF 交 AD 于点 O .请问:(1) DO 是 EDF 的角均分线吗?假如是,请赐予证明;假如不是,请说明原因.(2)若将结论与AD是CAB的角均分线、 DE//AB、DF // AC 中的任一条件互换, ?所得命题正确吗?15. 如图, AB ∥ CD ,∠ 1=∠ 2,∠ 3=∠ 4。
试说明:AD ∥BE 。
A D16.如图,已知直线AB∥CD ,C125°, A 45°,那么 E 的大小为()(A)70°(B) 80°( C) 90°( D) 100°EADD ′CB FC′17. 图(二)中有四条相互不平行的直线L1、 L2、L3、 L 4所截出的七个角。
对于这七个角的度数关系,以下何者正确?A.2=4+7B。
3=1+6C.1+4+ 6=180D。
2+3+5=360 18.如下图,把一个长方形纸片沿EF 折叠后,点 D ,C 分别落在 D′,C′的地点.若∠ EFB= 65°,则∠ AED ′等于A. 70°B. 65° C .50° D . 25°19.平面上有 11 条直线,无任何三条交于一点,欲使它们出现36 个交点,如何安排才能办到?画出一种图形。
20.( a)请你在平面上画出 6 条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线订交,并简单说明画法。
( b)可否在平面上画出7 条直线(随意 3 条都不共点),使得它们中的每条直线都恰与另 3 条直线订交,假如能请画出一例,假如不可以请简述原因。
21.如下图,将一张长方形纸的一角斜折过去,使极点 A 落在 A ′处, BC 为折痕,假如BD 为∠ ABE 的均分线,则∠CBD= ()A.80°B.90°C.100°D.70°22.如图,直线AB ∥CD ,直线 EF 分别与 AB 、 CD 订交,则有()A .∠ 1+∠ 2﹣∠ 3=180 °B .∠ 1﹣∠ 2+∠3=180 °C.∠ 3+∠ 2﹣∠ 1=180° D .∠1+∠ 2+∠ 3=180°23.如图,光芒 a 照耀到平面镜CD 上,而后在平面镜AB 和 CD 之间往返反射,这光阴线的入射角等于反射角.若已知∠1=50°,∠ 2=55°,则∠ 3= _________°.24题25题26题24.如图, O 是直线 AB 上一点,已知∠1>∠ 2,那么∠ 2 与(∠ 1﹣∠ 2)之间的关系一定是_________.25.如图,将三角形的直角极点放在直尺的一边上,∠ 1=30°,∠ 3=20°,则∠ 2=_________.27.如图,把一块直角三角板的直角极点放在直尺的一边上,假如∠1=35°,那么∠ 2 是_________度.26.将一个直角三角板和一把矩形直尺按如图搁置,若∠α=54°,则∠ β的度数是_________.27.如图, AB ∥ CD,直线 EF 与 AB , CD 分别订交于E, F 两点, EP 均分∠ AEF ,过点 F 作 FP⊥ EP,垂足为 P,若∠ PEF=30°,则∠ PFC= _________ 度.28.如图 AB ∥ CD ,直线 EF 分别交 AB 、CD 于 E、F,且 EG 均分∠ AEF ,∠ 1=34 °,则∠2= _________ .29.如图,已知AE ∥ BD ,∠ 1=130°,∠ 2=30°,则∠ C= _________度.30.如图,△ABC 中,∠ ABC 与∠ ACB 的均分线订交于 D ,若∠ A=50 °,则∠ BDC=___度.31.平面上 5 个圆两两订交,最多有多少个不一样的交点?最多将平面分红多少块地区?32.平面上有 8 条直线两两订交,试证明在全部的交角中起码有一个角小于23°。