制作月历表数学题
- 格式:docx
- 大小:81.18 KB
- 文档页数:2
人教版小学三年级数学下册第六单元《年、月、日》第四框《制作活动日历》同步练习题及答案学校班级姓名1.请观察月历并填完整。
(1)9月的最后一天是星期(),这个月共有()个星期六。
(2)这个月一共有()天,这一年的教师节是星期()。
(3)这一年的10月1日是星期()。
(4)这一年的2月一共有()天。
2.(1)如果某个月的星期日、星期一、星期二……星期六的天数都相同,那么这个月有()天,是()年的()月。
(2)如果某月中的一天,从1日数起是第 15天,从最后一天数起是16天,那么这个月有()天。
(3)某月的星期六和星期日各有5天,其余的天数相等。
这个月的1日是星期(),这个月共有()天,把这个月的月历制作出来。
3.小明不小心把月历撕坏了,如下图,请你帮他算一算这个月的27日是星期几。
4.下面是2017年2月的月历。
请用任意框出上、下、左、右相邻的四个数,分析这四个数,它们有哪些有趣的现象?参考答案1.填表略(1)日 5 (2)30 一(3)一(4)282.(1)28 平 2 (2)30 (3)六 30 填表略3. 星期三4.答案不唯一,如对角的两个数的和相等;左、右两数相差1;上、下两数相差7。
人教版小学三年级数学下册第六单元《年、月、日》第四框《制作活动日历》同步练习题及答案学校班级姓名1.这是几月份的日历?这个月在第几季度?这一年是平年还是闰年?这一年全年共多少天?2.某月有5个星期六和5个星期日,全月30天。
请你仔细思考并制作这个月的日历。
3.小明于6月28日(星期日)放假,他计划7月份每个星期三去游泳馆游泳,每个星期五去绘画馆画画,每个星期日去篮球馆打球。
请你帮他制作出来7月份的日历。
日一二三四五六从日历中可以看出,小明7月份能去()次游泳馆,()次绘画馆,()次篮球馆。
参考答案1.答:这是2月份的日历,这个月在第一季度,这一年是闰年,全年366天。
2.3.5 5 4。
制作活动日历(教材P90)
一、你能用4个小正方体木块和一个底座制作一个日历吗?根据制作过程填一填。
二、有趣的日历。
1.观察日历中加框的4个数,填一填。
9比10少()16比17少()
16比9多() 17比10多()
2.如果框出横着相邻的两个日期,它们的和是45,框出的是()和()。
3.如果框出竖着相邻的两个日期,它们的和是47,框出的是()和()。
三、想一想,填一填。
1.某月的星期六和星期日各有5天,其余的天数相等,这个月有()天,是()月。
2.如果某月从星期日到星期六的天数都相等,那么这个月有()天,是()年中的()月。
3.如果某月中的一天从1号数起是第16天,从月底数起也是第16天,这个月有()天,是()月。
四、2021年上半年一共有多少天?是几个星期零几天?
制作活动日历
一、
二、1.1177 2.2223 3.2027
三、1.30小 2.28平2 3.31大
四、31+28+31+30+31+30=181(天)
181÷7=25(个)……6(天)。
类型01 日历表格等数字规律排列的问题1.如图1是一个数表,用一个矩形在数表中任意框出4个数,如图所示,•若所框出四个数和为56,则这四个数为______,______,______,_______.图14.如图是2011年8月的月历,现用一长方形在月历中任意框出4个代表日期的数,请用一个等式表示a,b,c,d之间的关系:。
3.探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和,(2)若将十字框上下左右移动,可框住五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
类型02 分段讨论的问题(难点)1.甲,乙两班学生到集市上购买苹果,苹果价格如下表所示:购苹果数不超过30kg 30kg以上但不超过500kg 50kg以下价格/元/kg 3 元 2.5元2元甲班分两次共购买苹果70kg(第二次多于第一次),共付189元,•而乙班则一次购买苹果70kg.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?2.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:某人住院治疗得到保险公司报销金额是1100•元,•那么此人住院的医疗费是______元.3.为了加强公民的节水意识,合理利用水资源,•某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.注:水费按月结算.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_______元;(2)若该户居民3,4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?4.芜湖供电公司分时电价执行时段分为平,谷两个时段,•平段为:8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支出电费多少元?类型03 两种模型综合的问题(难点)1.农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷,•在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,•但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家收购价是1.6元/千克.(1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理,•土质和面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷的收益相同?(2)去年小王在土质,面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克.Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?2.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?类型04 行程问题和可以化为行程问题的问题(热点)1.陈老师在晚会上为学生们讲数学故事,•他发现故事开始时时钟的时针和分针的恰好成90°角,这时是七点多,故事结束时间两针也是恰好成90°,•这时是八点多,他还发现,讲故事当中,两针成90°角的有趣图形还出现过一次,那么,陈老师讲故事所用时间是多少小时?2.敌我两军相距14千米,敌军于1小时前以4千米/时的速度逃跑,现我军以7千米/时的速度追击,几小时后可追上敌军?若设x小时后可追上敌军,则可列方程为__________________.3. A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇. 若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是????? (?? )4.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计)5、小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船静水速度为26千米/小时,水速为2千米/时,则A港和B港相距______千米.类型05 增长率模型或者比率模型的问题1.甲,乙两厂去年分别完成生产任务的112%和110%,共生产机床4000台,•比原来两厂之和超产400台.问甲厂原来的生产任务是多少台?•设甲厂原生产x•台,•得方程_____,解得x=_____台.2.磁悬浮列车是一种科技含量很高的新型交通工具,它具有速度快,爬坡能力强,能耗低的特点,它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之一,•是汽车每个座位的平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的()A.37B.73C.1021D.21103.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x的值.4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.5.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.类型06积分问题1.一张试卷上只有20道选择题,做对一道题得4分,做借一道题倒扣1分,•某学生做了全部试卷共得70分,他做对了_______道.2.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.•一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?3.某队在一次比赛中,22投14中,得28分,•除了3•个3•分球全中外,•他还投中了_____个2分球和______个罚球.4.小明在一场篮球比赛中,他一人得25分,如果他投2分球比3分球多5个,那么他投2分球个数为______.5.中国足球甲级联赛规定:每队胜一场得3分,平一场得1分,负一场得0分.•武汉黄鹤楼队前14场保持不败,共得34分,该队共平了()A.3场B.4场C.5场D.6场6.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?类型07盈余或不足的模型1.(过程探究题)今有其买鸡,人出九,盈十一;人出六,不足十六,问人数、•鸡价各几?意思是:有几个人共同出钱买鸡,每人出钱9,则多了钱11,每人出钱6,则少了钱16,那么有几人共同买鸡?鸡的价钱是多少?解答:设有x人共同买鸡,则共用钱可用二个式子表示,一个是9x-11,•另一个是______,则得方程9x-11=6x+______.解得x=______,9x-11=_______.答:_______.类型08商品销售问题(重点)1.某商店有一种商品.(1)成本为100元,提价20%,则售价为_____元.(2)成本为x元,提价25%,则售价为_____元.2.一种国产电器,由于质量好,销量大,厂家决定降低原售价的10%销售,•现价是270元,设原售价是x元.(1)降低后的售价用含x式子表示为_____元,(2)得方程_____.3.(教材变式题)某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解答:设此商品按x折销售,则实际售价为______元,利润为____元,利润用含x的式子表示为______,得方程______.x=______.4.(经典题)某商店有两个进价不同的计算器都卖64元,其中一个赢利60%,•另一个亏本20%,则这次买卖中,这家商店是赚还是亏呢?解答:设其中一种计算器进价为x元,赢利60%,由方程64-x=x·60%,解得x=_____(元).另一个计算器进价y元,亏本20%得方程:y-64=______,解得y=_______(元).所以:2×64-(x+y)=______=_____答:商店是_____了_______元.5.(1)某商品原每件售价是a元,现在每件降20%,降价后每件售价是______元.(2)某种品牌手机降价10%以后,每台售价为m元,则手机原价是_______元.6.500元的八折价是______,x折的价是______元.7.一商品把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,•则彩电的标价为_______元.8.(过程探究题)有一位经销商以1050元购进某商品,按进价的150%标价,若他打算获得此商品的利润率不低于20%,那么他最低可以打几折,请你帮他设计一下,小明解答过程:解答:设打算获得此商品的利润率不低于20%,最低可以以原价的x折卖出,•依题意,得1050×150%×10x -1050=_______.方程两边约去1050,得0.15x -1=0.2,∴x=_____.答:最低打______折销售.完成上述填空.9.某商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B•型节能冰箱每台售价虽比A 型冰箱高出10%,但是每日耗电量却为0.55度,现将A 型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365•天,•每度电费按0.40元计算)10.某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•其学生第一次购书付款72元,第二次又去购书享受了八折优惠.他查看了所买书的定价,•发现两次共节省了34元钱.则该学生第二次购书实际付款多少元?11.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了( )A .31.25B .60C .125D .10012.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是( )A .3 200元B .3 429元C .2 667元D .3 168元13.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a 元,则这种药品在2003年涨价前的价格为( )A .10039a 元B .39100a 元C .a (1-40%)元D .140%a 元 14.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)15.商场出售的A 型冰箱每台售价2 190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A 型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?16.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.类型09 优秀方案选择问题1.小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009•千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,•已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);(2)小刚想在这两种灯中选购一盏:①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,•使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.2.某企业生产一种收音机,其成本24元,直接由厂家门市部销售,每台售价32元,门市部的销售需消耗费用每月2400元,如果委托商店销售,出厂价每台28元,销售多少台时两种销售方式所获得的利润相等?若销售量达每月2000台,问采用哪种销售方式,取得的利润较多?3.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?4.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?类型10配套问题1.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是().A.12x=18(28-x) B.12x=2×18(28-x)C.2×18x=18(28-x) D.2×12x=18(28-x)2.某车间每天能生产甲种零件180个或乙种零件120个,若甲、乙两种零件分别取3个、2个配成一套,那么要在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数?3.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张白铁皮制盒身、多少张白铁皮制盒底可以正好制成成套罐头盒而无余料?4.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?类型11工程问题1.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路___________米;(2)求原计划每小时抢修道路多少米?2.整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作,假设每个人的工作效率相同,那么先安排整理的人员有多少?3.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.。
小学数学简便运算练习题日历问题日历问题一直是数学中一个有趣且具有挑战性的题目。
今天,我们来探讨一道小学数学简便运算练习题,该题与日历有关。
通过解答这道题目,我们能够锻炼我们的计算能力和逻辑思维。
下面我将介绍这道题目并给出解答。
题目如下:有一个日历,每页上写着一个日期,每个月的日期都是从1日开始依次递增。
请问每个月的1号是星期几?解答:为了求解这个问题,我们可以利用一种简便的运算方法。
假设一年一共有12个月,标记为1月到12月。
首先,我们需要找到某一年的1月1号是星期几,我们可以通过观察日历来得到这一信息。
假设我们发现该年的1月1号是星期W。
根据我们的假设,该年的2月1号是距离1月1号过了一个月,因此应该是星期W过了28天。
同理,3月1号是过了59天,4月1号是过了90天,以此类推。
通过以上观察,我们可以得到每个月1号离1月1号过去的天数。
下面我们将得到每个月1号是星期几的计算公式。
设某个月份为n(1≤n≤12),我们可以用一个计算公式来计算每个月1号是星期几:星期数 = [(n + ((n-1) × (7 - 余数))) mod 7 + W] mod 7其中,“n”代表月份,"W"代表1月1号是星期几,"mod"表示取模(求余数)运算。
用上述公式,我们可以逐个计算出每个月1号是星期几。
以下是一个具体的例子,假设某一年的1月1号是星期四(W=4):1月1号是星期四,所以1月份的星期数计算公式为:星期数 = [(1 + ((1-1) × (7 - 0))) mod 7 + 4] mod 7需要注意的是,这个公式中的余数是根据1月份与1月1号的天数差来计算的。
因为1月1号已经是星期四了,所以余数为0。
根据计算公式,我们可以得到1月1号是星期四。
接下来,我们可以继续计算其他月份的星期数。
以下是每个月1号星期数的计算结果:2月份:星期数 = [(2 + ((2-1) × (7 - 0))) mod 7 + 4] mod 7,计算结果为2,即星期二;3月份:星期数 = [(3 + ((3-1) × (7 - 1))) mod 7 + 4] mod 7,计算结果为2,即星期二;...12月份:星期数 = [(12 + ((12-1) × (7 - 5))) mod 7 + 4] mod 7,计算结果为3,即星期三。
制作月历表数学题
新的一年到来时,人们喜欢购买一个精美的挂历,这上面不仅有12个月的月历表,还有各种漂亮的图片,很美观。
月历表是日期与星期几相对应排列的数表表中的数按照一定的规律排列里面有很多有趣的数学问题。
例1.下表是2010年4月份的月历表。
(1)观察上表深色框中5个数的和与正中间的数12有什么关系?
(2)如果框中的5个数的和是105应该怎样框?
(3)如果要使框中的5个数的和是82或90能做到吗?
[分析与解析]
(1)从表中可以看出正中间的数12正好是框中5个数的平均数,比左边的数多1比右边的数少1,比上边的数多7比下边的数少7。
(2)框中的5个数的和是105正中间的数是105÷5=21,它左边的数是20右边的数是22上边的数是14下边的数是28。
(3)框中的5个数的和一定是正中间的数的5倍。
82÷5=16……282不是5的倍数所以框中的5个数的和不可能是82:90÷5=1890是5的倍数,所以正中间的数是18观察4月份的月历表18这个数在最左边一列,不能作为正中间的数。
所以框中的5个数的和不可能是90。