中考数学一轮复习各知识点练习题分层设计十六相交线与平行线部分鲁教版
- 格式:doc
- 大小:123.00 KB
- 文档页数:4
专题专题16 相交线与平行线(满分:100分时间:90分钟)班级_________ 姓名_________ 学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2020·四川广元市·中考真题)如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=().A.180°B.360°C.270°D.540°【答案】B【分析】首先作出PA∥a,根据平行线性质,两直线平行同旁内角互补,可以得出∠1+∠2+∠3的值.【详解】解:过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠APN=180°,∴∠1+∠MPA+∠3+∠APN=180°+180°=360°,∴∠1+∠2+∠3=360°.故选B.2.(2020·河北中考真题)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D .3.(2020·山东枣庄市·中考真题)一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°【答案】B【分析】 直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.4.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38 B .34 C D .15【分析】根据题意,可以得到BG的长,再根据∠ABG=90°,AB=4,可以得到∠BAG的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值.【详解】解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得GE∥BF,CE=EF,∴△CEG∽△CFB,∴CE CG CF CB=,∵12 CECF=,∴12 CGCB=,∵BC=3,∴GB=32,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG=BGAB=324=38,∴tanα的值为38,故选:A.5.(2020·贵州遵义市·中考真题)一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【答案】B【分析】根据平行线的性质即可得到结论.【详解】解:如图∵AB∥CD,∴∠1=∠D=45°,故选:B.6.(2020·山东济南市·中考真题)如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【答案】C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD ⊥AC ,∴∠ADC+∠ACD =90°,∴∠ACD =90°﹣35°=55°,故选:C .7.(2020·甘肃金昌市·中考真题)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90︒B .100︒C .120︒D .150︒【答案】C【分析】 如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得. 【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC ∴==如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴== AB BC AC ∴==ABC ∴是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .8.(2020·河南中考真题)如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒【答案】B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .9.(2020·海南中考真题)如图,已知//,AB CD 直线AC 和BD 相交于点,E 若70,40ABE ACD ∠=︒∠=︒,则AEB ∠等于( )A .50︒B .60︒C .70︒D .80︒【答案】C【分析】 先根据//AB CD 得到70CDE ABE ∠=∠=︒,再运用三角形内角和定理求出AEB ∠的度数即可.【详解】∵//AB CD ,∴CDE ABE ∠=∠,∵70ABE ∠=︒,∴70CDE ∠=︒∵180ECD CDE DEC ∠+∠+∠=︒,且40ACD ∠=︒,∴180180704070DEC ECD CDE ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .10.(2020·山东淄博市中考真题)如图,在四边形ABCD 中,CD ∥AB ,AC ⊥BC ,若∠B =50°,则∠DCA 等于( )A .30°B .35°C .40°D .45°【答案】C【详解】 由AC ⊥BC 可得∠ACB =90°,又∠B =50°,根据直角三角形两个锐角互余可得∠CAB =40°,再根据平行线的性质可得∠DCA =∠CAB =40°.【解答】解:∵AC ⊥BC ,∴∠ACB =90°,又∵∠B =50°,∴∠CAB =90°﹣∠B =40°,∵CD ∥AB ,∴∠DCA =∠CAB =40°.故选:C .二、填空题(共5小题,每小题4分,共计20分)11.(2020·浙江杭州市·中考真题)如图,AB ∥CD ,EF 分别与AB ,CD 交于点B ,F .若∠E =30°,∠EFC =130°,则∠A =_____.【答案】20°【分析】直接利用平行线的性质得出∠ABF =50°,进而利用三角形外角的性质得出答案.【详解】∵AB ∥CD ,∴∠ABF +∠EFC =180°,∵∠EFC =130°,∴∠ABF =50°,∵∠A +∠E =∠ABF =50°,∠E =30°,∴∠A =20°.故答案为:20°.12.(2020·湖南湘潭市·中考真题)如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且3PD =,点M 是射线OC 上一动点,则PM 的最小值为________.【答案】3【分析】根据垂线段最短可知当PM ⊥OC 时,PM 最小,再根据角的平分线的性质,即可得出答案.【详解】解:根据垂线段最短可知:当PM ⊥OC 时,PM 最小,当PM ⊥OC 时,又∵OP 平分∠AOC ,PD OA ⊥,3PD =,∴PM=PD=3故答案为:313.(2020·新疆中考真题)如图,若AB ∥CD ,∠A =110°,则∠1=_____°.【答案】70【分析】先根据平行线的性质求出∠2=∠A =110°,再由平角的定义求出∠1的度数即可.【详解】如图,∵AB ∥CD ,∴∠2=∠A =110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.(2020·湖北黄冈市·中考真题)已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.【答案】30【分析】本题可利用两直线平行,同位角相等求解∠EGC ,继而根据邻补角定义求解∠CDE ,最后根据外角定义求解∠BCD .【详解】令BC 与EF 相交于G 点,如下图所示:∵//,75,135AB EF ABC CDF ︒︒∠=∠=,∴∠EGC=∠ABC=75°,∠EDC=180°-∠CDF=180°-135°=45°,又∵∠EGC=∠BCD+∠EDC ,∴∠BCD=75°-45°=30°,故答案:30.15.(2020·山东日照市·中考真题)如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是_____.【答案】25°【分析】延长EF 交BC 于点G ,根据题意及直角三角形的性质可直接进行求解.【详解】解:如图,延长EF 交BC 于点G ,∵直尺,∴AD ∥BC ,∴∠2=∠3=65°,又∵30°角的直角三角板,∴∠1=90°﹣65°=25°.故答案为:25°.三、解答题(共5小题,每小题10分,共计50分)16.(2020·江苏镇江市·中考真题)如图,AC 是四边形ABCD 的对角线,∠1=∠B ,点E 、F 分别在AB 、BC 上,BE =CD ,BF =CA ,连接EF .(1)求证:∠D =∠2;(2)若EF ∥AC ,∠D =78°,求∠BAC 的度数.【答案】(1)证明见解析;(2)78°.【分析】(1)由“SAS ”可证△BEF ≌△CDA ,可得∠D =∠2;(2)由(1)可得∠D =∠2=78°,由平行线的性质可得∠2=∠BAC =78°.【详解】证明:(1)在△BEF 和△CDA 中,1BE CD B BF CA =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△CDA (SAS ),∴∠D =∠2;(2)∵∠D =∠2,∠D =78°,∴∠D =∠2=78°,∵EF ∥AC ,∴∠2=∠BAC =78°.17.(2020·湖北黄石市·中考真题)如图,,//,70,40AB AE AB DE DAB E =∠=︒∠=︒.(1)求DAE ∠的度数;(2)若30B ∠=︒,求证:AD BC =.【答案】(1)∠DAE=30°;(2)见详解.【分析】(1)根据AB ∥DE ,得出∠E=∠CAB=40°,再根据∠DAB=70°,即可求出∠DAE ;(2)证明△DAE ≌△CBA ,即可证明AD=BC .【详解】(1)∵AB ∥DE ,∴∠E=∠CAB=40°,∵∠DAB=70°,∴∠DAE=∠DAB-∠CAB=30°;(2)由(1)可得∠DAE=∠B=30°,又∵AE=AB ,∠E=∠CAB=40°,∴△DAE ≌△CBA (ASA ),∴AD=BC .18.(2020·湖北荆州市·中考真题)如图,将ABC 绕点B 顺时针旋转60度得到DBE ∆,点C 的对应点E 恰好落在AB 的延长线上,连接AD .(1)求证://BC AD ;(2)若AB=4,BC=1,求A ,C 两点旋转所经过的路径长之和.【答案】(1)见解析;(2)53π 【分析】 (1)先利用旋转的性质证明△ABD 为等边三角形,则可证60DAB ︒∠=,即,CBE DAB ∠=∠再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:,60ABC DBE ABD CBE ︒∆≅∆∠=∠= ,AB BD ABD ∴=∴∆是等边三角形所以60DAB ︒∠=,CBE DAB ∴∠=∠∴//BC AD ;(2)依题意得:AB=BD=4,BC=BE=1,所以A ,C 两点经过的路径长之和为60460151801803πππ⨯⨯+=. 19.(2020·山东东营市·中考真题)如图,C 处是一钻井平台,位于东营港口A 的北偏东60方向上,与港口A 相距海里,一艘摩托艇从A 出发,自西向东航行至B 时,改变航向以每小时50海里的速度沿BC 方向行进,此时C 位于B 的北偏西45方向,则从B 到达C 需要多少小时?【答案】从B 到达C 需要1.2小时.【分析】过点C 作CD AB ⊥于点D ,在Rt ACD △与Rt CDB 中,利用锐角三角函数的定义求出CD 与BC 的长,进而求解.【详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得://AE CD ,//BF CD ,60ACD CAE ∴∠=∠=,45BCD CBF ∠=∠=︒,在Rt ACD △中,AC =,12CD AC ∴==,在Rt CDB 中,CD =,60BC ∴==,60 1.250∴=(小时), ∴从B 到达C 需要1.2小时.20.(2020·山西中考真题)阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务.×年×月×日 星期日没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?……任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________;(2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)【答案】(1)勾股定理的逆定理;(2)详见解析;(3)①详见解析;②答案不唯一,详见解析【分析】(1)利用2223040=50+说明△DCE 是直角三角形,说明=90DCE ∠︒,进而得出利用的原理是勾股定理逆定理即可;(2)由作图的方法可以得出:QR QC =,QS QC =,得出QCR QRC ∠=∠,QCS QSC ∠=∠,利用三角形内角和得出90QCR QCS ∠+∠=︒,即90RCS ∠=︒,说明垂直即可;(3)①以点C 为圆心,任意长为半径画弧,与AB 有两个交点,分别以这两个交点为圆心,以大于这两个交点之间的距离的一半为半径画弧,这两段弧交于一点P ,连接PC 即可;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,即可说明垂直.【详解】(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形);(2)证明:由作图方法可知:QR QC =,QS QC =,QCR QRC ∴∠=∠,QCS QSC ∠=∠.又180SRC RCS RSC ∠+∠+∠=︒,180QCR QCS QRC QSC ∴∠+∠+∠+∠=︒.2()180QCR QCS ∴∠+∠=︒.90QCR QCS ∴∠+∠=︒即90RCS ∠=︒.(3)解:①如图,直线CP 即为所求;图③②答案不唯一,如:三边分别相等的两个三角形全等(或SSS);等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上等.【点睛】本题主要考查了垂直的判定,熟练掌握说明垂直的方法是解决本题的关键.。
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
山东省2023年中考备考数学一轮复习 相交线与平行线 练习题一、单选题1.(2022·山东临沂·统考二模)如图,直线AB CD 、相交于点O ,射线OM 平分BOD ∠,若160AOM ∠=︒,则AOC ∠等于 ( )A .20°B .40°C .45°D .50°2.(2022·山东东营·校考一模)下列说法中正确的是( )A .不相交的两条直线叫平行线B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .平面内两条直线的位置关系有相交、平行和垂直D .同一平面内,过直线外一点有且只有一条直线与已知直线垂直3.(2022·山东济南·统考一模)下列各图中,已知∠1=∠2,不能证明AB ∠CD 的是( )A .B .C .D .4.(2022·山东·统考一模)下列关于过直线l 外一点P 作直线l 的平行线的尺规作图错误的是() A . B .C .D .5.(2022·山东淄博·统考二模)下列图形中,由12∠=∠能得到AB CD ∥的是( )A .B .C .D .6.(2022·山东潍坊·中考真题)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB 与CD 平行,入射光线l 与出射光线m 平行.若入射光线l 与镜面AB 的夹角14010'∠=︒,则6∠的度数为( )A .10040'︒B .9980'︒C .9940'︒D .9920'︒7.(2022·山东滨州·统考中考真题)如图,在弯形管道ABCD 中,若AB CD ∥,拐角122ABC ∠=︒,则BCD ∠的大小为( )A .58︒B .68︒C .78︒D .122︒8.(2022·山东日照·统考一模)如图,在∠ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∠AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°9.(2022·山东淄博·统考一模)如图,直线//a b ,点,M N 分别在直线,a b 上,P 为两平行线间一点,那么123∠+∠+∠等于( )A .360︒B .300︒C .270︒D .180︒10.(2022·山东济南·统考中考真题)如图,//AB CD ,点E 在AB 上,EC 平分∠AED ,若∠1=65°,则∠2的度数为( )A .45°B .50°C .57.5°D .65°11.(2022·山东东营·统考中考真题)如图,直线a b ∥,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=( )A .40︒B .50︒C .60︒D .65︒12.(2022·山东东营·统考三模)如图,直线//a b ,将一个含30︒角的三角尺按如图所示的位置放置,若∠的度数为()124=,则2∠︒A.120︒B.136︒C.144︒D.156︒13.(2022·山东枣庄·统考模拟预测)如图,将直尺与含30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°14.(2022·山东济南·统考一模)如图所示,已知//C∠=︒,43AC ED,20∠的度数是()CBE∠=︒,BEDA.63︒B.83︒C.73︒D.53︒15.(2022·山东烟台·统考一模)在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行16.(2022·山东东营·统考一模)数学课上,老师要求同学们利用三角板画两条平行线.小明的画法如下:∠将含30︒角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30︒角的三角尺的最短边紧贴;∠将含30︒角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则a∠b,小明这样画图的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等17.(2022·山东济宁·统考中考真题)如图,直线l1,l2,l3被直线l4所截,若l1∥l2,l2∥l3,∠1=126°32',则∠2的度数是___________.18.(2022·山东枣庄·统考中考真题)光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB与水杯下沿CD平行,光线变成FH,点G在射线EF上,45,20∠=︒∠=,FED HFB ∠=__°.则GFH19.(2022·山东烟台·统考一模)设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____cm.20.(2022·山东德州·德州市同济中学校考模拟预测)如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为______cm2.21.(2022·山东枣庄·统考模拟预测)如图,将周长为10的∠ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为________.22.(2022·山东东营·校考一模)如图,直线AB∠CD,∠C=44°,∠E为直角,求∠1的度数.参考答案:1.B【分析】根据邻补角的定义求出∠BOM ,再根据角平分线的定义求出∠BOD ,然后根据对顶角相等求解即可. 【详解】160AOM ∠=︒,18020BOM AOM ∴∠=︒-∠=︒,OM 平分BOD ∠,240BOD BOM ∴∠=∠=︒40AOC BOD ∴∠=∠=︒故选B【点睛】本题考查了本题考查了邻补角的定义,对顶角相等,角平分线的定义,掌握以上知识是解题的关键.2.D【分析】根据平行线的判定、点到直线的距离、平面内两直线的位置关系等求解判断即可.【详解】解:A :在同一平面内,不相交的两条直线叫平行线,故A 说法不符合题意;B :从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故B 说法不符合题意;C :平面内两条直线的位置关系有相交和平行,故C 说法不符合题意;D :同一平面内,过直线外一点有且只有一条直线与已知直线垂直,故D 说法符合题意;故选:D .【点睛】此题考查了平行线的判定,熟记平行线的判定定理、点到直线的距离的概念、平面内两直线的位置关系等是解题的关键.3.B【分析】根据平行线的判定定理即可判断求解.【详解】:A 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;B 、由∠1=∠2,不能判断AB ∠CD ,该选项符合题意;C 、∠∠1=∠2,∠3=∠2,∠∠1=∠3,∠AB ∠CD ,该选项不符合题意;D 、∠∠1=∠2,∠AB ∠CD ,该选项不符合题意;故选:B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4.C【分析】根据选项图像逐个分析,判断能否平行即可.【详解】A .本选项作了角平分线与等腰三角形,能得到一组内错角相等,从而可证两直线平行,故本选项不符合题意;B .本选项作了一个角等于已知角,根据同位角相等两直线平行,从而可证两直线平行,故本选项不符合题意;C .本选项只截取了两条线段相等,无法保证两直线平行的位置关系,故本选项符合题意;D .本选项作了一个角与已知角相等,根据内错角相等两直线平行,从而可证两直线平行,故本选项不符合题意;故选:C .【点睛】本题考查了尺规作图和平行线的判定定理,熟练掌握尺规作图的操作是解题的关键.5.B【分析】根据平行线的判定定理逐项分析即可.【详解】A.∠1=∠2,不能判断//AB CD ,故A 不符合题意;B.∠∠1=∠2,∠AB CD ∥(内错角相等,两直线平行),故B 符合题意;C.12∠=∠,//AC BD ∴,故C 不符合题意;D.∠1=∠2,不能判断//AB CD ,故D 不符合题意.故选:B .【点睛】本题主要考查了平行线的判定,熟练掌握内错角相等,两直线平行,是解题的关键.6.C【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,∠14010'∠=︒∠24010'∠=︒∠518012180401040109940'''∠=︒-∠-∠=︒-︒-︒=︒∠l //m∠659940'∠=∠=︒故选:C【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.7.A【分析】根据两直线平行,同旁内角互补得到180∠+∠=︒,进而计算即可.ABC BCD∥,【详解】AB CD∴∠+∠=︒,180ABC BCDABC∠=︒,122∴∠=︒-∠=︒-︒=︒,BCD ABC180********故选:A.【点睛】本题考查了平行线的性质,即两直线平行,同旁内角互补,熟练掌握知识点是解题的关键.8.B【分析】由三角形的内角和可求∠ABC,根据角平分线可以求得∠ABD,由DE//AB,可得∠BDE=∠ABD即可.【详解】解:∠∠A+∠C=100°∠∠ABC=80°,∠BD平分∠BAC,∠∠ABD=40°,∠DE∠AB,∠∠BDE=∠ABD=40°,故答案为B.【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.9.A【分析】过点P作PE∠a.则可得出PE∠a∠b,结合“两直线平行,内错角相等”可得出∠2=∠AMP+∠BNP,再结合邻补角的即可得出结论.【详解】解:过点P作PE∠a,如图所示.∠PE∠a,a∠b,∠PE∠a∠b,∠∠AMP=∠MPE,∠BNP=∠NPE,∠∠2=∠MPE+∠NPE=∠AMP+∠BNP.∠∠1+∠AMP=180°,∠3+∠BNP=180°,∠∠1+∠2+∠3=180°+180°=360°.故选:A.【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出∠2=∠AMP+∠BNP.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.10.B【分析】根据平行线及角平分线的性质即可求解.AB CD,【详解】解:∠//∠∠AEC=∠1(两直线平行,内错角相等),∠EC平分∠AED,∠∠A EC=∠CED=∠1,∠∠1=65°,∠∠CED =∠1=65°,∠∠2=180°-∠CED-∠1=180°-65°-65°=50°.故选:B.【点睛】本题考查了平行线的性质,解题关键根据直线平行和角平分线的性质得出角度之间的关系即可得出答案.11.B【分析】先根据平角的定义求出∠3的度数,再根据平行线的性质即可求出∠2的度数.【详解】解:由题意得∠ABC=90°,∠∠1=40°,∠∠3=180°-∠1-∠ABC=50°,∥,∠a b∠∠2=∠3=50°,故选B.【点睛】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.12.C【分析】根据平行线的性质求解,找出图中1424∠=∠=︒,进而求出∠3,再根据平行线性质求出∠2即可.c a,【详解】解:如图,作//三角尺是含30︒角的三角尺,3460∴∠+∠=︒,a c,//∴∠=∠=︒,14243602436∴∠=︒-︒=︒,a b,//a c,//b c∴,//∴∠=︒-︒=︒,218036144故选:C.【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.13.D【分析】根据平行线的性质即可解答.【详解】如图,由已知得∠3=60°,∥,因为AB CD所以∠2+∠1+∠3=180°,∠2=180°-(40°+60°)=80°;故选D.【点睛】本题考查了平行线的性质,解题关键是熟练运用平行线的性质进行推理解题.14.A【分析】过点B 作BM ∠AC ,求出∠EBM 即可.【详解】过点B 作BM ∠AC ,∠//AC ED ,∠////AC ED BM ,∠20CBM C ∠=∠=︒,EBM E ∠=∠,∠43CBE ∠=︒,∠63EBM CBE CBM ∠=∠+∠=︒,∠63E EBM ∠=∠=︒.故选:A .【点睛】本题考查了平行线的判定与性质,解题关键是熟练添加辅助线,利用平行线的性质求角.15.B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.16.A【分析】先利用平移的性质得到∠1=∠2=60°,然后根据同位角线段两直线平行可判断a ∠b .【详解】利用平移的性质得到∠1=∠2=60°,所以a ∠b .故选:A .【点睛】此题考查作图-平移变换,平行线的判定,解题关键在于确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.17.5328'︒【分析】根据平行线的性质得23,34∠=∠∠=∠,根据等量等量代换得34∠∠=,进而根据邻补角性质即可求解.【详解】解:如图l1∥l 2,l 2∥l 3,23∴∠=∠,34∠∠=,24∴∠=∠,∠1=12632'︒,2418012632∴∠=∠=-︒'︒17960126325328'''=︒-︒=︒,故答案为:5328'︒.【点睛】本题考查了邻补角,平行线的性质,掌握平行线的性质是解题的关键.18.25【分析】根据平行线的性质知45GFB FED ∠=∠=︒,结合图形求得GFH ∠的度数.【详解】解:∠//AB CD ,∠45GFB FED ∠=∠=︒.∠20HFB ∠=︒,∠452025GFH GFB HFB ∠=∠-∠=︒-︒=︒.故答案为:25.【点睛】本题考查了平行线的性质,属于基础题,熟练掌握平行线的性质是解决本类题的关键. 19.7或17.【分析】分两种情况讨论,EF 在AB ,CD 之间或EF 在AB ,CD 同侧,进而得出结论.【详解】解:分两种情况:∠当EF 在AB ,CD 之间时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12﹣5=7(cm ).∠当EF 在AB ,CD 同侧时,如图:∠AB 与CD 的距离是12cm ,EF 与CD 的距离是5cm ,∠EF 与AB 的距离为12+5=17(cm ).综上所述,EF 与AB 的距离为7cm 或17cm .故答案为:7或17.【点睛】此题主要考查线段之间的距离,解题的关键是根据题意分情况作图进行求解.20.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm,即CF=1,则DF=DC-CF=6-1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.21.14【分析】利用平移的性质求解即可.【详解】∠△ABC沿BC方向平移2个单位得到△DEF,∠AD=CF=2,∠四边形ABFD的周长=AB+BC+DF+CF+AD=△ABC的周长+AD+CF=10+2+2=14.故答案为:14.【点睛】本题考查了平移的性质,抓住平移后对应线段相等是解题的关键.22.134°.【分析】过E作EF∠AB,可得AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【详解】过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,(平行于同一直线的两直线平行)∠∠C=∠FEC,∠BAE=∠FEA,(两直线平行,内错角相等)∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°.【点睛】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.。
中考数学一轮专题复习学案17 相交线与平行线知识点1:点、线、面、角知识点梳理1.点动成线、线动成面、面动成体.2.角:有公共端点的两条射线组成的图形叫做角.角也可以看作由一条射线绕着它的端点旋转而形成的图形.3.度分秒的换算:1周角= 2 平角= 4 直角=360°.1°= 60 ',1'=60 ″.4.量角器的使用:量角器的中心和角的顶点对齐,量角器的零刻度线和角的一条边对齐,做到两对齐后看角的另一边与刻度线对应的度数.5. 两角间的关系:(1)余角:如果两个角的和等于90° ,就说这两个角互为余角.同角或等角的余角相等.(2)补角:如果两个角的和等于180° ,就说这两个角互为补角.同角或等角的补角相等.6. 角平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.典型例题【例1】(2020•重庆B卷2/26)围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【考点】认识立体图形【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.【点评】本题考查的是立体图形的认识,掌握平面与曲面的概念是解题的关键.【例2】(2020•陕西2/25)若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°【考点】余角和补角【分析】根据∠A的余角是90°-∠A,代入求出即可.【解答】解:∵∠A =23°,∴∠A的余角是90°-23°=67°.故选:B.【点评】本题考查了互余的应用,注意:如果∠A和∠B互为余角,那么∠A=90°-∠B.知识点2:直线、射线和线段1.直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的.2. 射线的概念:直线上一点和它一旁的部分叫做射线.这个点叫做射线的端点.3. 线段的概念:直线上两个点和它们之间的部分叫做线段.这两个点叫做线段的端点.4.线段的和差:如下图,在线段AC上取一点B,则有:AB+ BC =AC;AB=AC-BC;BC=AC-AB.5.线段的中点:如下图,点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.几何语言:AM=MB=12AB.知识点梳理6. 直线的性质:(1)直线公理:经过两个点有一条直线,并且只有一条直线.它可以简单地说成:过两点有且只有一条直线(两点确定一条直线).(2)过一点的直线有无数条.(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小.(4)直线上有无穷多个点.(5)两条不同的直线至多有一个公共点.7. 线段的性质:(1)线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短.(2)连接两点的线段的长度,叫做这两点的距离.(3)线段的中点到两端点的距离相等.(4)线段的大小关系和它们的长度的大小关系是一致的.典型例题【例3】(2019·保定高阳县模拟)“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点之间,线段最短B.两点确定一条直线C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离【答案】B.【解答】“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理是“两点确定一条直线”.故答案为B.知识点3:相交线知识点梳理1. 相交线中的角:(1)两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角.我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做邻补角.(2)邻补角互补,对顶角相等.(3)直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角(三线八角).其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角.2. 垂线:(1)两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”).(2)垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直.性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短.简称:垂线段最短.3. 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如下图,点P与直线l上各点连接的所有线段中,PB最短,点P到直线l的距离是PB的长度.4. 线段垂直平分线的性质定理及逆定理:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.如下图,若l ⊥AB ,OA=OB ,则AP=BP .逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 5. 角平分线的性质定理及逆定理:角平分线的性质定理:角的平分线上的点到角的两边的距离相等.几何语言:如下图,1=2,PE PF PE OA PF OB ∠∠⎫⇒=⎬⊥⊥⎭逆定理:角的内部到角的两边的距离相等的点在角的平分线上.几何语言:如下图,,1=2PE OA PF OB PE PF ⊥⊥⎫⇒∠∠⎬=⎭【例4】(2020•河北1/26)如图,在平面内作已知直线m 的垂线,可作垂线的条数有( )A .0条B .1条C .2条D .无数条【考点】垂线【分析】根据垂直、垂线的定义,可直接得结论.【解答】解:在同一平面内,与已知直线垂直的直线有无数条, 所以作已知直线m 的垂线,可作无数条. 故选:D .【点评】本题考查了垂直和垂线的定义.掌握垂线的定义是解决本题的关键.【例5】(2020•青海5/28)如图,△ABC 中,AB =AC =14 cm ,AB 的垂直平分线MN 交AC 于典型例题点D,且△DBC的周长是24 cm,则BC= cm.【考点】线段垂直平分线的性质【分析】由边AB的垂直平分线与AC交于点D,故AD=BD,于是将△DBC的周长转化为BC与边长AC的和来解答.【解答】解:∵C△DBC=24 cm,∴BD+DC+BC=24 cm①,又∵MN垂直平分AB,∴AD=BD②,将②代入①得:AD+DC+BC=24 cm,即AC+BC=24 cm,又∵AC=14 cm,∴BC=24-14=10cm.故填10.【点评】本题考查了垂直平分线的性质;此题将垂直平分线的性质与三角形的周长问题相结合,体现了转化思想在解题时的巨大作用.【例6】(2020•新疆兵团13/23)如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于12AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a-3),则a的值为.【考点】坐标与图形性质【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x 轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于12AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a-3),∴a=2a-3,∴a=3.故答案为:3.【点评】本题考查了角平分线的作法及其性质在坐标与图形性质问题中的应用,明确题中的作图方法及角平分线的性质是解题的关键.知识点4:平行线1. 平行线的概念:在同一个平面内,不相交的两条直线叫做平行线.平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”.同一平面内,两条直线的位置关系只有两种:相交或平行.2. 平行线公理及其推论:平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.3. 平行线的判定:平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行.简称:同位角相等,两直线平行.平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简称:内错角相等,两直线平行.(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简称:同旁内角互补,两直线平行.知识点梳理4. 平行线的性质:(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.5. 两平行线间的距离:(1)定义:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.(2)性质:两条平行线之间的距离处处相等.【例7】(2019·河北省7/26)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB【考点】平行线的判定.【分析】根据图形可知※代表CD,即可判断D;根据三角形外角的性质可得◎代表∠EFC,即可判断A;利用等量代换得出▲代表∠EFC,即可判断C;根据图形已经内错角定义可知@代表内错角.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.【点评】本题考查了平行线的判定,三角形外角的性质,比较简单.典型例题【例8】(2020•海南6/22)如图,已知AB∥CD,直线AC和BD相交于点E,若∠ABE=70°,∠ACD=40°,则∠AEB等于()A.50°B.60°C.70°D.80°【考点】平行线的性质【分析】利用平行线的性质,得到∠BAE与∠C的关系,再利用三角形的内角和,求出∠AEB.【解答】解:∵AB∥CD,∴∠BAE=∠C=40°.∵∠AEB +∠EAB +∠EBA =180°,∴∠AEB=70°.故选:C.【点评】本题考查了平行线的性质、三角形的内角和定理,题目难度较小,利用平行线的性质把要求的角和已知角放在同一个三角形中,是解决本题的关键.知识点5:命题、定理、证明知识点梳理1. 命题的概念:判断一件事情的语句,叫做命题.2. 命题的分类:按正确、错误与否分为:真命题和假命题.所谓正确的命题就是:如果题设成立,那么结论一定成立的命题.所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题.3.互逆命题:一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题,如果我们把其中一个命题称为原命题,那么另一个命题就是这个原命题的逆命题.4. 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理.5. 定理:用推理的方法判断为正确的命题叫做定理.6. 互逆定理:如果一个定理的逆命题经过证明是正确的,那么这个逆命题也可以称为原定理的逆定理,一个定理和它的逆定理是互逆定理.7. 证明:判断一个命题的正确性的推理过程叫做证明.【例9】(2019·安徽省12/23)命题“如果a+b=0,那么a,b互为相反数”的逆命题为.【考点】命题与定理.【分析】根据互逆命题的定义写出逆命题即可.【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为:如果a,b互为相反数,那么a+b=0;故答案为:如果a,b互为相反数,那么a+b=0.【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键.【例10】(2019·泰州)命题“三角形的三个内角中至少有两个锐角”是________(填“真命题”或“假命题”).【答案】真命题.【解答】一个三角形如果是锐角三角形,则三个角都是锐角,如果是直角或钝角三角形,则有两个角是锐角,∴三角形的三个内角中至少有两个锐角是真命题.1.(2020•江西5/23)如图所示,正方体的展开图为()A.B.典型例题巩固训练C .D .2.(2019•鄂尔多斯2/24)下面四个图形中,经过折叠能围成如图所示的几何图形的是( )A .B .C .D .3.(2018·北京市1/28)下列几何体中,是圆柱的为( )A .B .C .D .4.如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为( )A . 45°B . 55°C . 125°D . 135°5.(2020•通辽4/26)如图,将一副三角尺按下列位置摆放,使α∠和β∠互余的摆放方式是( )A.B.C.D.6.(2020•通辽13/26)如图,点O在直线AB上,581728∠的度数AOC∠=︒'''.则BOC是.7.若∠A=34°,则∠A的补角为()A.56°B.146° C.156° D.166°8.(2020•吉林11/26)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD l⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.9.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°10.(2020•海南15/22)如图,在△ABC中,9BC=,4AC=,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为.11.(2020•陕西17/25)如图,已知△ABC,AC AB>,45C∠=︒.请用尺规作图法,在AC 边上求作一点P,使45PBC∠=︒.(保留作图痕迹,不写作法,答案不唯一)12.(2020•宁夏14/26)如图,在△ABC中,84C∠=︒,分别以点A、B为圆心,以大于12 AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则A∠=度.13.(2018·通辽16/26)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接AD .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .14.(2020•河北6/26)如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ,12b DE <的长 15.(2019•包头7/26)如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D 、E 为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积是( )A .1B .32C .2D .5216.(2020•兴安盟•呼伦贝尔6/26)如图,直线AB ∥CD ,AE CE ⊥于点E ,若120EAB ∠=︒,则ECD ∠的度数是( )A .120︒B .100︒C .150︒D .160︒17.(2020•河南4/23)如图,12//l l ,34//l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒18.(2020•新疆兵团10/23)如图,若AB ∥CD ,110A ∠=︒,则1∠= ︒.19.(2019·河南省3/23)如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为( )A .45°B .48°C .50°D .58°20.(2018·兴安盟呼伦贝尔5/26)如图,//AB CD ,70C ∠=︒,40A ∠=︒,则F ∠的度数为( )A.30︒B.35︒C.40︒D.45︒21.(2018·赤峰8/26)已知AB∥CD,直线EF分别交AB、CD于点G、H,∠EGB=25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H重合),则∠PHG等于()A.30°B.35°C.40°D.45°22.(2018·通辽12/26)如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是.23.(2018·聊城)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110° B.115° C.120° D.125°24.(2019·南京)结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵________,∴a∥b.25.(2019·黄冈)如图,直线AB∥CD,直线EC分别与AB,CD相交于点A,点C.AD 平分∠BAC,已知∠ACD=80°,则∠DAC的度数为________.巩固训练解析1.(2020•江西5/23)如图所示,正方体的展开图为()A.B.C.D.【考点】几何体的展开图【分析】根据正方体的展开与折叠,正方体展开图的形状进行判断即可.【解答】解:根据“相间、Z端是对面”可得选项B不符合题意;再根据“上面 ”符号开口,可以判断选项A符合题意;选项C、D不符合题意;故选:A.【点评】本题考查正方体的展开与折叠,掌握正方体展开图的特征是正确判断的前提.2.(2019•鄂尔多斯2/24)下面四个图形中,经过折叠能围成如图所示的几何图形的是()A.B.C.D.【解答】解:三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B.故选:B.3.(2018·北京市1/28)下列几何体中,是圆柱的为()A.B.C.D.【考点】认识立体图形.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.4.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A . 45°B . 55°C . 125°D . 135°【答案】B【考点】用量角器度量角.【解答】由生活知识可知这个角小于90度,排除C 、D ,又OB 边在50与60之间,所以,度数应为55°.5.(2020•通辽4/26)如图,将一副三角尺按下列位置摆放,使α∠和β∠互余的摆放方式是( )A .B .C .D .【考点】余角和补角 【分析】根据余角和补角的概念、结合图形进行判断即可.【解答】解:A .α∠与β∠互余,故本选项正确;B .αβ∠=∠,故本选项错误;C .αβ∠=∠,故本选项错误;D .α∠与β∠互补,故本选项错误,故选:A .【点评】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.6.(2020•通辽13/26)如图,点O 在直线AB 上,581728AOC ∠=︒'''.则BOC ∠的度数是 1214232︒''' .【考点】度分秒的换算;角的概念【分析】依据邻补角的定义,即可得到BOC ∠的度数.【解答】解:点O 在直线AB 上,且581728AOC ∠=︒''',1801805817281214232BOC AOC ∴∠=︒-∠=︒-︒'''=︒''',故答案为:1214232︒'''.【点评】本题主要考查了邻补角的定义.解题的关键是掌握邻补角的定义:如果两个角互为邻补角,那么它们的和为180︒.7.若∠A =34°,则∠A 的补角为( )A .56°B .146°C .156°D . 166°【考点】根据互补的两角之和为180°,可得出答案.【分析】余角和补角.【解答】解:∵∠A =34°,∴∠A 的补角=180°﹣34°=146°.故选B .【点评】本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.8.(2020•吉林11/26)如图,某单位要在河岸l 上建一个水泵房引水到C 处.他们的做法是:过点C 作CD l ⊥于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 垂线段最短 .【考点】垂线段最短【分析】根据垂线段的性质解答即可.【解答】解:过点C作CD l⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.9.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【考点】方向角.【分析】根据垂直,可得∠AOB的度数,根据角的和差,可得答案.【解答】解:如下图:若射线OB与射线OA垂直,∴∠AOB=90°,∠1=60°,OB是北偏西60°,故选:B.【点评】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.10.(2020•海南15/22)如图,在△ABC中,9BC=,4AC=,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为13.【考点】线段垂直平分线的性质;作图-基本作图【分析】根据作图过程可得,MN是AB的垂直平分线,所以得AD BD=,进而可得△ACD 的周长.【解答】解:根据作图过程可知:MN是AB的垂直平分线,∴AD BD=,∴△ACD的周长9413=++=++=+=+=.AD DC AC BD DC AC BC AC故答案为:13.【点评】本题考查了作图-基本作图、线段垂直平分线的性质,解决本题的关键是掌握线段垂直平分线的性质.11.(2020•陕西17/25)如图,已知△ABC,AC AB∠=︒.请用尺规作图法,在ACC>,45边上求作一点P,使45∠=︒.(保留作图痕迹,不写作法,答案不唯一)PBC【考点】作图-基本作图【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使45PBC∠=︒即可,或作BC的垂直平分线交AC于点P【解答】解:如图,点P即为所求.【点评】本题考查了作图-基本作图,解决本题的关键是掌握基本作图方法.12.(2020•宁夏14/26)如图,在△ABC中,84C∠=︒,分别以点A、B为圆心,以大于12 AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则A∠=32度.【考点】线段垂直平分线的性质;作图-复杂作图【分析】由作图可得MN是线段AB的垂直平分线,BD是ABC∠的平分线,根据它们的性质可得A ABD CBD∠=∠=∠,再根据三角形内角和定理即可得解.【解答】解:由作图可得,MN是线段AB的垂直平分线,BD是ABC∠的平分线,AD BD ∴=,12ABD CBD ABC∠=∠=∠,A ABD∴∠=∠,A ABD CBD∴∠=∠=∠,180A ABC C∠+∠+∠=︒,且84C∠=︒,2180A ABD C∴∠+∠=︒-∠,即318084A∠=︒-︒,32A∴∠=︒.故答案为:32.【点评】本题考查了作图-复杂作图,解决本题的关键是掌握线段垂直平分线的作法和角平分线的作法.13.(2018·通辽16/26)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于12AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为【考点】三角形的面积;线段垂直平分线的性质;作图—基本作图.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;【解答】解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=BD,∴△ABD是等边三角形,∴BD=AD=DC,∴S△ADC=S△ABD×62=故答案为【点评】本题考查作图﹣基本作图,三角形的面积,等边三角形的判定和性质,等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.(2020•河北6/26)如图1,已知ABC∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在ABC∠内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ,12b DE <的长 【考点】作图-基本作图【分析】根据角平分线的画法判断即可.【解答】解:以B 为圆心画弧时,半径a 必须大于0,分别以D ,E 为圆心,以b 为半径画弧时,b 必须大于12DE ,否则没有交点, 故选:B .【点评】本题考查作图-基本作图,解题的关键是熟练掌握作角平分线的方法,属于中考常考题型.15.(2019•包头7/26)如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D 、E 为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积是( )A .1B .32C .2D .52【解答】解:由作法得AG 平分∠BAC ,∴G 点到AC 的距离等于BG 的长,即G 点到AC 的距离为1,所以△ACG 的面积=12×4×1=2. 故选:C .16.(2020•兴安盟•呼伦贝尔6/26)如图,直线AB ∥CD ,AE CE ⊥于点E ,若120EAB ∠=︒,则ECD ∠的度数是( )A .120︒B .100︒C .150︒D .160︒【考点】垂线;平行线的性质【分析】延长AE ,与DC 的延长线交于点F ,根据平行线的性质,求出AFC ∠的度数,再利用外角的性质求出ECF ∠,从而求出ECD ∠.【解答】解:延长AE ,与DC 的延长线交于点F ,//AB CD ,180A AFC ∴∠+∠=︒,120EAB ∠=︒,60AFC ∴∠=︒,AE CE ⊥,90AEC ∴∠=︒,而AEC AFC ECF ∠=∠+∠,30ECF AEC F ∴∠=∠-∠=︒,18030150ECD ∴∠=︒-︒=︒,故选:C .【点评】本题考查平行线的性质和外角的性质,正确作出辅助线和平行线的性质是解题的关键.17.(2020•河南4/23)如图,12//l l ,34//l l ,若170∠=︒,则2∠的度数为( )A .100︒B .110︒C .120︒D .130︒【考点】平行线的性质【分析】根据平行线的性质即可得到结论.【解答】解:12//l l ,170∠=︒,3170∴∠=∠=︒,34//l l , 2180318070110∴∠=︒-∠=︒-︒=︒,故选:B .【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.18.(2020•新疆兵团10/23)如图,若AB ∥CD ,110A ∠=︒,则1∠= 70 ︒.【考点】平行线的性质【分析】由//AB CD ,利用“两直线平行,同位角相等”可得出2∠的度数,再结合1∠,2∠互补,即可求出1∠的度数.【解答】解://AB CD ,2110A ∴∠=∠=︒.又12180∠+∠=︒,∴∠=︒-∠=︒-︒=︒.1180218011070故答案为:70.【点评】本题考查了平行线的性质以及邻补角,牢记“两直线平行,同位角相等”是解题的关键.19.(2019·河南省3/23)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【考点】平行线的性质.【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.20.(2018·兴安盟呼伦贝尔5/26)如图,//∠的度数∠=︒,则FAAB CD,70∠=︒,40C为()A .30︒B .35︒C .40︒D .45︒【考点】平行线的性质【分析】先根据平行线的性质求出BEF ∠的度数,再由三角形外角的性质即可得出结论.【解答】解://AB CD ,70C ∠=︒, 70BEF C ∴∠=∠=︒.40A ∠=︒,704030F ∴∠=︒-︒=︒.故选:A .【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.21.(2018·赤峰8/26)已知AB ∥CD ,直线EF 分别交AB 、CD 于点G 、H ,∠EGB =25°,将一个60°角的直角三角尺如图放置(60°角的顶点与H 重合),则∠PHG 等于( )A .30°B .35°C .40°D .45°【考点】平行线的性质.【分析】依据AB ∥CD ,可得∠EHD =∠EGB =25°,再根据∠PHD =60°,即可得到∠PHG =60°﹣25°=35°.【解答】解:∵AB ∥CD ,∴∠EHD =∠EGB =25°,又∵∠PHD =60°,∴∠PHG =60°﹣25°=35°,故选:B .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.22.(2018·通辽12/26)如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是75°30′(或75.5°).【考点】度分秒的换算;平行线的性质.【分析】首先证明∠EDO=∠AOB=37°45′,根据∠DEB=∠AOB+∠EDO计算即可解决问题;【解答】解:∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠CDA,∴∠EDO=∠AOB=37°45′,∴∠DEB=∠AOB+∠EDO=2×37°45′=75°30′(或75.5°),故答案为75°30′(或75.5°).【点评】本题考查平行线的性质、度分秒的换算等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(2018·聊城)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110° B.115° C.120° D.125°【答案】C.【解析】如下图,延长DE交BC于点G,∵∠BGD是△DCG的外角,∴∠BGD=∠BCD +∠CDE=95°+25°=120°,∵AB∥EF,∴∠DEF=∠DGB=120°.。
2021年九年级数学中考一轮复习知识点基础达标测评:相交线与平行线(附答案)1.下列说法正确的是()A.直线AB和直线BA是同一条直线B.直线是射线的2倍C.射线AB与射线BA是同一条射线D.三条直线两两相交,有三个交点2.如图,直线AB,CD交于点O,射线OM平分∠AOC,如果∠AOD=104°,那么∠BOM 等于()A.38°B.104°C.140°D.142°3.如图,OA⊥OB,若∠1=55°16′,则∠2的度数是()A.35°44′B.34°84′C.34°74′D.34°44′4.如图,AC⊥BC于点C,点D是线段BC上任意一点,若AC=6,则AD的长不可能是()A.5.5B.6C.7D.85.已知点P在直线MN外,点A、B、C均在直线MN上,P A=2.5cm,PB=3cm,PC=2.2cm,则点P到直线MN的距离()A.等于3cm B.等于2.5cmC.不小于2.2cm D.不大于2.2cm6.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.不相交的两条直线叫做平行线7.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.38.如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②9.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°10.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)11.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有个交点.12.如图,直线a,b相交于点O,若∠1+∠2=220°,则∠3=.13.如图,已知AO⊥BC于O,∠BOD=120°,那么∠AOD=°.14.如图,为了把河中的水引到C处,可过点C作CD⊥AB于D,然后沿CD开渠,这样做可使所开的渠道最短,这种设计的依据是.15.如图,AB⊥l1,AC⊥l2,已知AB=4,BC=3,AC=5,则点A到直线l1的距离是.16.如图,∠B的内错角是.17.在同一平面内,不重合的两条直线的位置关系是.18.若直线a∥b,a∥c,则直线b与c的位置关系是.19.如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是.20.如图,AB∥CD,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为度.21.为了解决“经过平面上的100个点中的任意两点最多能画出多少条直线”这个问题,数学课外兴趣小组的同学们讨论得出如下方法:当n=2,3,4时,画出最多直线的条数分别是:过两点画一条直线,三点在原来的基础上增加一个点,它与原来两点分别画一条直线,即增加两条直线,以此类推,平面上的10个点最多能画出1+2+3+…+9=45条直线.请你比照上述方法,解决下列问题:(要求作图分析)(1)平面上的20条直线最多有多少个交点?(2)平面上的100条直线最多可以把平面分成多少个部分?平面上n条直线最多可以把平面分成多少个部分?22.如图,直线AB,CD相交于点O,∠AOC=120°,OE平分∠BOC.(1)求∠BOE的度数;(2)若OF把∠AOE分成两个角,且∠AOF:∠EOF=2:3,判断OA是否平分∠DOF?并说明理由.23.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.24.如图,点P,点Q分别代表两个村庄,直线l代表两个村庄中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站.(1)若考虑到村庄P居住的老年人较多,计划建一个离村庄P最近的车站,请在公路l 上画出车站的位置(用点M表示),依据是;(2)若考虑到修路的费用问题,希望车站的位置到村庄P和村庄Q的距离之和最小,请在公路l上画出车站的位置(用点N表示),依据是.25.已知点A,B,C如图所示,根据要求完成下列各题.(1)画直线BC,线段AB和射线CA.(以(2)过点A画BC的垂线段AD,垂足为D,并量出点A到直线BC的距离为cm.答题纸为测量依据,结果精确到0.1cm).26.如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG ∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的角,根据,可判断角平分线EG、FH的位置关系是.27.(1)补全下面的图形,使之成为长方体ABCD﹣EFGH的直观图,并标出顶点的字母;(2)图中与棱AB平行的棱有;(3)图中棱CG和面ABFE的位置关系是.28.如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?29.如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30.如图,AO∥CD,OB∥DE,∠O=40°,求∠D的度数.(1)请完成下列书写过程.∵AO∥CD(已知)∴∠O==40°()又∵OB∥DE(已知)∴=∠1=°()(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=°.参考答案1.解:A、直线AB和直线BA是同一条直线,故本选项说法正确.B、直线和射线不能度量,故本选项说法不正确.C、射线AB与射线BA方向相反,不是同一条射线,故本选项说法不正确.D、三条直线两两相交有三个或一个交点,故本选项说法不正确.故选:A.2.解:∵∠AOD=104°,∴∠AOC=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选:D.3.解:∵OA⊥OB,∴∠AOB=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故选:D.4.解:∵AC⊥BC于点C,点D是线段BC上任意一点,AC=6,∴AD≥6,故选:A.5.解:当PC⊥MN时,PC的长是点P到直线MN的距离,即点P到直线MN的距离等于2.2cm,当PC不垂直于MN时,点P到直线MN的距离小于PC的长,即点P到直线MN的距离小于2.2cm,综上所述:点P到直线MN的距离不大于2.2cm,故选:D.6.解:A、对顶角相等,正确;B、两点之间所有连线中,线段最短,正确;C、等角的补角相等,正确;D、在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:D.7.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:B.8.解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.9.解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.10.解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.11.解:两条直线相交最多有1个交点,三条直线相交最多有1+2=3个交点,四条直线相交最多有1+2+3=6个交点,五条直线相交最多有1+2+3+4=10个交点,……十条直线相交最多有1+2+3+4+5+6+7+8+9=45个交点;故答案为:45.12.解:∵∠1=∠2,∠1+∠2=220°,∴∠1=∠2=110°,∴∠3=180°﹣110°=70°,故答案为:70°.13.解:∵AO⊥BC,∴∠AOB=90°,∵∠BOD=120°,∴∠AOD=∠BOD﹣∠AOB=120°﹣90°=30°,故答案是:30.14.解:过D点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,这种设计的依据是垂线段最短.故答案为:垂线段最短.15.解:∵AB⊥l1,则点A到直线l1的距离是AB的长=4;故答案为:4.16.解:∠B的内错角是∠BAD;故答案为:∠BAD.17.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.18.解:若直线a∥b,a∥c,则直线b与c的位置关系是平行,故答案为:平行.19.解:由图形得,有两个相等的同位角存在,这样做的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.20.解:∵AB∥CD,∴∠CMF=∠1=57°,∵MF平分∠CME,∴∠CME=2∠CMF=114°.又∵∠CME+∠EMD=180°,∴∠EMD=180°﹣∠CME=180°﹣114°=66°.故答案为:66.21.解:(1)当有2,3,4条直线时最多交点的个数分别是:∴20条直线最多有1+2+3+…+19=190个交点;(2)当有1,2,3条直线时最多可把平面分成的部分分别是:∴100条直线最多可把平面分成1+(1+2+3+…+100)=5051个部分,同理n条直线最多可把平面分成1+(1+2+3+…+n)=1+=.22.解:(1)∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠BOE=∠BOC=×60°=30°;(2)OA平分∠DOF,理由如下:∵∠BOE=30°,∴∠AOE=180°﹣30°=150°,∵∠AOF:∠EOF=2:3,∴∠AOF=60°,∠EOF=90°,∵∠AOD=∠BOC=60°,∴∠AOD=∠AOF,∴OA平分∠DOF.23.解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.24.解:(1)如图,点M即为所示.依据是直线外一点与直线上各点连接的所有线段中垂线段最短(2)如图,点N即为所示.依据是两点之间线段最短;故答案为:直线外一点与直线上各点连接的所有线段中垂线段最短;两点之间线段最短.25.解:(1)如图所示:(2)经测量AD=1.8cm,故答案为:1.8.26.解:如图,已知AB∥CD,直线MN与AB,CD分别交于点E、F,EG平分∠MEB,FH平分∠MFD.∵AB∥CD,根据两直线平行,同位角相等可知∠MEB=∠MFD.又∵EG平分∠MEB,FH平分∠MFD,于是可得∠MEG和∠MFH的大小关系是∠MEG =∠MFH.而∠MEG和∠MFH是EG、FH被直线MN所截得的同位角,根据同位角相等,两直线平行,可判断角平分线EG、FH的位置关系是平行.故答案为:两直线平行,同位角相等;=;同位、同位角相等,两直线平行、平行.27.解:(1)如图即为补全的图形;(2)图中与棱AB平行的棱有CD、EF、GH;故答案为:CD、EF、GH;(3)图中棱CG和面ABFE的位置关系是:平行.故答案为:平行.28.解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.29.证明:∵∠DGA=∠FHC=∠DHB,∴AE∥BF,(同位角相等,两直线平行)∴∠A=∠FBC,(两直线平行,同位角相等)又∵∠A=∠F,∴∠F=∠FBC,(等量代换)∴DF∥AC.(内错角相等,两直线平行)30.解:(1)∵AO∥CD(已知),∴∠O=∠1=40°(两直线平行,同位角相等),又∵OB∥DE(已知),∴∠D=∠1=40°(两直线平行,同位角相等).故答案为:∠1,两直线平行,同位角相等,∠D,40°,两直线平行,同位角相等;(2)若在平面内取一点M,作射线MP∥OA,MQ∥OB,则∠PMQ=(40或140)°.故答案为:(40或140)。
(实数部分)A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.-2的绝对值等于( ) A .2 B .-2 C.12 D .±23.-4的倒数的相反数是( ) A .-4 B .4 C .-14 D.144.-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( ) A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( )A .-(-2)-(-3)B .(-2)×(-3)C .(-2)2D .(-3)-37.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃.8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( ) A .21×10-4千克 B .2.1×10-6千克 C .2.1×10-5千克 D .2.1×10-4千克10.计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题11.实数a ,b 在数轴上的位置如图所示,下列式子错误的是( ) A .a <b B .|a |>|b | C .-a <-b D .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;请解答下列问题:(1)按以上规律列出第5个等式:a 5=___________=______________;(2)用含有n 的代数式表示第n 个等式:a n =______________=____________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值. 选做题18.请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立: 1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =_______(用a ,b 的一个代数式表示).(代数式部分)A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( )A .(15+a )万人B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B 。
(相交线与平行线部分)A级基础题1.如图,与∠1是内错角的是( )A.∠2 B.∠3 C.∠4 D.∠52.如图,直线a∥b,∠1=70°,那么∠2的度数是( )A.50° B.60° C.70° D.80°3.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE∥AB,∠ADE=42°,则∠B的大小为( )A.42° B.45° C.48° D.58°4.如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3=( )A.100° B.60° C.40° D.20°5.如图,小明在操场上从点A出发,先沿南偏东30°方向走到点B,再沿南偏东60°方向走到点C.这时,∠ABC的度数是( )A.120° B.135° C.150° D.160°6.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )A.100° B.105° C.110° D.115°7.下列命题中,属于真命题的是( )A.相等的角是直角 B.不相交的两条线段平行C.两直线平行,同位角互补 D.经过两点有且只有一条直线8.如图,已知∠1=∠2=∠3=59°,则∠4=________.9.如图,在△ABC中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,则∠2=______度.10.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=________度.11.如图X4-1-10,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=________度.12.如图X4-1-11,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.B级中等题13.如图,直线l∥m,将含有45°角的三角板AB C的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )A.20° B.25° C.30° D.35°4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度为( ) A.先向左转130°,再向左转50° B.先向左转50°,再向右转50°C.先向左转50°,再向右转40° D.先向左转50°,再向左转40°15.观察下列各图如图,寻找对顶角(不含平角):①②③(1)如图①,图中共有________ 对对顶角;(2)如图②,图中共有________ 对对顶角;(3)如图③,图中共有________ 对对顶角;(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;(5)若有2 018条直线相交于一点,则可形成______对对顶角.C级拔尖题16.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1),(2),(3)的结果中,你能看出什么规律?选做题17.如图①,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.(1)写出图X4-1中面积相等的各对三角形:________________________________;(2)如图①,A,B,C为三个顶点,点P在直线m上移动到任一位置时,总有____________与△ABC的面积相等;(3)如图②,一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积.。
15.线段、角、相交线与平行线基础训练1. (2020河北)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B. 1条C. 2条D. 无数条第1题图2. (2020金华)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A. 连接直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行第2题图3. (2020陕西)若∠A=23°,则∠A余角的大小是()A. 57°B. 67°C. 77°D. 157°4. (2020自贡)如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A. 50°B. 70°C. 130°D. 160°5. (2020贵阳)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A. 150°B. 120°C. 60°D. 30°第5题图6.如图,直线AB∥CD,∠3=70°,则∠1=()A. 70°B. 100°C. 110°D. 120°第6题图7. (2020乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()A. 10°B. 20°C. 30°D. 40°第7题图8. (2020抚顺)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A. 15°B. 20°C. 25°D. 40°第8题图9. (2020长沙)如图,一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A. 60°B. 45°C. 30°D. 25°第9题图10.(2020滨州)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A. 60°B. 70°C. 80°D. 100°11. (2020十堰)如图,将一副三角板重叠放在一起,使直角顶点重合于点O.若∠AOC=130°,则∠BOD=()A.30°B. 40°C. 50°D. 60°第11题图12. (2020临沂)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A. 40°B. 50°C. 60°D. 70°第12题图13.(2020枣庄)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A. 10°B. 15°C. 18°D. 30°第13题图14.(2020攀枝花)如图,平行线AB,CD被直线EF所截,过点B作BG⊥EF于点G,已知∠1=50°,则∠B=()A. 20°B. 30°C. 40°D. 50°第14题图15. (2020岳阳)下列命题是真命题的是()A. 一个角的补角一定大于这个角B. 平行于同一条直线的两条直线平行C. 等边三角形是中心对称图形D. 旋转改变图形的形状和大小16.(2020湘潭)如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为_______.第16题图17.(2020杭州)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A =_______.第17题图巩固训练18. (2020郴州)如图,直线a,b被直线c,d所截,下列条件能判定a∥b的是()A. ∠1=∠3B. ∠2+∠4=180°C. ∠4=∠5D. ∠1=∠2第18题图19. (2020常德)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A. 70°B. 65°C. 35°D. 5°第19题图20. (2020泰安)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A. 80°B. 100°C. 110°D. 120°第20题图21.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12 cm,则线段BD的长为()A. 10 cmB. 8 cmC. 10 cm或8 cmD. 2 cm或4 cm22. (2020江西)如图,∠1=∠2=65°,∠3=35°,则下列结论错误..的是()A. AB∥CDB. ∠B=30°C. ∠C+∠2=∠EFCD. CG>FG第22题图23.(2020铜仁)设AB、CD、EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12 cm,EF与CD的距离是5 cm,则AB与EF的距离等于_______cm.能力提升24. (2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5第24题图25. (2020宜昌)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是()参考答案1. D 【解析】在平面内过任意一点都能作直线m 的垂线,这样的垂线有无数条.2. B 【解析】∵线段a ⊥AB ,线段b ⊥AB ,∴a ∥b ,∴工人师傅用到的判定依据是在同一平面内,垂直于同一条直线的两条直线互相平行.3. B 【解析】如果两个角的和为90°,那么这两个角互余,∴∠A =23°的余角为67°.4. C 【解析】设这个角的度数为x ,则这个角的补角为180°-x ,根据题意得2(180°-x )+30°=x ,解得x =130°.5. A 【解析】∵∠1=∠2(对顶角相等),∠1+∠2=60°,∴∠1=∠2=30°,∵∠1+∠3=180°,∴∠3=150°.6. C 【解析】∵AB ∥CD ,∴∠1=∠2.又∵∠2+∠3=180°,∠3=70°,∴∠1=∠2=180°-70°=110°.7. B 【解析】∵∠FEA =40°,∴∠CEF =140°,∵射线EB 平分∠CEF ,∴∠CEB =∠BEF =70°,∵GE ⊥EF ,∴∠GEB =∠GEF -∠BEF =90°-70°=20°.8. C 【解析】如解图,∵AB ∥CD ,∴∠3=∠1=20°,∴∠2=45°-∠3=25°.第8题解图9. C 【解析】∵AB 平分∠CAD ,∠CAE =60°,∴∠DAE =∠CAE =60°,∠CAD =2×60°=120°,∵FD ∥GH ,∴∠ACE =180°-∠CAD =60°,∵∠ACB =90°,∴∠ECB =∠ACB -∠ACE =30°.10. B 【解析】∵AB ∥CD ,∠1=55°,∴∠FPC =∠1=55°.∵PF 是∠EPC 的平分线,∴∠EPC =2∠FPC =110°. ∵∠EPC +∠EPD =180°,∴∠EPD =70°.11. C 【解析】∵∠AOC =130°,∴∠BOC =∠AOC -∠AOB =40°,∴∠BOD =∠COD -∠BOC =50°.12. D 【解析】∵AB =AC ,∴∠ABC =∠ACB ,∵∠A =40°,∴∠ABC =180°-40°2=70°,∵CD ∥AB ,∴∠BCD =∠ABC =70°.13. B 【解析】由题意可得∠EDF =45°,∠ABC =30°,∵AB ∥CF ,∴∠ABD =∠EDF =45°,∴∠DBC =45°-30°=15°.14. C 【解析】如解图,∵AB ∥CD ,∠1=50°,∴∠2=50°.∵BG ⊥EF ,∴∠BGE =90°,∴∠B =180°-50°-90°=40°.第14题解图15. B 【解析】钝角的补角小于这个角,故选项A 是假命题;根据平行线的性质得出,平行于同一条直线的两条直线平行,故选项B 是真命题;等边三角形是轴对称图形,不是中心对称图形,故选项C 是假命题;旋转时改变图形的位置,形状和大小不变,故选项D 是假命题.16. 3 【解析】根据垂线段最短可知,当PM ⊥OC 时,PM 最小,当PM ⊥OC 时,又∵OP 平分∠AOC ,PD ⊥OA ,PD =3,∴PM =PD =3.17. 20° 【解析】∵AB ∥CD ,∴∠ABE =∠EFC =130°,∵∠E =30°,∴∠A =180°-30°-130°=20°.18. D 【解析】∵∠1=∠3,∴c ∥d (同位角相等,两直线平行);∵∠2+∠4=180°,∴c ∥d (同旁内角互补,两直线平行);∵∠4=∠5,∴c ∥d (内错角相等,两直线平行);∵∠1=∠2,∴a ∥b (同位角相等,两直线平行).故选D.19. B 【解析】如解图,过点C 作CF ∥AB ,∴∠1=∠BCF ,∵AB ∥DE ,∴CF ∥DE ,∴∠2=∠FCE ,∵∠BCE =∠BCF +∠ECF ,∴∠BCE =∠1+∠2,∵∠1=30°,∠2=35°,∴∠BCE =65°.第19题解图20. C 【解析】如解图,由题意得DE ∥GF ,∴∠1=∠3=50°,∴∠4=180°-∠3=130°,∴在四边形ACMN 中,∠2=360°-∠A -∠C -∠4=110°.第20题解图21. C 【解析】∵点C 是线段AB 中点,AB =12 cm ,∴AC =BC =12AB =6 cm ,∵点D 是线段AC 的三等分点,∴CD =13AC =2 cm 或CD =23AC =4 cm ,当CD =2 cm 时,BD =BC +CD =6+2=8 cm ;当CD =4 cm 时,BD =BC +CD =6+4=10 cm .22. C 【解析】∵∠1=∠2,∴AB ∥C D.∴选项A 正确,不符合题意;∵∠1=∠B +∠EFB ,∠EFB=∠3=35°,∴∠B=∠1-∠EFB=65°-35°=30°.∴选项B正确,不符合题意;∵∠EFC=∠C+∠CGF,∠CGF=180°-∠2=115°>∠2,∴∠C+∠CGF>∠C+∠2.∴∠C+∠2<∠EF C.∴选项C错误,符合题意;∵由AB∥CD可知,∠C=∠B=30°,∴在△CGF中,∠3=35°>∠C,∴CG>FG.∴选项D正确,不符合题意.23. 7或17【解析】根据题意可知,EF的位置有两种情况:①当EF与AB在CD异侧时,AB与EF 之间的距离为12+5=17 cm;②当EF与AB在CD同侧时,AB与EF之间的距离为12-5=7 cm;综上所述,AB与EF的距离为7 cm或17 cm.24.A【解析】A.∠1和∠2互为对顶角,对顶角相等,故本选项正确;B.∠2=∠OAD+∠3,故本选项错误;C.∠1=∠4+∠5,故本选项错误;D.∠2=∠4+∠5,故本选项错误.25. C【解析】A.如解图①,∠1是锐角,且∠1=α+β,∴此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B.如解图②,∠2是锐角,且∠2=α+β,∴此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C.如解图③,∠3是钝角,且∠3=α+β,∴此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D.如解图④,∠4是锐角,且∠4=α+β,∴此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.第25题解图。
c b a 21(线段与角、相交线与平行线)11.如图,直线l 1∥l 2,并且被直线l 3,l 4所截,则∠α= 64° .10.如图,直线a ∥b ,直线a 、b 被直线c 所截,∠1=37°,则∠2= .1、在同一平面内不在同一直线上的3个点,过任意2个点作一条直线,则可作直线的条数为____________.1、如图,直线a 、b 被第三条直线c 所截,并且a ∥b ,若165∠=,则2∠= .1、如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB =10,AC =6 , 则CD =_____.2、如图2, AB CD ∥,EF AB ⊥于E ,EF 交CD 于F ,已知230∠=°,则1∠是( ).A .20° B.60° C.30° D.45°3、从3时到6时,钟表的时针旋转角的度数是( ).A.30︒ B.60︒ C.90︒ D.120︒4、如图,AB CD ∥,AC BC ⊥,垂足为C .若40A ∠=︒,则BCD ∠=_______度.5、如图,C 、D 是线段AB 上两点,若BC =5cm ,B D =8cm ,且D 是AC 的中点,则AC 的长等于( ).A .3c mB .6cmC .8cmD .11cm6、如图,DE ∥BF ,若∠1=40º,则∠2= .7、已知∠a =72°,则∠a 的余角是 .ADB CF E 1 2 bA C DB 2题 A BCD 第4题13.如图,已知AB ∥C D ,AB=AC ,∠ABC=68°,则∠ACD= .1、平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若AB∥CD,点P 在AB 、CD 外部,则有∠B=∠BOD,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,则∠BPD ﹑∠B﹑∠D﹑∠BQD 之间有何数量关系?(不需证明);(3)根据(2)的结论求图d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数.图c 图d 图aO图b。
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
(相交线与平行线部分)
A级基础题
1.如图,与∠1是内错角的是( )
A.∠2 B.∠3 C.∠4 D.∠5
2.如图,直线a∥b,∠1=70°,那么∠2的度数是( )
A.50° B.60° C.70° D.80°
3.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上的一点,DE∥AB,∠ADE=42°,则∠B的大小为( )
A.42° B.45° C.48° D.58°
4.如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3=( )
A.100° B.60° C.40° D.20°
5.如图,小明在操场上从点A出发,先沿南偏东30°方向走到点B,再沿南偏东60°方向走到点C.这时,∠ABC的度数是( )
A.120° B.135° C.150° D.160°
6.如图,a∥b,∠1=65°,∠2=140°,则∠3=( )
A.100° B.105° C.110° D.115°
7.下列命题中,属于真命题的是( )
A.相等的角是直角 B.不相交的两条线段平行
C.两直线平行,同位角互补 D.经过两点有且只有一条直线
8.如图,已知∠1=∠2=∠3=59°,则∠4=________.
9.如图,在△ABC中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,∠A=46°,∠1=52°,则∠2=______度.
10.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=________度.
11.如图X4-1-10,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=________度.
12.如图X4-1-11,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.
B级中等题
13.如图,直线l∥m,将含有45°角的三角板AB C的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为( )
A.20° B.25° C.30° D.35°
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度为( ) A.先向左转130°,再向左转50° B.先向左转50°,再向右转50°
C.先向左转50°,再向右转40° D.先向左转50°,再向左转40°
15.观察下列各图如图,寻找对顶角(不含平角):
①②③
(1)如图①,图中共有________ 对对顶角;
(2)如图②,图中共有________ 对对顶角;
(3)如图③,图中共有________ 对对顶角;
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;
(5)若有2 018条直线相交于一点,则可形成______对对顶角.
C级拔尖题
16.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;
(4)从(1),(2),(3)的结果中,你能看出什么规律?
选做题
17.如图①,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.
(1)写出图X4-1中面积相等的各对三角形:________________________________;
(2)如图①,A,B,C为三个顶点,点P在直线m上移动到任一位置时,总有____________与△ABC的面积相等;
(3)如图②,一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积.。