输电线路杆塔结构设计
- 格式:doc
- 大小:35.00 KB
- 文档页数:7
架空输电线路杆塔结构设计技术规程
1概述
架空输电线路杆塔是电力输电中最重要的组成部分,考虑到取电安全问题,对杆塔的结构设计有严格的技术规程要求。
本文介绍了架空输电线路杆塔结构设计技术规程的基本内容,为输电线路的建设和施工提供依据,也可作为设计单位和施工单位的参考。
2杆塔的基本要求
*高度*:杆塔高度是指距离地面到绝缘子串最高处的距离。
按不同地域不同挂线规格,对杆高有不同的要求。
*类型*:杆塔承载电线具有两种不同的类型:双悬吊塔,还有最常见的双角塔。
两种种类塔的结构形式不同,但是理论负载能力是相同的。
*结构受力*:杆塔结构的受力性能和它的抗风能力对电网安全具有重要作用。
要确保杆塔结构的安全性,有必要对其进行强度分析和稳定性分析。
3设计和施工质量要求
*设计*:设计规范体系应由设计单位按照国家有关标准和规范,给出自己经过计算分析的子桩及杆塔设计配置。
*施工*:施工单位应遵守运行维护规程,按设计规范进行安装施工,确保杆塔的质量和稳定性,并定期进行检查维护,保证电力系统安全运行。
4结束语
架空输电线路杆塔结构设计技术规程是保证电力系统安全运行的重要依据,以上是其基本内容,贯彻执行可以有效降低投资成本,提高发电效率,确保发电安全。
110kV输电线路杆塔结构优化设计摘要:论述杆塔结构设计优化的方法和原则,对塔身断面型式、斜材布置、主材长度优化、节点优化做了分析比较,合理优化杆塔结构。
关键词:110kV输电线路;结构优化;斜材布置;节点优化1. 优化原则杆塔结构设计是在满足线路电气性能要求的基础上,通过荷载计算、结构体系选择、结构内力与变形分析,强度、稳定和刚度等计算,得出最优的杆塔型式的过程。
设计中采取以概率论为基础的极限状态设计方法,用可靠度指标度量结构构件的可靠度。
杆塔按铰接的空间桁架结构进行内力分析。
结构或构件的强度、稳定和连接强度,按承载能力极限状态的要求,采用荷载的基本组合,按下列设计表达式进行设计:在结构和构件的强度、稳定及变形均满足要求的基础上,杆塔优化的原则就是追求杆塔及基础综合指标最优、外形美观。
铁塔的优化设计均根据工程的实际情况,针对不同类型铁塔的受力特点和规程规范的要求,在工程荷载和电气间隙条件下,经多方案计算比较,确定合理的控制尺寸和细部结构。
(1)塔头尺寸,在满足电气间隙的前提下尽量紧凑,以降低塔身受风面积,降低风荷载。
这不但节约塔材,也有利于铁塔安全。
(2)塔身布置,在满足铁塔整体强度、稳定的前提下尽量简捷,保证构件正确传力,路线清晰直接。
(3)塔腿根开,选取塔重最小的方案,再结合基础作用力和材料消耗,选取最合理的方案。
(4)节点构造,减少偏心、减少节点板的使用,力求合理。
2.优化方法优化设计计算方法的选择,是铁塔优化设计的前提。
只有在确定计算程序的最优计算方法后才能对整个工程进行优化设计。
在程序分析计算中每一次迭代中都要作一次结构分析;因此,设计变量的个数及迭代到收敛的迭代次数,就构成了问题的规模。
正因为如此,数学规划法在铁塔计算的应用上受到了限制。
单纯的准则法所求的解,只是最优解附近的解,而非最优解。
同时,某些结构准则法会导致结构退化、迭代不收敛的情况。
我们在使用准则法中还发现,准则法迭代到收敛的迭代次数,几乎不受设计变量数的影响。
输电线路杆塔的结构优化与分析输电线路杆塔是电力系统中的重要设施,用于支撑输电线路,保障电能的传输和分配。
杆塔的结构优化和分析是提高输电线路安全性能和经济性的关键。
本文将从杆塔结构的优化设计、力学分析、材料选用等方面探讨输电线路杆塔的优化与分析。
一、杆塔结构的优化设计输电线路杆塔的结构优化设计是提高杆塔整体性能并减少杆塔重量的关键。
优化设计的主要目标是确保杆塔的稳定性和抗风性能,同时降低运载杆塔的重量,减少杆塔成本。
通过数值模拟和实验数据分析,确定合理的杆塔高度、截面尺寸和杆塔架设方式等因素,以最大限度地提高杆塔的整体性能。
二、杆塔力学分析杆塔的力学分析是评估杆塔结构强度和抗风能力的基础。
杆塔承受的主要力包括垂直荷载、水平荷载和风荷载等。
在进行力学分析时,需要考虑杆塔的材料特性、截面形状和外部荷载条件等因素。
通过有限元分析等方法,分析杆塔在不同荷载作用下的应力和变形情况,评估杆塔的结构安全性能。
三、杆塔材料选用杆塔的材料选用是保证杆塔结构强度和耐久性的重要环节。
常见的杆塔材料包括钢材、木材和混凝土等。
钢材具有高强度、耐腐蚀性好等优点,广泛应用于输电线路杆塔。
木材在一些特殊环境下也被使用,但其强度和稳定性相对较低。
混凝土杆塔在高压输电线路中较为常见,具有良好的耐久性和稳定性。
根据杆塔的具体使用环境和技术要求,选择合适的材料,确保杆塔的结构安全和寿命。
四、杆塔结构优化与环境保护杆塔结构优化还需要考虑对环境的保护。
传统的杆塔设计和建设方式常常对环境产生一定的影响,例如土地利用、生态破坏等。
在进行杆塔设计时,需要充分考虑生态保护和环境可持续性发展的要求,减少对生态环境的破坏。
同时,根据地理地形和气候特点,优化杆塔的布局和高度,减少对风能利用和风景的影响。
总之,输电线路杆塔的结构优化和分析是电力系统中重要的研究方向。
通过合理的结构设计、力学分析和材料选用,可以提高杆塔的安全性能和经济性,同时减少对环境的影响,实现电力系统的健康发展。
浅谈输电线路杆塔结构设计输电线路杆塔结构设计是电力工程中非常重要的一环,它承载着输电线路的重要负荷,直接关系到输电线路的安全稳定运行。
本文将从杆塔结构设计的需求、设计原则、设计方法等方面进行浅谈。
杆塔结构设计的需求。
输电线路杆塔结构设计需满足以下几个方面的需求:1. 承载能力:杆塔需能承受输电线路的重要荷载,如导线重量、风荷载、冰载等。
2. 稳定性:杆塔需具有足够的抗倾覆和抗滑动能力,以保证输电线路的稳定运行。
3. 经济性:杆塔需在满足承载能力和稳定性的前提下,尽可能减少材料和成本。
4. 施工性:杆塔需便于施工安装。
杆塔结构设计的原则。
1. 合理性原则:杆塔结构设计要符合力学原理,合理布置结构材料,确保承载能力和稳定性。
2. 安全性原则:杆塔结构设计要满足国家相关技术标准和规范,确保输电线路的安全运行。
3. 经济性原则:杆塔结构设计要在满足安全稳定的前提下,尽可能减少材料和成本。
4. 实用性原则:杆塔结构设计要考虑施工、运输、维护等因素,便于实际应用。
杆塔结构设计的方法。
1. 经验法:根据已有的经验和技术积累,确定杆塔结构类型和参数。
2. 仿真模拟法:利用计算机软件对杆塔结构进行力学分析和应力分析,评估其承载能力和稳定性。
3. 优化设计法:通过对不同结构方案进行比较和优化,选取最佳结构方案。
4. 正态分布法:根据输电线路的荷载特性和设计要求,采用正态分布法对杆塔结构进行设计。
输电线路杆塔结构设计是一个复杂而重要的任务,需要考虑承载能力、稳定性、经济性和施工性等多个方面的需求,遵循合理性、安全性、经济性和实用性的设计原则,采用经验法、仿真模拟法、优化设计法和正态分布法等设计方法,以确保输电线路的安全稳定运行。
输电线路杆塔结构设计与安全分析1. 引言输电线路是将电能从发电厂输送到用户的重要途径,其中杆塔是支撑输电线路的重要组成部分。
杆塔的结构设计和安全分析对于确保输电线路的可靠运行至关重要。
本文将探讨输电线路杆塔结构设计与安全分析的相关问题。
2. 输电线路杆塔结构设计2.1 杆塔的类型和功能杆塔的类型根据输电线路的特点和需求决定,主要有悬垂塔、耐张塔和角钢塔等。
不同类型的杆塔承受不同的应力和荷载,因此其结构设计需要根据实际情况合理选择。
悬垂塔用于支撑输电线路的过渡杆塔,主要作用是承受电线重量和保持电线在合适的高度。
耐张塔用于承受输电线路的张力,主要作用是保持电线的水平张力,并通过绝缘子串将电线与杆塔绝缘。
角钢塔用于支撑输电线路在角点和转角处,主要作用是承受电线的拉力和侧荷。
2.2 杆塔的结构设计要考虑的因素杆塔的结构设计要考虑多个因素,包括荷载、持久性、地基条件、风荷载、地震荷载和冰荷载等。
在设计过程中,需要通过强度计算、稳定计算和刚度计算等方法,确保杆塔能够承受各种荷载条件下的力学和结构要求。
3. 输电线路杆塔安全分析3.1 强度安全系数强度安全系数是评估杆塔结构安全性的重要指标。
强度安全系数是指杆塔承受外力作用下的最大应力与杆塔材料的屈服强度之比。
通常情况下,强度安全系数应满足设计规范的要求,以确保杆塔在设计寿命内不发生延性破坏。
3.2 稳定性分析稳定性分析是评估杆塔结构在外力作用下抵抗倾覆、屈曲和滑移等破坏形态的能力。
稳定性分析主要包括几何稳定性分析和结构稳定性分析。
几何稳定性分析主要考虑杆塔倾覆和滑移的问题,通过计算抵抗倾覆和滑移的稳定性安全系数来评估结构的稳定性。
结构稳定性分析主要考虑杆塔抵抗屈曲现象的能力,通过计算抵抗屈曲的稳定性安全系数来评估结构的稳定性。
3.3 风荷载分析输电线路杆塔在风力作用下会受到风荷载的影响,因此风荷载分析是杆塔结构安全分析的重要内容。
风荷载分析需要考虑杆塔的几何形状、表面粗糙度、地理位置以及风力特性等因素。
架空输电线路杆塔结构设计分析摘要:输电线路中的杆塔主要起到支撑架空输电线路与地线作用,通过它可以使输电线路与地面之间保持一定的距离,以免受到恶劣天气影响或人为外力破坏而出现供电故障,确保了输电线路的正常运行。
因为海拔高度会影响杆塔电气间隙,决定着杆塔结构耗钢量,所以在进行输电线路杆的结构设计时,要针对不同的地势环境制定不同的设计方案,这也是杆塔结构设计的技术要点。
关键词:架空;输电线路;杆塔结构;结构设计1输电线路杆塔建设发展的现状当前,架空输电线路杆塔无论是它的设计水平还是制造水平都较为低下,不能很好地适应当前社会发展的需要。
国内架空输电线路杆塔生产制造单位主要分为以下两种类型:①手工生产企业。
这一类企业主要是由民营、个体或乡镇企业所构成,他们无论是在生产能力方面还是加工能力方面都比较低下,有些放样、加工环节甚至是依靠手工操作来完成。
在这种情况下,不能很好的保障杆塔的质量和强度;②大型的国营生产企业。
这些企业一般都是由电力部门指定的生产厂家,他们的生产实力要较手工生产企强一些。
即使这样,也仅仅是达到80年代的生产技术水平而已。
因此,就现阶段而言,我们还是应从国外引进先进的生产技术和生产设备,这样可以快速提高我国的杆塔生产制造水平。
在杆塔的设计方面,生产单位与设计单位还处于独立的工作状态,没有形成一个相互联系的整体。
在这样的模式下,设计单位在完成了力学计算和结构选材之后,自身的工作任务就已经基本完成了,却没有很好的在计算方法与计算机放样软件之间建立紧密的联系。
而杆塔的生产加工环节则由生产企业来完成。
这种设计与生产相分离的方式,无论是对杆塔的设计质量还是生产水平都很不利,还使工作效率大幅降低。
2架空输电线路杆塔结构设计2.1动态规划杆塔设计在杆塔优化设计中,力求杆塔的重量轻、型式美、运输方便、加工简单。
动态规划设计是指在进行杆塔设计中,综合采取多种方法相互结合,以达到优化的目的。
在对杆塔进行制作之前,相关设计人员需要根据杆塔安装的现场实际情况、力学原理和相关的计算法则,缩小杆塔的迎风面积。
《110~750kV架空输电线路设计规范》与《架空送电线路杆塔结构设计技术规定》主要区别1. 对重要送电线路,杆塔结构重要性系数取1.1。
该系数将使构件应力、基础作用力增大10%~20%。
2. 气象条件重现期:500kV输电线路由30年提高到50年;110kV~330kV输电线路由15年提高到30年;设计重现期的提高将使风荷载加大10%左右。
3.确定基本风速时,应按当地气象台、站10min时距平均的年最大风速为样本,并宜采用极值Ⅰ型分布作为概率模型。
统计风速应取以下高度:110~750kV输电线路离地面10m各级电压大跨越离历年大风季节平均最低水位10m4.山区输电线路,宜采用统计分析和对比观测等方法,由邻近地区气象台、站的气象资料推算山区的最大基本风速,并结合实际运行经验确定。
如无可靠资料,宜将附近平原地区的统计值提高10%选用。
5.110~330kV输电线路的基本风速,不宜低于23.5m/s;500~750kV输电线路,基本风速不宜低于27m/s。
必要时还宜按稀有风速条件进行验算。
6. 根据覆冰厚度将冰区划分为轻、中、重三个等级,采用不同的设计标准(与老规相比增加中冰区)。
地线设计冰厚,除无冰区外,应较导线增加5mm。
轻冰区:10mm及以下;中冰区:大于10mm小于20mm;重冰区:20mm及以上。
7. 各类杆塔均应按线路的正常运行情况(包括基本风速、最大覆冰)、不均匀冰荷载情况、断线情况和安装情况的荷载进行计算。
必要时验算各种可能出现的稀有情况。
对轻中冰区线路,新增不均匀冰荷载情况,荷载组合系数提高到0.9。
《架空送电线路杆塔结构设计技术规定》仅对重冰区线路需计算不均匀冰荷载情况,且荷载组合系数为0.75。
)8. 断线情况:(1).直线塔:表1 直线塔断线荷载组合类别架空送电线路杆塔结构设计技术规定110~750kV架空输电线路设计规范备注荷载组合地线断任意一根地线,导线未断 1. 单回路直线塔的断线相,新老规定一致;2. 对双、多回路直线塔而言:新规导线断线相较老规有所增加。
浅谈输电线路杆塔结构设计1. 引言1.1 背景介绍传统的杆塔设计主要以安全性和稳定性为主要考虑因素,而在现代社会,人们对输电线路的外观、环保性和美观度也提出了更高的要求。
设计人员需要在确保杆塔结构强度和稳定性的还要考虑到线路杆塔在自然环境中的生存和展示的需要。
本文将对输电线路杆塔的设计原则、结构类型、材料选择和安全性进行深入探讨,希望能够为相关设计人员提供一些参考和借鉴,促进输电线路杆塔的设计水平不断提高。
也将探讨设计输电线路杆塔的重要性和未来发展趋势,为电力系统的发展做出贡献。
1.2 研究目的本文旨在探讨输电线路杆塔结构设计的相关内容,通过对输电线路杆塔的功能、设计原则、结构类型、材料选择和安全性等方面进行深入分析,旨在揭示设计输电线路杆塔的重要性以及未来发展趋势。
通过本文的研究,可以更深入地了解输电线路杆塔在电力传输系统中的作用和意义,为工程师和设计师在设计输电线路杆塔时提供参考和指导。
希望通过本文的研究,能够促进输电线路杆塔的设计水平不断提高,确保电力系统的安全稳定运行,并为未来电力系统的发展和升级提供重要的技术支持。
2. 正文2.1 输电线路杆塔的功能输电线路杆塔是输电线路中的重要组成部分,其主要功能包括支撑和固定导线、绝缘子串、地线等设备,同时承受着导线所传递的电力负荷及外部风荷载。
通过输电线路杆塔的合理布置和设计,可以有效地支撑输电线路设备,保证线路的安全运行。
输电线路杆塔的功能之一是支撑导线,导线是传输电力的主要工具,杆塔必须能够稳定地承受导线的重量,同时要具有足够的强度和刚度,以确保导线不会因外部风荷载或其他因素而发生位移或振动,从而影响线路的运行稳定性。
输电线路杆塔还需要支撑绝缘子串,绝缘子串在输电线路中起到隔离导线与杆塔之间的绝缘作用,防止电力泄漏或短路事故发生。
杆塔的设计必须考虑到绝缘子串的安装位置和布局,以确保绝缘子串能够有效地发挥绝缘作用。
输电线路杆塔还需要支撑地线等辅助设备,地线主要用于安全接地,防止雷击和漏电事故的发生。
浅谈输电线路杆塔结构设计
摘要:文章综述了我国高压输电线路铁塔结构设计方面的一些经验、看法和常被忽略的问题。
对我国输电线路杆塔结构在荷载取值、结构优化、新材料应用等方面的研究进展加以介绍,并且根据研究现状和社会经济发展需求,提出今后研究需要进一步加强的内容。
关键词:输电线路;杆塔型;结构设计
abstract: this paper reviews some experience of the design of tower structure for hv transmission lines in china’s views and often overlooked problem. to introduce the research progress on load, structure optimization, the application of new materials and other aspects of china’s power transmission lines, and according to the current research status and the demand of social and economic development, puts forward the future research needs to further strengthen the content.
key words: transmission line tower type; structural design;
中图分类号:tb482.2文献标识码:a文章编码:
引言
输电线路杆塔是支承架空输电线路导线和地线并使它们之间以
及与大地之间保持一定距离的杆形和塔形的构筑物,其安全可靠性直接关系到整个输电线路的安全运行。
在架空输电线路工程中,杆塔建设费用约占本体投资的30%甚至以上,直接决定着线路的经济性。
随着我国特高压电网的建设以及同塔多回线路、紧凑型线路、大截面导线等输电新技术的推广应用,输电线路电杆塔大荷载、大型化的趋势愈发明显。
“资源节约型、环境友好型”社会的建设、大电网的安全稳定性、气候变化复杂异常对杆塔结构的安全可靠性、经济性、环保性能等都提出了更高的要求,输电线路杆塔结构研究面临新的挑战。
本文对我国输电线路杆塔结构在荷载取值、结构优化、新材料应用、等方面的研究进展加以介绍,并且根据研究现状和社会经济发展需求,提出研究需要进一步加强的内容。
1.杆塔的作用
杆塔(pole and tower)的作用是支承架空输电线路导线和地线并使它们之间以及它们与大地及杆塔之间的距离在各种可能的
大气环境条件下,符合电气绝缘安全和工频电磁场限制条件的要求。
2.杆塔设计的现状分析
杆塔结构是一种超静定结构,某一杆件破坏并不能确定整个结构破坏,只有当破坏的杆件达到一定数目时,杆塔不能再承受载荷,导致杆塔破坏。
传统的满应力设计方法无法满足工程结构的这一特
征。
研究杆塔结构极限分析方法,确定杆塔结构的最大承载能力是必要的。
作用在杆塔上的载荷主要在风载、冰雪载荷、地震载荷。
目前对杆塔的动力学特性研究不深,而在设计过程中盲目地选取过大动载荷影响因子。
不仅增加了杆塔的重量,而且也不能避免由动态应力、应变引起的杆塔破坏。
因此,研究杆塔结构的动力学特性是新型杆塔结构设计由静态设计走向动态设计的关键步骤。
3.输电线路杆塔结构研究
3.1杆塔荷载
对杆塔荷载的研究,主要研究结构重要性系数、风荷载重现期、最小设计风速等的取值和杆塔的静力和动力风荷载计算方法以及
杆塔荷载的组合和取值原则。
结构重要性系数和风荷载重现期,主要基于对结构可靠度指标的分析来确定;风振系数主要针对高塔来进行;荷载组合主要研究导线的断线原则、张力取值以及与风、冰荷载的组合条件。
这些外荷载取值的研究,目的是掌握杆塔外部荷载更为合理的作用和变化规律,为杆塔结构设计提供较为客观的依据。
3.2杆塔结构设计方法
杆塔结构设计方法的研究,一方面是研究杆塔结构设计中的分析计算力学模型、杆件承载力计算方法、杆端节点构造设计计算方法等;另一方面是研究杆件选型、塔头型式、塔腿型式、坡度、根
开以及塔身断面、塔身斜材、横隔面等的布置与优化方法。
目前,铁塔一般按照理想铰接的整体空间桁架来设计。
假设节点的约束为理想铰接,将整个塔架作为超静定空间体系,根据平衡条件和变形协调关系求解塔架的内力和变形,再根据强度和稳定性条件完成铁塔设计的选材工作。
4.我国输电线路杆塔结构的未来研究方向
当前,气候条件复杂多变,现行的杆塔结构的设计技术存在着不少不相适用的地方。
电压等级的提高、新型输电技术的应用,使得杆塔结构复杂、高大的发展趋势愈加明显。
在这种情况下,如何保证安全可靠、经济合理、具有更好的抵御自然灾害的能力,是当前杆塔结构研究的重点。
4.1设计理论体系
总体来看,我国输电线路铁塔结构设计理论较为传统,需要适应发展需求,形成完善的、更为先进的理论体系。
常规的设计方法是以线弹性结构分析理论为基础的,如何将结构分析的非线性理论、桁架结构极限设计的理论和方法等现代结构分析方法应用到输电铁塔设计中,需要进一步深入研究。
在加工误差、初位移、初应力对杆件承载力的影响等方面,还缺乏深入研究和明确结论。
需要继续研究导线与杆塔、杆塔与基础的相互作用,并在此基础上,研究导线、杆塔以及基础的一体化设计方法。
4.2荷载取值
杆塔荷载的取值,目前偏重于与静力风荷载有关的几个关键参数的研究。
对于动力风荷载的取值,还缺乏较为深入和系统的研究。
对冰荷载的取值,由于线路地形复杂、幅员辽阔以及可供利用的气象资料较少,目前大多根据调查数据和工程经验来确定,尤其是微地形、微气象区域的冰荷载的取值,研究工作偏弱。
对风、冰荷载组合以及与断线工况组合的取值,也需要加强研究。
4.3节点构造计算方法
我国输电铁塔与国外的相比偏重偏大,除设计理念、材料性能等方面的因素外,节点构造上的差异也是重要原因之一。
目前,对新材料、新性能节点的研究还不充分,节点构造对杆件承载力的影响还需进一步的研究。
4.4 设计计算软件
目前行业内采用的设计计算软件较为陈旧,很少将近年来一些新的研究成果和成功经验纳入其中,在设计方法上存在明显漏洞,如风振动力荷载的考虑和计算。
设计时根据杆塔主要结构参数大致确定风振系数,通过不断循环的静力分析对杆塔进行选材,但结构的动力特性并没有经过往复校验。
”数字化电网”是未来输电线路设计、运行和维护的必然发展趋势。
在研究、摸清线路机械力学系统在各种气象和地理条件下的动力学行为的基础上,需要研究开发输电线路一体化设计软件平台。
4.5新材料的应用研究
我国铁塔结构以热轧等肢角钢为主,构件型式单一,钢管构件的应用刚刚起步。
在国外,钢管构件、不等边角钢、冷轧薄壁型钢、卷肢角钢等均有大量应用。
铁塔材料强度低,我国普遍使用q235
和q345 两种钢材,国外受力大的杆件大都采用高强度钢材。
目前刚刚进行q420、q460 的研究及推广,但在实际运用中还存在一些问题。
需要继续加强高强钢管塔、耐候钢塔、冷弯型钢塔的应用研究。
也有必要开展复合材料在输电铁塔上的应用研究。
5.结语
在保证杆塔安全可靠度的前提下,减轻塔重,降低工程造价,节约线路走廊,已成为输电线路杆塔结构设计的瓶颈问题。
从荷载取值、结构型式、断面形式、节点构造、杆塔材料等方面对杆塔结构进行优化是解决这些问题的重要手段。
新的发展趋势和新的发展要求对以往的杆塔设计方案和思想都提出了新的挑战,要求在杆塔结构设计方面必须寻求新的突破。
这些都要求我们要不断加强杆塔结构的研究工作,为保障线路的安全可靠运行不断提供坚强支撑。
参考文献:
[1]dl/t5154-2002,架空送电线路杆塔结构设计技术规定[s].北京:中国电力出版社,2002.
[2]dl/t5130-2001,架空送电线路钢管杆设计技术规定[s].北京:中国电力出版社,2001.
[3]张殿生,电力工程高压送电线路设计手册(第二版)[m].北
京:中国电力出版社,2003.
[4]杨靖波,李正.输电线路钢管塔微风振动及其对结构安全性的影响[j].振动、测试与诊断,2007,(23):208-211.。