集合的表示法
- 格式:doc
- 大小:250.50 KB
- 文档页数:5
集合的三种表示法:
1.列举法:列举法就是将集合的元素逐一列举出来的方式。
例如,光学中的三原色可以
用集合{红,绿,蓝}表示;由四个字母a, b, c, d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法- -一列举,但可以将它们的变化规律表示出来的情况。
2.描述法:描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元
素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合: S={x|P(x)}。
图像法,图像法,又称韦恩图法、韦氏图法,是一种利用二维平面.上的点集表示集合的方法。
一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
3.符号法:有些集合可以用一些特殊符号表示,如: N: :非负整数集合或自然数集合
{0,1,2,3,.、Z:整数集合.-1,01,. Q:有理数集合、Q+: 正有理数集合、Q-: 负有理数集合、R:实数集合(包括有理数和无理数)。
集合及其表示知识要点1.集合概念(1)我们常常把能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。
集合中的各个对象叫做这个结合的元素。
集合常用大写字母A ,B ,C ……表示,集合中的元素用小写字母a b c ⋅⋅⋅、、表示。
例如:a 是集合A 中元素,记作a A ∈,a 不是A 中元素,记作a A ∉,分别读作“a 属于A ”,“a 不属于A ”。
(2)集合的分类:有限集、无限集和空集。
空集记作∅。
(3)特殊集合的表示:自然数:N ;不包括零的自然数:N *;整数:Z ;有理数:Q ;实数:R 。
2.集合的表示法(1)列举法:将集合中的元素一一列举出来(列举时不考虑元素的顺序)并且写在大括号内,这种表示集合的方法叫列举法。
(补充:比较适合个数较少的有限集)(2)描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所具有的共同特性,即{}A x x P =∈,这中表示集合的方法叫做描述法。
(3)图示法:用图形围成的区域来表示集合的方法叫做集合的图示法,通常用圆及圆内部表示集合。
3.集合元素的性质:确定性、互异性、无序性。
4.集合之间的关系(1)子集及子集相关定义:对于两个集合A 和B ,如果A 中任何一个元素都属于B ,那么集合A 叫做集合B 的子集。
记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”。
我们规定∅是任何集合的子集。
对于集合A 、B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A B 或B A ,读作“A 真包含于B ”或“B 真包含A ”。
(2)相等的集合:两个集合A 、B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A=B 。
精选例题例1、 用适当的符号;;;;≠≠∈⊂∉=⊃填空. 3.14_______;Q {}0______0; ________;N ∅________;Z N +* 0________∅ 2;Q________;Q π {}2_______;-偶数 {}{}1________-奇数0.3_______;Q {}1________;质数{}{}21,_______21,x x k k Z t t k k Z =-∈=+∈ {}2_______20,;x x x R ∅+=∈{}{}24,_________,y y x x R z z x x R =∈=∈ 例2、用适当的方法表示下列集合:(1) 关于x 的不等式||5x <的整数的解集;(2) 所有奇数构成的集合;(3) 方程0)2)(1(22=---x x x 的解的集合;(4) 直角坐标平面上所有第三象限的点;(5) 函数3y x =- 的所有函数值组成的集合。
1.1.2集合的表示方法学习目标:1、掌握集合的表示方法,集合的表示方法(字母表示、列举法、描述法、文氏图共4种)2、用列举法、描述法表示一个集合.知识要点:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集N :{1,2,3,4,…,n ,…}(3)区分a 与{a }:{a }表示一个集合,该集合只有一个元素.a 表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.(5)能不能表示无限集?(只能表示存在规律的集合){0,2,4,6,8,}A n =3、特征性质描述法:在集合I 中,属于集合A 的任意元素x 都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A 可以表示如下:{x ∈I | p (x ) }例如,不等式232>-x x 的解集可以表示为:}23|{2>-∈x x R x 或}23|{2>-x x x , 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.① {(,)x y y =中的元素是点。
满足条件的二元方程的解集,是成对出现的。
② {x y = {y y = {y 表示单元素集合,方程的解。
4、维恩(Venn)图(文氏图):用一条封闭的曲线的内部来表示一个集合.学习中应注意的问题:①注意a 与{}a 的区别,②注意Φ与{0}的区别, {0}是含有0一个元素的集合。
集合的表示法1.集合的表示法【知识点的认识】1.列举法:常用于表示有限集合,把集合中的所有元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,…},注意元素之间用逗号分开.2.描述法:常用于表示无限集合,把集合中元素的公共属性用文字,符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法.即:{x|P}(x 为该集合的元素的一般形式,P 为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}3.图示法(Venn 图):为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合.4.自然语言(不常用).【解题方法点拨】在掌握基本知识的基础上,(例如方程的解,不等式的解法等等),初步利用数形结合思想解答问题,例如数轴的应用,Venn 图的应用,通过转化思想解答.注意解题过程中注意元素的属性的不同,例如:{x|2x﹣1>0}表示实数x 的范围;{(x,y)|y﹣2x=0}表示方程的解或点的坐标.【命题方向】本考点是考试命题常考内容,多在选择题,填空题值出现,可以与集合的基本关系,不等式,简易逻辑,立体几何,线性规划,概率等知识相结合.2.交集及其运算【知识点的认识】由所有属于集合A 且属于集合B 的元素组成的集合叫做A 与B 的交集,记作A∩B.符号语言:A∩B={x|x∈A,且x∈B}.A∩B 实际理解为:x 是A 且是B 中的相同的所有元素.当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.运算形状:①A∩B=B∩A.②A∩∅=∅.③A∩A=A.④A∩B⊆A,A∩B⊆B.⑤A∩B=A⇔A⊆B.⑥A∩B=∅,两个集合没有相同元素.⑦A∩(∁U A)=∅.⑧∁U(A∩B)=(∁U A)∪(∁U B).【解题方法点拨】解答交集问题,需要注意交集中:“且”与“所有”的理解.不能把“或”与“且”混用;求交集的方法是:①有限集找相同;②无限集用数轴、韦恩图.【命题方向】掌握交集的表示法,会求两个集合的交集.命题通常以选择题、填空题为主,也可以与函数的定义域,值域,函数的单调性、复合函数的单调性等联合命题.。
集合的介绍与表示方法集合在数学中是一种基本的概念,广泛应用于各个领域,如数学、计算机科学、物理学等。
本文将介绍集合的基本概念、性质以及几种常见的表示方法。
一、集合的基本概念集合是由一些具有共同性质的对象组成的整体。
这些对象可以是数字、字母、符号等。
集合中的对象称为元素,用小写字母表示。
例如,集合A={1, 2, 3}表示包含了元素1、2和3的集合。
如果一个元素x属于集合A,我们可以用x∈A表示。
集合的特点是无序性,即集合中的元素没有先后之分;独一性,即集合中的元素不会重复出现。
二、集合的性质1. 子集关系:如果集合B的所有元素都属于集合A,则称B是A的子集,用B⊆A表示。
例如,如果A={1, 2, 3},B={1, 3},则B是A的子集。
2. 并集和交集:并集即两个集合合并在一起,交集即两个集合共有的元素。
如果A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}表示A和B的并集,A∩B={3}表示A和B的交集。
3. 补集:对于给定的一个集合A和所在的全集U,集合A对于U的补集即U中不属于A的元素构成的集合。
用A'表示,例如,如果全集U={1, 2, 3, 4, 5},A={1, 2},则A'={3, 4, 5}。
三、集合的表示方法1. 列举法:通过直接列举集合中的元素来表示集合。
例如,集合A={1, 2, 3}表示包含元素1、2和3的集合。
2. 描述法:通过给出集合中元素的属性或特征来表示集合。
例如,A={x | x是偶数,x>0}表示由所有大于0的偶数构成的集合。
3. 结论法:通过得出一些结论,将满足条件的元素组成集合。
例如,设集合A={x | x^2=1},则A={-1, 1}表示满足平方等于1的元素构成的集合。
4. 包含法:通过规定元素属于某个集合,定义包含关系。
例如,全集为U,集合A={x | x∈U, x是奇数}表示U中的奇数构成的集合。
集合的表示方法:列举法摘要:一、集合的定义与作用二、集合的表示方法:列举法1.基本概念2.应用场景3.列举法的优点与局限性三、列举法的实践案例四、总结与展望正文:一、集合的定义与作用集合是数学中的一个基本概念,它由具有某种特定性质的对象组成。
集合论是数学的基础,研究集合的性质和运算,具有广泛的应用,如概率论、组合数学、计算机科学等领域。
二、集合的表示方法:列举法1.基本概念列举法是一种表示集合的方法,它通过列出集合中的所有元素来表示该集合。
列举法清晰地展示了集合中的元素,便于理解和识别。
2.应用场景列举法适用于较小规模的集合,特别是在需要展示集合元素具体内容的情况下。
例如,用列举法表示一个班级的学生名单,可以清晰地了解每个学生的姓名。
3.列举法的优点与局限性优点:直观、清晰,易于理解。
局限性:当集合规模较大时,列举法可能显得繁琐,不易于展示。
此外,对于动态变化的集合,列举法难以反映集合的实时状态。
三、列举法的实践案例在实际应用中,列举法可以帮助我们更好地理解和分析问题。
以下是一个实践案例:假设有一个包含水果的集合,我们需要找出其中的苹果和橙子。
通过列举法,我们可以将集合表示为:{苹果,橙子,香蕉,葡萄,柠檬}这样,我们可以清晰地看到集合中的水果种类,便于进行进一步的分析和操作。
四、总结与展望作为一种表示集合的方法,列举法在实际应用中具有重要作用。
然而,随着集合规模的扩大和动态变化,列举法的局限性也逐渐显现。
因此,研究更多有效的集合表示方法和完善集合论,对于数学及相关领域的发展具有重要意义。
§1.1.2 集合的表示方法
课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.
1.列举法
把集合的所有元素都______出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.
2.描述法
一般地,如果在集合I 中,属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有性质p (x ),则性质p (x )叫做集合A 的一个__________.于是,集合A 可以用它的特征性质p (x )描述为____________,它表示集合A 是由集合I 中具有性质p (x )的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法.
一、选择题
1.集合{x ∈N +|x -3<2}用列举法可表示为( )
A .{0,1,2,3,4}
B .{1,2,3,4}
C .{0,1,2,3,4,5}
D .{1,2,3,4,5}
2.集合{(x ,y )|y =2x -1}表示( )
A .方程y =2x -1
B .点(x ,y )
C .平面直角坐标系中的所有点组成的集合
D .函数y =2x -1图象上的所有点组成的集合
3.将集合⎩⎪⎨⎪⎧
(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是( ) A .{2,3} B .{(2,3)}
C .{x =2,y =3}
D .(2,3)
4.用列举法表示集合{x |x 2-2x +1=0}为( )
A .{1,1}
B .{1}
C .{x =1}
D .{x 2-2x +1=0}
5.已知集合A ={x ∈N|-3≤x ≤3},则有( )
A .-1∈A
B .0∈A C.3∈A D .2∈A
6.集合{x |x =a |a |+|b |b -c |c |
,a ,b ,c ∈R}的列举法表示应该是( ) A .{-3,-1,1,3} B .{1,3}
C .{-1,1,3}
D .{-1,1}
题 号
1 2 3 4 5 6 答 案
二、填空题
7.用列举法表示集合A ={x |x ∈Z ,86-x
∈N}=____________. 8.下列可以作为方程组⎩⎪⎨⎪
⎧ x +y =3x -y =-1的解集的是__________(填序号).
(1){x =1,y =2}; (2){1,2};
(3){(1,2)}; (4){(x ,y )|x =1或y =2};
(5){(x ,y )|x =1且y =2};
(6){(x ,y )|(x -1)2+(y -2)2=0}.
9.已知a ∈Z ,A ={(x ,y )|ax -y ≤3}且(2,1)∈A ,(1,-4)∉A ,则满足条件的a 的值为________.
三、解答题
10.用适当的方法表示下列集合
①方程x (x 2+2x +1)=0的解集;
②在自然数集内,小于1 000的奇数构成的集合;
③不等式x -2>6的解的集合;
④大于0.5且不大于6的自然数的全体构成的集合.
11.用描述法表示下列集合:
(1)所有正偶数组成的集合;
(2)方程x 2+2=0的解的集合;
(3)不等式4x -6<5的解集;
(4)函数y =2x +3的图象上的点集.
能力提升
12.已知集合M ={x |x =k 2+14,k ∈Z},N ={x |x =k 4+12
,k ∈Z},若x 0∈M ,则x 0与N 的关系是( )
A .x 0∈N
B .x 0∉N
C .x 0∈N 或x 0∉N
D .不能确定
13.对于a ,b ∈N +,现规定:
a *
b =⎩
⎪⎨⎪⎧
a +
b (a 与b 的奇偶性相同)a ×b (a 与b 的奇偶性不同). 集合M ={(a ,b )|a *b =36,a ,b ∈N +}
(1)用列举法表示a ,b 奇偶性不同时的集合M ;
(2)当a与b的奇偶性相同时集合M中共有多少个元素?
1.在用列举法表示集合时应注意:
①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.
2.在用描述法表示集合时应注意:
(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?
(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.
1.1.2 集合的表示方法
知识梳理
1.列举 2.特征性质 {x ∈I |p (x )}
作业设计
1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]
2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]
3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧
x =2,y =3. 所以答案为{(2,3)}.]
4.B [方程x 2-2x +1=0可化简为(x -1)2=0,
∴x 1=x 2=1,
故方程x 2-2x +1=0的解集为{1}.]
5.B
6.A
7.{5,4,2,-2}
解析 ∵x ∈Z ,86-x
∈N , ∴6-x =1,2,4,8.
此时x =5,4,2,-2,即A ={5,4,2,-2}.
8.(3)(5)(6)
9.0,1,2
解析 ∵(2,1)∈A 且(1,-4)∉A ,
∴2a -1≤3且a +4>3,
∴-1<a ≤2,又a ∈Z ,
∴a 的取值为0,1,2.
10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,
∴解集为{0,-1};
②{x |x =2n +1,且x <1 000,n ∈N};
③{x |x >8};
④{1,2,3,4,5,6}.
11.解 (1)文字描述法:{x |x 是正偶数}.
符号描述法:{x |x =2n ,n ∈N *}.
(2){x |x 2+2=0,x ∈R}.
(3){x |4x -6<5,x ∈R}.
(4){(x ,y )|y =2x +3,x ∈R ,y ∈R}. 12.A [M ={x |x =2k +14,k ∈Z},N ={x |x =k +24
,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,
∴x0∈M时,一定有x0∈N,故选A.]
13.解(1)当a,b奇偶性不同时,a*b=a×b=36,
则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M 可表示为:
M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.
(2)当a与b的奇偶性相同时a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍
为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b奇偶性相同时这样的元素共有35个.。