数值分析Chap3Sec6
- 格式:ppt
- 大小:164.50 KB
- 文档页数:6
数值分析学习课件目录1. 内容概要 (2)1.1 数值分析的重要性 (2)1.2 课件内容概述 (3)2. 基础知识准备 (4)2.1 数学知识要点 (6)2.2 计算机基础 (7)2.3 编程基础 (8)3. 数值计算的基本原理 (10)3.1 误差理论 (11)3.2 近似计算 (13)3.3 算法稳定性与收敛性 (15)4. 数值计算方法与技巧 (16)4.1 插值与逼近 (17)4.2 微分与积分计算 (19)4.3 线性代数方程求解 (19)4.4 优化计算方法 (21)5. 数值分析的应用实例 (22)5.1 数据拟合与预测分析 (23)5.2 微分方程数值解法应用 (24)5.3 线性规划优化问题应用 (26)5.4 其他领域的应用实例 (27)6. 实践操作指导 (28)6.1 编程实践环境搭建 (30)6.2 数值计算软件使用介绍 (31)6.3 编程实践案例分析 (32)7. 课程总结与展望 (33)7.1 课程重点内容回顾 (34)7.2 数值分析发展趋势 (35)7.3 学习建议与展望 (37)1. 内容概要数值分析是一个研究数值算法的学科,旨在寻找有效的方法来求解大量的数学问题,特别是那些无法得到精确解或者求解起来过于繁杂的问题。
它在物理学、工程学、经济学、生物技术以及许多其他科学领域中都是至关重要的。
本课程将涵盖数值分析的核心概念和方法,重点是数值线性代数、数值积分、数值微分方程以及数值优化等经典主题。
学生将理解这些问题的数学背景,掌握相关的数值算法,并能够运用编程实现这些算法。
学生还将学习误差分析、收敛性理论以及如何选择和实现适合特定问题的数值方法。
在整个课程中,学生将通过实际问题的解决,如物理模型、金融模型、生物数据的分析和处理等,来应用所学的数值分析知识和技能。
通过本课程的学习,学生不仅能够加深对数值方法的理解,还能增强解决实际问题的能力。
1.1 数值分析的重要性数值分析是利用计算机解决数学问题的重要工具,在许多领域,例如物理、工程、金融、生物等,现实世界的问题常常难以用精确的解析解表达出来。
数值分析各章重点公式整理数值分析是计算数学的一个分支,主要涉及计算和分析数值近似解的方法。
本文将从数值分析的基本概念、插值与逼近、数值微分和数值积分、非线性方程数值解、线性方程组直接解法、线性方程组迭代解法和特征值问题等几个方面,对数值分析中的重点内容进行整理。
一、数值分析的基本概念数值分析是用数值方法解决实际问题的方法和技术。
其主要研究目标是通过一定的计算机运算来获取数学问题的近似解。
数值分析涉及到误差分析、收敛性分析、稳定性分析等概念,对于数值方法的正确性和可行性提供了理论依据。
二、插值与逼近插值是通过已知数据点构造一个函数,使得这个函数通过已知数据点。
常用的插值方法有拉格朗日插值和牛顿插值。
逼近是选择一种较为简单的函数来近似表示给定的复杂函数。
常用的逼近方法有最小二乘法和切比雪夫逼近。
三、数值微分和数值积分数值微分主要研究如何通过函数值的有限差分来估计导数值。
常用的数值微分方法有前向差分、后向差分和中心差分。
数值积分主要研究如何通过数值方法求出函数在一定区间上的定积分值。
常用的数值积分方法有梯形法则和 Simpson 法则。
四、非线性方程数值解非线性方程通常难以用解析方法求解,而数值方法则可以通过迭代来逼近方程的根。
常用的数值解法有二分法、牛顿法和割线法。
同时,对于多维非线性方程,也可以使用牛顿法的变形,牛顿下山法。
五、线性方程组直接解法线性方程组是数值分析中的一个重要问题。
直接解法主要有高斯消元法、LU 分解法和 Cholesky 分解法。
高斯消元法通过矩阵的初等行变换将线性方程组化为上三角方程组来求解。
LU 分解法将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积,然后通过回代求解。
Cholesky 分解法则适用于对称正定矩阵的解法。
六、线性方程组迭代解法线性方程组的迭代解法通过选取适当的初始解,通过迭代来逼近精确解。
常用的迭代解法有Jacobi迭代法、Gauss-Seidel迭代法和超松弛迭代法。
数值分析主要研究截断误差与舍入误差。
某算法受初始误差或计算过程中产生的舍入误差的影响较小,则称之是数值稳定的,反之称为不稳定算法。
若初始数据的微小误差都会对最终的计算结果产生极大的影响,则称这种问题为病态问题(坏条件问题),反之称其为良态问题。
在插值节点n x x x ,,,10⋅⋅⋅处,取给定值n y y y ,,,10⋅⋅⋅,且次数不高于n 的插值多项式是存在且唯一的。
1. 线性插值与抛物插值(1) 线性插值)()()(1100101001011x l y x l y y x x x x y x x x x x L +=--+--=记为,其中)(),(10x l x l 称为线性插值的基函数。
(2) 抛物插值 ))(())(())(()(1020212x x x x C x x x x B x x x x A x L --+--+--= 分别令210,,x x x x =,即得))((,))((,))((120222*********x x x x y C x x x x y B x x x x y A --=--=--=,故0201122012010210122021()()()()()()()()()()()()()x x x x x x x x x x x x L x y y y x x x x x x x x x x x x ------=++------001122()()()y l x y l x y l x =++记为,其中)(),(),(210x l x l x l 称为抛物插值的基函数。
⎩⎨⎧≠==ik ik x l i k 01)(设)()(x fn ],[b a 上连续,在),(b a 内可导,则以插值多项式)(x L n 逼近)(x f 的截断误差(即余项)),(,)()!1()()()()(0)1(b a x x n f x L x f x R ni i n n n ∈-+=-=∏=+ξξ。
数值分析学习公式总结数值分析是以计算机为工具,对数学问题进行数值计算和近似方法的研究。
在数值分析中,有许多重要的数学公式和算法被广泛应用。
下面是一些数值分析中常用的公式和算法的总结。
1.插值公式:-拉格朗日插值公式:假设有给定的n个点(x_0,y_0),(x_1,y_1),...,(x_n,y_n),则对于任意一个x,可以通过拉格朗日插值公式计算出相应的y值。
-牛顿插值公式:利用差商构造的插值公式,对给定n个点进行插值,得到一个多项式函数。
2.数值积分公式:-矩形法:将区间分割成若干小矩形,计算每个矩形的面积然后求和。
-梯形法:将区间分割成若干个梯形,计算每个梯形的面积然后求和。
-辛普森法则:将区间分割成若干个小区间,通过对每个小区间应用辛普森公式计算出近似的定积分值。
3.数值微分公式:-前向差分公式:利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。
-后向差分公式:类似于前向差分公式,但是利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。
-中心差分公式:利用函数在特定点的导数与函数在该点两侧的值之间的差异,通过近似计算导数的值。
4.数值解线性方程组方法:-直接法:高斯消元法,LU分解法等。
-迭代法:雅可比迭代法,高斯-赛德尔迭代法等。
5.最小二乘拟合法:-线性最小二乘拟合:通过线性回归的方法,寻找最佳的拟合直线。
-非线性最小二乘拟合:通过非线性回归的方法,寻找最佳的非线性拟合曲线。
6.数值求解常微分方程方法:-欧拉法:将微分方程离散化,通过迭代计算得到近似解。
-改进欧拉法:利用欧拉法的计算结果进行修正,提高近似解的精度。
- 二阶龙格-库塔法:利用四阶Runge-Kutta法的计算结果进行修正,提高近似解的精度。
7.插值法的误差估计:-真实误差:插值函数与原函数之间的差异。
-误差界:对于给定的插值公式,通过计算条件和边界限制,得到误差的上限。
8.特殊函数的数值计算:-常用特殊函数的近似计算方法,如阶乘函数,指数函数,对数函数等。