解析几何综合问题圆与椭圆双曲线抛物线等考前冲刺专题练习(二)带答案人教版高中数学考点大全
- 格式:doc
- 大小:251.50 KB
- 文档页数:7
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.圆心在抛物线y x 42上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.如图,圆O 与离心率为23的椭圆T :12222=+by a x (0>>b a )相切于点M )1,0(。
⑴求椭圆T 与圆O 的方程;⑵过点M 引两条互相垂直的两直线1l 、2l 与两曲线分别交于点A 、C 与点B 、D(均不重合)。
②P 为椭圆上任一点,记点P 到两直线的距离分别为1d 、2d ,求2221d d +的最大值;②若MD MB MC MA ⋅=⋅43,求1l 与2l 的方程。
(本小题满分16分)5.如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。
点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点。
(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于////,,,A B C D 四点,其中2b t a <<, 12t t ≠。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于
(A )9π (B )8π (C )4π (D )π
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12
,右焦点为F (c,0),方程ax 2 -bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)________.
①必在圆x 2+y 2=2上。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲3.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.评卷人得分三、解答题4.(汇编年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 5.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.OyxMF1F26.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.7.已知圆1F :16)1(22=++y x ,定点,动圆过点2F ,且与圆1F 相内切。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.在平面直角坐标系xOy 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值; (3)设过圆心2(10)C -, 的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切线交于点Q ,求证:点Q 在定直线上.5.已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A ,交M 于另一点B ,且2AO OB ==.(Ⅰ)求M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;(Ⅲ)过l 上的动点Q 向M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.6.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数. O lxyA B F · M第17题7.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b +=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题QPOyxF 1A C F 22. 3.2 评卷人得分三、解答题4.命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力.解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,3b =, 故P 点的轨迹方程是22143y x +=.(5分) (2)法1(几何法) 四边形SMC 2N 的面积=211222SC MN SM MC SM ⋅=⋅⨯=,所以222222212cos 21sin 21SM MN MSC MSC SC SC ==∠=-∠=-,(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以m i n 12134MN =-=.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()22220000112222x y x yx y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分) 则圆心2C 到直线MN 的距离()220011d x y ==++22000121x y x +++,因为()2200116x y -+=,所以22000152x y x +=+, 从而01164d x =+,[]03 5x ∈-,,故当03x =-时d m a x 12=,因为221MN d =-,所以()2m i n 1212MN =-=3.(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=,将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分) 5.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x =……… 2分设M 的半径为r ,则122cos 60OB r =⋅=,所以M 的方程为22(2)4x y -+=……………… 5分(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分所以当0x =时, PM PF ⋅有最小值为2 …………………………………10分(Ⅲ)以点Q 这圆心,QS 为半径作Q ,则线段ST 即为Q 与M 的公共弦………… 11分 设点(1,)Q t -,则22245QS QM t =-=+,所以Q 的方程为222(1)()5x y t t ++-=+…13分从而直线QS 的方程为320x ty --=(*)………………………………………………………………14分因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线QS 恒过一个定点,且该定点坐标为2(,0)3……………16分6.(理)解:(1)设椭圆C 的标准方程为22221x y a b+=(0a b >>),由椭圆定义知焦距2222c c =⇒=,即222a b -=…①.又由条件得224a b +=…②,故由①、②可解得23a =,21b =.即椭圆C 的标准方程为2213x y +=. 且椭圆C 两个焦点的坐标分别为()12,0F -和()12,0F .对于变换T :cos sin ,sin cos x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩,当3arctan 4θ=时,可得43,5534,55x y x x y y ⎧'+=⎪⎪⎨⎪'-=⎪⎩设()111,F x y '和()222,F x y '分别是由()12,0F -和()12,0F 的坐标由变换公式T 变换得到.于是,114342(2)0,5553432(2)0555x y ⎧=⋅-+⋅=-⎪⎪⎨⎪=⋅--⋅=-⎪⎩,即1F '的坐标为4232,55⎛⎫-- ⎪ ⎪⎝⎭; 又22434220,555343220555x y ⎧=⋅+⋅=⎪⎪⎨⎪=⋅-⋅=⎪⎩即2F '的坐标为4232,55⎛⎫⎪ ⎪⎝⎭. (2)设(,)P x y 是椭圆C 在变换T 下的不动点,则当3arctan4θ=时, 有43553455x y x x y y ⎧+=⎪⎪⎨⎪-=⎪⎩⇒3x y =,由点(,)P x y C ∈,即(3,)P y y C ∈,得:22(3)13y y += ⇒123y x y ⎧=±⎪⎨⎪=⎩,因而椭圆C 的不动点共有两个,分别为31,22⎛⎫ ⎪⎝⎭和31,22⎛⎫-- ⎪⎝⎭.(3) 设(,)P x y 是双曲线在变换T 下的不动点,则由cos sin ,sin cos ,x y x x y y θθθθ⋅+⋅=⎧⎨⋅-⋅=⎩()()sin 1cos ,sin 1cos ,y x x y θθθθ⋅=-⋅⎧⎪⇒⎨⋅=+⋅⎪⎩ 因为2k πθ≠,k Z ∈,故1cos sin tan sin 1cos 2y x θθθθθ-===+.不妨设双曲线方程为221x y m n +=(0mn <),由tan 2y x θ=代入得 则有2222tan tan 2211x n m x x m n mnθθ⎛⎫⋅+ ⎪⎝⎭+=⇔=, 因为0mn <,故当2tan 02n m θ+=时,方程22tan 21n m x mnθ+=无解;当2tan 02n m θ+≠时,要使不动点存在,则需220tan2mnx n m θ=>+,因为0mn <,故当2tan 02n m θ+<时,双曲线在变换T 下一定有2个不动点,否则不存在不动点. 进一步分类可知:(i )当0n <,0m >时,即双曲线的焦点在x 轴上时,22tan 0tan 22nn m mθθ⇒+<⇒<-; 此时双曲线在变换T 下一定有2个不动点;(ii )当0n >,0m <时,即双曲线的焦点在y 轴上时,22tan 0tan 022nn m mθθ⇒+<⇒>->. 此时双曲线在变换T 下一定有2个不动点. 7.解:(Ⅰ)点A 代入圆C 方程, 得2(3)15m -+=.∵m <3,∴m =1. …… 2分圆C :22(1)5x y -+=.设直线PF 1的斜率为k , 则PF 1:(4)4y k x =-+,即440kx y k --+=. ∵直线PF 1与圆C 相切, ∴2|044|51k k k --+=+.QPO yxF 1A C F 2解得111,22k k==或.……………… 4分当k=112时,直线PF1与x轴的交点横坐标为3611,不合题意,舍去.当k=12时,直线PF1与x轴的交点横坐标为-4,∴c=4.F1(-4,0),F2(4,0). (6)分2a=AF1+AF2=52262+=,32a=,a2=18,b2=2.椭圆E的方程为:221182x y+=.…………………… 8分(Ⅱ)(1,3)AP=,设Q(x,y),(3,1)AQ x y=--,(3)3(1)36AP AQ x y x y⋅=-+-=+-.…………………… 10分∵221182x y+=,即22(3)18x y+=,而22(3)2|||3|x y x y+⋅≥,∴-18≤6xy≤18. (12)分则222(3)(3)6186x y x y xy xy+=++=+的取值范围是[0,36].3x y+的取值范围是[-6,6].∴36AP AQ x y⋅=+-的取值范围是[-12,0].……………………15分。
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y y n =的交点个数为 ▲3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分 三、解答题4.(汇编年高考课标Ⅰ卷(文))已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB .请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑.5.设椭圆)22(18:222>=+a y ax M 焦点坐标为F 1(-c,0), F 2(c,0),点Q 是椭圆短轴上的顶点,且满足122c QF QF +=.(I )求椭圆M 的方程; (II )设A,B 是圆与()12:22=-+y x N 与y 轴的交点,P 是椭圆M 上的任一点,求PA PB ⋅的最大值.(III )设P 0是椭圆M 上的一个顶点,EF 为圆()12:22=-+y x N 的任一条直径,求证00P E P F ⋅为定值。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.(汇编福建理2)以抛物线2
4y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .2
2
x +y +2x=0 B .22
x +y +x=0
C .22
x +y -x=0
D .22
x +y -2x=0
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.圆心在抛物线y x 42
=上,并且和抛物线的准线及y 轴都相切的圆的标准方程为 ▲ .
3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.
评卷人
得分
三、解答题
4..已知双曲线22
221(0,0)x y a b a b
-=>>的左右焦点为1F 、2F ,P 是右支上一点,
212PF F F ⊥,1OH PF ⊥于H ,111
,[,]92
OH OF λλ=∈
(1)当1
3
λ=
时,求双曲线的渐近线方程; (2)求双曲线的离心率的取值范围;
(3)当离心率最大时,过1F 、2F ,P 的圆截y 轴线段长为8,求该圆的方程.
5.已知椭圆22
221x y a b += ()0a b >>的右焦点为1(20)F ,
,离心率为e . (1)若2
2
e =
,求椭圆的方程; (2)设A ,B 为椭圆上关于原点对称的两点,1AF 的中点为M ,1BF 的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明点A 在定圆上;
②设直线AB 的斜率为k ,若3k ≥,求e 的取值范围. 关键字:求椭圆方程;证明点在定圆上;求点的轨迹方程;
6.已知抛物线:C 2
2(0)y px p =>的准线为l ,焦点为F .M 的圆心在x 轴的正
半轴上,且与y 轴相切.过原点O 作倾斜角为3
π
的直线n ,交l 于点A ,交M 于另一点B ,且2AO OB ==.
x
N
M
O
y
A B l :x =t (Ⅰ)求M 和抛物线C 的方程;
(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值;
(Ⅲ)过l 上的动点Q 向
M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,
并求该定点的坐标.
7.已知椭圆)0(12222>>=+b a b
y a x 的离心率为23
,椭圆的左、右两个顶点分
别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,
M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;
(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.
O l
x
y
A B F · M
第17题
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.DD
【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原
点,所以圆的半径为r=1,故所求圆的方程为
22x-1)+y =1(,即22
x -2x+y =0,选D 。
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2. 4)1()2(2
2
=-+±y x
3.x =-1或5x +12y -31=0. 评卷人
得分
三、解答题
4.
5.(1)由2
2
e =,c=2,得a=22,b =2. 所
求椭圆方程为
22
184
x y +=.…………………………………………………………4分
(2)设00()A x y ,,则00()B x y -,-, 故
0022
2x y M +⎛⎫ ⎪
⎝⎭,,
022
2x y N -⎛⎫- ⎪⎝⎭,.………………………………………………6分
① 由题意,得0OM ON ⋅=uuu r uuu r
.
化简,得22004x y +=,所以点A 在以原点为圆心,2为半径的圆上. …………8分
② 设00()A x y ,,则002
20
022220
014y kx x y a b x y =⎧⎪⎪+=⎨⎪⎪+=⎩⇒
222
00222220
01
4
x k x a
b x k x ⎧+=⎪⎨⎪+=⎩⇒222211(1)4k k a b +=+. 将2
c e a a =
=,22224
4b a c e
=-=-,代入上式整理,得 2242(21)21k e e e -=-+. …………………………………………………………10分
因为42210e e -+>,k 2>0,所以 2210e ->,2
2
e >
.…………………………12分 所以 422
2
21321e e k e -+=-≥.化简,得422
840,
210.
e e e ⎧-+⎪⎨->⎪⎩≥ 解之,得21
<4232
e -≤,2<312e -≤. 故
离心率的取值范围是
2312⎛⎤
- ⎥ ⎝⎦
,. ………………………………………………14分 (说明:不讨论2210e ->,得031≤e <-的扣2分) 6.解:(Ⅰ)因为
1
cos602122
p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x =……… 2分
设
M 的半径为r ,则1
22cos60
OB r =
⋅=,所以M 的方程为
22(2)4x y -+=……………… 5分
(Ⅱ)设(,)(0)P x y x ≥,则
(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++……8分
所以当0x =时, PM PF ⋅有最小值为2 …………………………………10分
(Ⅲ)以点Q 这圆心,QS 为半径作
Q ,则线段ST 即为Q 与M 的公共
弦………… 11分 设点(1,)Q t -,则2
2
2
45QS QM t =-=+,所以
Q 的方程为
222(1)()5x y t t ++-=+…13分
从而直线QS 的方程为320x ty --=
(*)………………………………………………………………14分
因为230
x y ⎧
=⎪⎨⎪=⎩一定是方程(*)的解,
所以直线QS 恒过一个定点,且该定点坐标为2
(,0)3
……………16分
7.解:(1)由题意:
42,2
3==a a c 可得:1,3,2222=-===c a b c a , 故所求椭圆方程为:=+22
4
y x 1 ………………………3分 (2)易得A 的坐标(-2,0),B 的坐标(2,0),M 的坐标)2
4,(2
t t -,N 的坐标)2
4,(2
t t --,
线段AM 的中点P )4
4,22(2
t t --, 直线AM 的斜率
t t t t k +-=
+-=
22212242
1 ………………………………………5分
又AM PC ⊥1, ∴直线1PC 的斜率
t t
k -+-=222
2
∴直线1PC 的方程44)22(2222
t t x t t y -+
---+-=,
∴1C 的坐标为)0,863(
-t 同理2C 的坐标为)
0,86
3(+t (8)
分
∴
23
21=
C C ,即无论t 如何变化,为圆C1与圆C2的圆心距是定值.……………
11分
(2)圆1C 的半径为
1AC 8103+=
t ,圆2C 的半径为83102t
BC -=
, 则
)
1009(32
22
2
2
1+=
+=t BC AC S π
ππ (2-<t <2)
显然t 0=时,S 最小,825min π
=
S . ……………
15分。