高二数学最新教案-必修5第一章《解三角形》全章 精品
- 格式:doc
- 大小:2.61 MB
- 文档页数:25
高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点:1、正弦定理:在C中,a、b、c分别为角?、?、C的对边,R 为C的外接圆的半径,则有abc2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.)2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中)③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2Ra?b?cabc.sin??sin??sinCsin?sin?sinC1113、三角形面积公式:SC?bcsin??absinC?acsin? 222④?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自: 教师联盟网:高中数学必修五解三角形教案)B 或?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2?cosC?2ab?(两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.)2225、设a、b、c是C的角?、?、C的对边,则:①若a?b?c,则C?90?为222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为钝角三角形.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sinA?BCA?BCA?BC?cos,cos?sin,tan?cot 222222二、知识演练1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A.90°B.120°C.130°D.150°2224.在△ABC 中,a?b?c?bc ,则A等于()A.60°B.45°C.120°D.30°5.在△ABC中,A为锐角,lgb-lgc=lgsinA=-lg2, 则△ABC为()A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形b6、锐角?ABC中,B=2A,则a的取值范围是()A(-2,2)B(0,2)C(2,2)D2,)7.在?ABC中.sinA?sinB?sinC?sinBsinC.则A的取值范围是222 ?A.(0,6]B.[ 6,?)C.(0,3]D.[ 3,?)?8.在△ABC中,a=x,b=2,B=45,若△ABC有两解,则x的取值范围是_______________9. ?ABC中,B?60?,AC,则AB+2BC的最大值为_________.10.a,b,c为△ABC的三边,其面积S△ABC=123,bc=48,b-c=2,求a11.在?ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA?2,AB?AC?3.(I)求?ABC的面积;(II)若b?c?6,求a的值.12、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S?2a?b2?c2)。
高二数学必修五第一章解三角形教案)(一)教学目标 1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2 . 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学用具:直尺、投影仪、计算器(四)教学设想 [创设情景] 如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。
A 思考: C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角 C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B[探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又 , A 则 b c 从而在直角三角形ABC中, C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则, C 同理可得, b a 从而 A c B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
解三角形复习课 教案(一)教学目标:(1)运用正弦定理、余弦定理,解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(3)培养学生分析问题、解决问题,自主探究的能力。
(二)教学重点与难点:重点:(1)正弦定理与余弦定理的应用。
(2)题目的条件满足什么形式时适合用正弦、余弦定理解决问题。
难点:(1)利用正弦定理求解过程中一解、二解的情况。
(2)从实际问题抽象出数学问题。
(三)教学过程:观察引入:? 让学生观察思考:在△ABC 中,请给出适当的条件,并根据你给出的条件可以得到什么结论?(培养学生自主探究和学习的能力)根据学生所答,教师归纳总结正弦定理,余弦定理公式:(正弦定理)正弦定理可以用来解两种类型的三角问题:(1)已知两角和任意一边,可以求出其他两边和一角;(2)已知两边和其中一边的对角,可以求出三角形的其他的边和角。
Cab b a c B ca a c bAbc c b a cos 2cos 2cos 2222222222-+=-+=-+= (余弦定理)余弦定理可解以下两种类型的三角形:BR C c B b A a 2sin sin sin === (1)已知三边;(2)已知两边及夹角.(四)例题精讲:让学生自主探究,分析问题,解决问题。
(可用正、余弦2种方法解决,注意解的个数)例2 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西300,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援?(角度精确到10)根据题目要求把实际问题转化成解三角形问题,对应的边长和角度可从已知条件中获得。
(五)课堂练习:1.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定2.ABC 中,8b =,c =,ABC S =,则A ∠等于 ( )A 30B 60C 30或150D 60或1203.△ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于 ( )145,,.ABC a b B A C c ︒∆===例在中,已知求和A 2B 1 24.ABC中,:1:2A B=,C的平分线CD把三角形面积分成3:2两部分,则cos A=()A 13B12C34D 05.果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定参考答案:1.C 2。
正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.余弦定理:)形式一:,,2___________________a =2_________________b =2_________________c =,,,(角到边的转换)bc 2a c b A cos 222-+=ac 2b c a B cos 222-+=ab2c b a C cos 222-+=absinC=bcsinA=acsinB,S △=))()((c S b S a S S ---=Sr 1212c +,r 为内切圆半径)=R abc 4(R 为外接圆半径).在三角形中大边对大角,反之亦然.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos=sin , sin =cos 2C 2A B +2C 2A B+ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC;、C 成等差数列的充要条件是B=60°;;;)。
7.如图3,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图38.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得AB B C D ,并在点测得塔顶的仰角为,求塔高.BCD BDC CD s αβ∠=∠==,,C A θAB本章思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。
1.1正弦定理和余弦定理1.1.1正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教具准备直角三角板一个三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边A B的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式 关系.如右图,在 △R t ABC 中,设 BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有 a b c a b c=sin A ,=sin B ,又 sin C =1= ,则ccc sinA sinB simCc.从而在直角三角形 ABC 中,a b csinA sinB simC推进新课 [合作探究].师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边 A B 上的高是 CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则a b c b a b c ,同理,可得 .从而 sinA sinB sinC sinB sinA sinB sinC.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sinA sinB sinC师是否可以用其他方法证明这一等式?生可以作△ABC 的外接圆,在△ABC 中,令 BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明a b csinA sinB sinC这一关系.师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知 BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结 BO 并延长交圆于 B ′, 设 BB ′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′,∴sin C =sin B ′=sinC sinBc2R∴csinC2R同理,可得a b2R,2R sinA sinB∴a b csinA sinB sinC2R这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式a b csinA sinB sinC点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫[知识拓展师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢生向量的数量积的定义式A·B=|A||B|C osθ,其中θ为两向量的夹角师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢生可以通过三角函数的诱导公式s inθ=Co s(90°-θ)进行转化师这一转化产生了新角90°-θ,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j垂直于三角形一边的原因师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AC CB AB而添加垂直于AC的单位向量j是关键,为了产生j与AB、ACCB、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点点评:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用向量法证明过程(1)△ABC为锐角三角形,过点A作单位向量j垂直于CB-A,j与的夹角为90°-C AC,则 j 与AB的夹角为由向量的加法原则可得AC CB AB为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到j (AC CB)j AB 由分配律可得AC j CB j AB∴|j|AC Co s90°+|j|CB Co s(90°-C)=|j|AB Co s(90°-A∴A sin C=C sin A∴a c sinA sinC另外,过点C作与CB 垂直的单位向量j,则j与AC的夹角为90°+C,j与AB的夹角为c b90°+B,可得sinC sinB(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与A C的夹角为90°-C,j与AB的夹角为90°-Ba b c ∴sinA sinB sinC(2)△ABC为钝角三角形,不妨设A>90°,过点A作与AC垂直的单位向量j,则j 与AB的夹角为A-90°,j与CB的夹角为90°-C由AC CB AB ,得j·AC C B=j·AB即A·Co s(90°-C)=C·Co s(A- ∴A sin C=C sin A∴a c sinA sinC另外,过点C作与C B垂直的单位向量j,则j与AC 的夹角为90°+C,j与AB夹角为90°+B.同理,可得b c sinB sinC∴a b csimA sinB sinC(形式1)综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立师在证明了正弦定理之后,我们来进一步学习正弦定理的应用[教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使A=ksin A,B=ksin B,C=ksin C;(2)a b c sinA sinB sinC等价于a b c b a c, ,sinA sinB sinC sinB sinA sinC(形式我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如a bsinAsinB.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P的例1就属于此类问题②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如s inA ab sinB.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.师接下来,我们通过例题评析来进一步体会与总结[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9c m,解三角形分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B,若求边C,再利用正弦定理即可解:根据三角形内角和定理,C=180°-(A+B)=180°-根据正弦定理,b= c=a s inB42.9sin81.8sinA sin32.0oa s inC42.9sin66.2sinA sin32.0ooo≈80.1(c m)≈74.1(c[方法引导(1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理(2)对于解三角形中的复杂运算可使用计算器【例2】在△ABC中,已知A=20c m,B=28c m,A=40°,解三角形(角度精确到1°,边长精确到1c m).分析:此例题属于B sin A<a<b的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性解:根据正弦定理,sin B=bsinA28sin40 a 20o因为0°<B<180°,所以B≈64°或B(1)当B≈64°时,C=180°-(A+B)=180°-(40°+64°)=76°,C=a s inC20sin76sinA sin40oo≈30(c4(2)当B≈116°时,C=180°-(A+B)=180°-(40°+116°)=24°,C =a s inC20sin24sinA sin40oo≈13(c[方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会变式一:在△ABC中,已知A=60,B=50,A=38°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A≥B这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B为钝角的情形解:已知B<A,所以B<A,因此B也是锐角∵sin B=bsinA50sin38 a 60o∴B∴C=180°-(A+B)=180°-∴C =a s in C 60sin111o sinA sin38o[方法引导同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B所受限制而求出角B的两个解,进而求出边C的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解变式二:在△ABC中,已知A=28,B=20,A=120°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A为钝角且A>B的情形,有一解,可应用正弦定理求解角B后,利用三角形内角和为180°排除角B为钝角的情形解:∵sin B=bsinA20sin120 a 28o∴B≈38°或B≈142°(舍去∴C =180°-(A+B)∴C=a s inC28sin22sinA sin120≈12.[方法引导]此题要求学生注意考虑问题的全面性,对于角B为钝角的排除也可以结合三角形小角对小边性质而得到(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC中(结果保留两个有效数字),(1)已知 C =3,A =45°,B =60°,求 B(2)已知 B =12,A =30°,B =120°,求 A解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,b c sinB sin C,∴B =csinB 3 s in60 sin Csin75(2)∵a b sinA sinB,∴A =bsinA 12sin30sinB sin 120点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的 学生进行在黑板上解答,以增强其自信心2.根据下列条件解三角形(角度精确到 1°,边长精确到 (1)B =11,A =20,B =30°;(2)A =28,B =20,A (3)C =54,B =39,C =115°;(4)A =20,B =28,A解: (1) ∵a b sinA sinB∴sin A =a s inB 20sin30b 11∴A ≈65°,A1 2当 A ≈65°时,C =180°-(B +A )=180°-(30°+65°)=85°, 111bsinC 11sin 85 ∴C = 1sinsinB sin30当 A ≈115°时,C =180°-(B +A )=180°-2 22bsin C 11sin 35 ∴C = 2sinB sin30(2)∵sin B =bsinA 20sin45a 28∴B ≈30°,B1 2 由于 A +B =45°+150°>180°,故 B ≈150°应舍去(或者由 B <A 知 B <A ,故 B 应为锐角 2 2∴C =180°-(45°+30°)=105°∴C=a s inC 28sin 105 sinA sin45(3)∵b csinB sinC∴sin B =bsinC 39sin 115c 54∴B ≈41°,B1 2由于 B <C ,故 B <C ,∴B ≈139°应舍去2∴当 B =41°时,A =180°-1 2A =csinA54sin24 sinC sin115(4) sin B=bsinA28sin120a 20=1.212>∴本题无解点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形布置作业(一)课本第10页习题1.1第1、2题(二)预习内容:课本P~P余弦定理5 8[预习提纲(1)复习余弦定理证明中所涉及的有关向量知识(2)余弦定理如何与向量产生联系(3)利用余弦定理能解决哪些有关三角形问题板书设计正弦定理1.正弦定理证明方法: 3.利用正弦定理,能够解决两类问题:a b csinA sinB sinC(1)平面几何法已知两角和一边(2)向量法(2)已知两边和其中一边的对角1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系教学重点余弦定理的发现和证明过程及其基本应用教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程2.余弦定理在解三角形时的应用思路3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作A如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a第二张:余弦定理(记作1.1.2B余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C形式二:co s A=b2c2a2c2a2b2a2b2,co s B=,co s C=2bc 2ca 2abc2三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题3.能利用计算器进行运算二、过程与方法1.利用向量的数量积推出余弦定理及其推论2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在△R t ADC内求解解:过C作CD⊥AB,垂足为D,则在△R t CDB中,根据勾股定理可得A2=CD2+BD2∵在Rt△ADC中,CD2=B2-AD2又∵BD2=(C-AD)2=C2-2C·AD+AD2∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD又∵在Rt△ADC中,AD=B·CO s A∴a2=b2+c2-2ab c os A类似地可以证明b2=c2+a2-2caco s Bc2=a2+b2-2ab c os C另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍在幻灯片1.1.2B中我们可以看到它的两种表示形式形式一a2=b2+c2-2bcco s Ab2=c+a2-2caco s Bc2=a2+b2-2abco s C形式二cosA cosB bc22c22bca22caab22cosC a2b22abc2师在余弦定理中,令C=90°时,这时c o s C=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用[合作探究2.向量法证明余弦定理(1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢生向量数量积的定义式a·b=|a||b|co sθ,其中θ为A、B的夹角师在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CBCA这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提(2)向量法证明余弦定理过程如图,在△ABC中,设AB、BC、CA的长分别是c、a、b由向量加法的三角形法则,可得∴AC AB BCAC AC (AB BC)(AB BC)AB22AB BC BC2AB 2AB BC cos(180B)BC2c22accosB a2,B即B2=C2+A2-2AC COBC AC AB由向量减法的三角形法则,可得∴BC BC(AC AB) (AC AB)AC22AC AB AB 2AC 2AC AB cosAAB2b22bccosA c2即a2=b2+c2-2bcco s AAB AC CB AC BC 由向量加法的三角形法则,可得∴AB AB (AC BC) (AC BC) AC22AC BC BC2 AC 22AC BC cosCBC2b22ba cosC a2,2 2即 c 2=a 2+b 2-2abco s C [方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与A B属于同起点向量,则夹角为 A ; AB 与 BC 是首尾相接,则夹角为角 B 的补角 180°-B ; 则夹角仍是角 C[合作探究A C与 是同终点,师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能 否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:cosAb2c 2 a 2a 2 c 2b 2b 2 a 2c 2,cosB,cosC2bc2ac2ba师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角 形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则 co s C =0,这时 c 2=a 2+b 2 .由此可知 余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的 平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对 的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知, 余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变 成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片 1.1.2B通过幻灯片中余弦定理的两种表示形式我们可以得到 ,利用余弦定理,可以解决以下两类有 关三角形的问题(1)已知三边,求三个角这类问题由于三边确定,故三角也确定,解唯一,课本 P 例 4 属这类情况8(2)已知两边和它们的夹角,求第三边和其他两个角这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形 所产生的判断取舍等问题接下来,我们通过例题来进一步体会一下 [例题剖析]【例 1】在△ABC 中,已知 B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到 1°,边长 精确到 1 c m )解:根据余弦定理,a 2 =b 2+c 2-2bcco s A =602+342 -2·60·34co s41°≈3 600+1 156-所以 A ≈41 c 由正弦定理得 sin C =csinA 34 sin41 34 0.656≈a 41 41因为 C 不是三角形中最大的边,所以 C 是锐角.利用计数器可得 C B =180°-A -C =180°-41°-【例 2】在△ABC 中,已知 a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形BC解:由余弦定理的推论,得co s A =co s B =bc 22c 2 a 2 87.82 161.72 134.6 2bc 2 87.8 161.7a 2b 2 134.62 161.72 87.8 2ca 2 134.6 161.722≈0.554 3,A≈0.839 8,BC =180°-(A +B )=180°-[知识拓展 补充例题:【例 1】在△ABC 中,已知 a =7,b =10,c =6,求 A 、B 和 C .(精确到分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的 形式二解:∵cosA b2c 2 a 2 102 62 72 2bc 2 10 60.725∴A∵c os C =a2b 2c 2 72 102 62 113 2ab 2 7 10 140∴C∴B =180°-(A +C )=180°- [教师精讲(1)为保证求解结果符合三角形内角和定理 ,即三角形内角和为 180°,可用余弦定理求出 两角,第三角用三角形内角和定理求出(2)对于较复杂运算,可以利用计算器运算【例 2】在△ABC 中,已知 a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效 数字,角度精确到分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在 第三边求出后其余角求解有两种思路 :一是利用余弦定理的形式二根据三边求其余角 ,二是 利用两边和一边对角利用正弦定理求解,但根据 1.1.1 斜三角形求解经验,若用正弦定理需 对两种结果进行判断取舍,而在 0°~180°之间,余弦有唯一解,故用余弦定理较好 解:由 c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得 c∵c os A =b2c 2 a 2 3.696 2 4.297 2 2.730 2bc 2 3.696 4.2972∴A∴B =180°-(A +C )=180°- [教师精讲通过例 2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边 用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦【例 3】在△ABC 中,已知 A =8,B =7,B =60°,求 C 及 分析:根据已知条件可以先由正弦定理求出角 A ,再结合三角形内角和定理求出角 C ,再利用△SABC正弦定理求出边 C ,而三角形面积由公式 S = △ABC12ac sin B 可以求出若用余弦定理求 C ,表面上缺少 C ,但可利用余弦定理 b 2=c 2+a 2-2caco s B 建立关于 C 的方程,亦 能达到求 C 的目的 下面给出两种解法解法一:由正弦定理得8 7sinA sin60∴A =81.8°,A = 1 2∴C =38.2°,C1 27 c 由sin60 sin C,得 c =3,c 1 2= △∴S ABC 1 1 ac sinB 6 3 或 = 2 2ac sinB 10 3 2 解法二:由余弦定理得 b 2=c +a 2-2caco s B∴72=c +82-2×8×cco 整理得 c 2-8c解之,得 c =3,c =5. = 12 △∴S ABC[教师精讲]1 1 ac sinB 6 3 或 S =2 2ac sinB 10 3 2 在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味 之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程 的观点去解决,故解法二应引起学生的注意综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围 ;已知三边求角或已 知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的 解法,即已知两边、一角解三角形可用余弦定理解之课堂练习1.在△ABC 中(1)已知 c =8,b =3,b =60°,求 A(2)已知 a =20,b B =29,c =21,求 B (3)已知 a =33,c =2,b =150°,求 B (4)已知 a =2,b =2,c =3+1,求 A解: (1)由 a 2=b 2+c 2-2bcco s A ,得 a 2=82+32-2×8×3co s60°=49.∴A(2)由cosBc2a 2b 2202 212 292 ,得 c osB2ca2 20 21.∴B(3)由 b 2=c 2+a 2-2caco s B ,得 b 2=(33)2+22-2×33×2co s150°=49.∴b(4)由cosAb2c 2 a 2 2bc ,得cosA( 2)2 ( 3 1)2 22 2 2( 3 1)2 2.∴A评述:此练习目的在于让学生熟悉余弦定理的基本形式 ,要求学生注意运算的准确性及解题 效率2.根据下列条件解三角形(角度精确到 (1)a =31,b =42,c (2)a =9,b =10,c△S ABC1 △ABC 1。
第一章解三角形整体设计教学分析首先了解新课标对本章的定位.解三角形作为三角系列的最后一章,突出了基础性、选择性与时代性.本章重在研究三角形边角之间的数量关系,如正弦定理、余弦定理等.正弦定理、余弦定理更深刻地反映了三角形的度量本质,成为解三角形的主要工具.本章的数学思想方法是一条看不见的暗线,数学思想方法是数学的精髓.在初中,教科书着重从空间形式定性地讨论三角形中线段与角之间的位置关系,本章主要是定量地揭示三角形边、角之间的数量关系,从而较清晰地解决了三角形的确定性问题.本章对两个定理的推导引入中十分强调这一量化思想方法,并选择了更有教育价值的正弦定理和余弦定理的证明方法.本章中融合了学生已学过的大部分几何知识,将解三角形作为几何度量问题来处理,突出几何背景,为学生理解数学中的量化思想,进一步学习数学奠定了基础.三维目标1.熟练掌握三角形中的边角关系.2.通过本节学习,要求对全章有一个清晰的认识,熟练掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力.3.注重思维引导及方法提炼,展现学生的主体作用,关注情感的积极体验,加强题后反思环节,提升习题效率,激发学生钻研数学的热情、兴趣和信心.重点难点教学重点:掌握正、余弦定理及其推导过程并且能用它们解斜三角形.教学难点:正弦定理、余弦定理的灵活运用,及将实际问题转化为数学问题并正确地解出这个数学问题.课时安排1课时教学过程导入新课(直接引入)本节课我们将对全章的知识、方法进行系统的归纳总结;系统掌握解三角形的方法与技巧.由此展开新课的探究.推进新课新知探究提出问题1本章我们学习了哪些知识内容?请画出本章的知识结构图.2解斜三角形要用到正弦定理、余弦定理,那么正弦定理、余弦定理都有哪些应用?3在解三角形时应用两个定理要注意些什么问题?若求一个三角形的角时,既可以用正弦定理,也可以用余弦定理,怎样选择较好? 4本章中解三角形的知识主要应用于怎样的一些问题? 5总结从初中到高中测量河流宽度和物体高度的方法. 活动:教师引导学生画出本章知识框图,教师打出课件演示: 从图中我们很清晰地看出本章我们学习了正弦定理、余弦定理以及应用这两个定理解三角形,由于本章内容实践性很强,之后又重点研究了两个定理在测量距离、高度、角度等问题中的一些应用.教师与学生一起回忆正弦定理、余弦定理的内容及应用如下:正弦定理、余弦定理:a sinA =b sinB =c sinC, a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2accosB ,c 2=a 2+b 2-2abcosC.正弦定理、余弦定理的应用:利用正弦定理,可以解决以下两类有关三角形的问题. ①已知两角和任一边,求其他两边和一角.②已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角).利用余弦定理,可以解决以下两类有关三角形的问题. ①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角.在求解一个三角形时,既可以用正弦定理,也可以用余弦定理,要尽量选择运算量较小,不产生讨论的方法求解.若求边,尽量用正弦定理;若求角,尽量用余弦定理.除了正弦定理、余弦定理外,我们还学习了三角形面积公式S=12bcsinA=12acsinB=12absinC,利用它我们可以解决已知两边及其夹角求三角形的面积.教师利用多媒体投影演示课件如下:教师点拨学生,以上这些知识与初中的边角关系、勾股定理等内容构成三角形内容的有机整体.实际上,正弦定理只是初中“三角形中大角对大边,小角对小边”的边角关系的量化.余弦定理是初中“已知两边及其夹角,则这两个三角形全等”的量化,又是勾股定理的推广.本章的应用举例也是在初中学习的一些简单测量的基础上,应用了正弦定理、余弦定理解关于斜三角形的问题.在应用两个定理等知识解决一些与测量和几何计算有关的问题时,需注意以下几点:①在利用正弦定理求角时,由于正弦函数在(0,π)内不严格单调,所以角的个数可能不唯一,这时应注意借助已知条件加以检验,务必做到不漏解,不多解.②在运用正弦定理与余弦定理进行有关三角形内角证明时,余弦定理会省去取舍的麻烦,但同时要注意在根据三角函数求角时,应先确定其范围.③在进行边角,角边转换时,注意运用正弦定理和余弦定理的变形形式.讨论结果:(1)、(2)、(5)略.(3)在应用两个定理求解时,注意与平面几何知识的融合.若求解一个三角形时两个定理都可用,则求边宜选正弦定理,求角宜选余弦定理,但要具体问题具体分析,从中选择最优解法.(4)本章知识主要应用测量、航海、建筑等在日常生活中与三角形有关的问题.应用示例例1判断满足下列条件的三角形形状.(1)acosA=bcosB;(2)sinC =sinA +sinB cosA +cosB. 活动:教师与学生一起探究判定三角形形状的方法有哪些.学生思考后可得出确定三角形的形状主要有两条途径:(1)化边为角,(2)化角为边.鼓励学生尽量一题多解,比较各种解法的优劣.解:(1)方法一:用余弦定理,得a×b 2+c 2-a 22bc =b×c 2+a 2-b 22ca. ∴c 2(a 2-b 2)=a 4-b 4=(a 2+b 2)(a 2-b 2).∴a 2=b 2或c 2=a 2+b 2.∴三角形是等腰三角形或直角三角形.方法二:用正弦定理,得sinAcosA =sinBcosB ,∴sin2A=sin2B.∵A、B 为三角形的内角,∴2A=2B 或2A +2B =180°.∴A=B 或A +B =90°.因此三角形为等腰三角形或直角三角形.(2)方法一:先用正弦定理,可得c =a +b cosA +cosB,即c·cosA +c·cosB=a +b.再用余弦定理,得c·b 2+c 2-a 22bc +c·a 2+c 2-b 22ac=a +b. 化简并整理,得a 3+b 3+a 2b +ab 2-ac 2-bc 2=0,(a +b)(a 2+b 2-c 2)=0.∵a>0,b >0,∴a 2+b 2-c 2=0,即a 2+b 2=c 2.∴三角形为直角三角形.方法二:∵sinA=sin(B+C),sinB=sin(A+C),∴原式可化为sinC·cosA+cosB·sinC=sinA+sinB=sin(B+C)+sin(A+C)=sinB·cosC+cosB·sinC+sinA·cosC+cosA·sinC.∴sinB·cosC+sinA·cosC=0,即cosC(sinA+sinB)=0.∵0°<A<180°,0°<B<180°,∴sinA+sinB≠0.∴cosC=0.又∵0°<C<180°,∴C=90°.∴三角形为直角三角形.点评:第(1)题中的第2种解法得出sin2A=sin2B时,很容易直接得出2A=2B,所以A=B.这样就漏掉了一种情况,因为sin2A =sin2B中有可能推出2A与2B两角互补,这点应引起学生注意.第(2)题中绕开正、余弦定理通过三角函数值的符号判定也是一种不错的选择,但学生不易想到,因此熟悉三角形中sinA=sin(B+C),cosA=-cos(B+C)等常见结论对解三角形大有益处.变式训练△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=52b,A=2B,则cosB等于( )A.53B.54C.55D.56答案:B解析:由题意得a b =52=sinA sinB =sin2B sinB =2cosB ,cosB =54. 例2在△ABC 中,若△ABC 的面积为S ,且2S =(a +b)2-c 2,求tanC 的值.活动:本题涉及三角形的面积,面积公式又是以三角形的三边a 、b 、c 的形式给出,从哪里入手考虑呢?教师可先让学生自己探究,学生可能会想到将三角形面积公式代入已知条件,但三角形面积公式S =12absinC =12acsinB =12bcsinA 有三个,代入哪一个呢?且代入以后的下一步方向又是什么呢?显然思路不明.这时教师适时点拨可否化简等式右边呢?这样右边为(a +b)2-c 2=a 2+b 2-c2+2ab.用上余弦定理即得a 2+b 2-c 2+2ab =2abcosC +2ab ,这就出现了目标角C ,思路逐渐明朗,由此得到题目解法.解:由已知,得(a +b)2-c 2=a 2+b 2-c 2+2ab=2abcosC +2ab =2×12absinC. ∴2(1+cosC)=sinC ,2×2cos 2C 2=2sin C 2·cos C 2. ∵0°<C <180°,∴0°<C 2<90°,即cos C 2≠0. ∴tan C 2=2.∴tanC=2tan C 21-tan 2C 2=41-4=-43. 点评:通过对本题的探究,让学生认识到拿到题目后不能盲目下手,应先制定解题策略,寻找解题切入口.变式训练在△ABC 中,tanA =14,tanB =35. (1)求角C 的大小;(2)若AB 边的长为17,求BC 边的长.解:(1)∵C=180°-(A +B),∴tanC=-tan(A +B)=-14+351-14×35=-1. 又∵0°<C <180°,∴C=135°.(2)∵tanA=sinA cosA =14,sin 2A +cos 2A =1,0°<A <90°, ∴sinA=1717. 由正弦定理,得AB sinC =BC sinA ,∴BC=AB·sinA sinC= 2. 例3将一块圆心角为120°,半径为20 cm 的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA 上,或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.活动:本题是北京西城区的一道测试题,解题前教师引导学生回忆前面解决实际问题的方法步骤,让学生清晰认识到解决本题的关键是建立数学模型,然后用相关的数学知识来解决.解:按图(1)的裁法:矩形的一边OP 在OA 上,顶点M 在圆弧上,设∠MOA =θ,则|MP|=20sinθ,|OP|=20cosθ,从而S =400sinθcosθ=200sin2θ,即当θ=π4时,S max =200. 按图(2)的裁法:矩形的一边PQ 与弦AB 平行,设∠MOQ=θ,在△MOQ 中,∠OQM=90°+30°=120°,(1)(2)由正弦定理,得|MQ|=20sinθsin120°=4032sinθ. 又因为|MN|=2|OM|sin(60°-θ)=40sin(60°-θ),所以S =|MQ|·|MN|=1 60033sinθsin(60°-θ) =1 60033{-12[cos60°-cos(2θ-60°)] }=80033[cos(2θ-60°)-cos60°].所以当θ=30°时,S max =40033. 由于40033>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为40033 cm 2.点评:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.变式训练设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且acosB =3,bsinA =4.(1)求边长a ;(2)若△ABC 的面积S =10,求△ABC 的周长l. 解:(1)由acosB =3与bsinA =4,两式相除,得 34=acosB bsinA =a sinA ·cosB b =b sinB ·cosB b =cosB sinB . 又acosB =3,知cosB >0, 则cosB =35,sinB =45.则a =5.(2)由S =12acsinB =10,得c =5.由cosB =a 2+c 2-b 22ac =35,解得b =2 5.故△ABC 的周长l =a +b +c =10+2 5.知能训练1.在△ABC 中,若b =2a ,∠B =∠A +60°,则∠A =__________.2.在△ABC 中,∠A、∠B、∠C 所对的边分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2,c b =12+3,求∠A 和tanB 的值.答案:1.30° 解析:由正弦定理,知a sinA =bsinB ,∴1sinA =2sin A +60°,2sinA =sin(A +60°)=12sinA +32cosA. ∴tanA=33.∵0°<∠A<180°,∴∠A=30°. 2.解:由余弦定理和已知条件,得cosA =b 2+c 2-a 22bc =bc 2bc =12,∵0°<∠A<180°,∴∠A=60°,且∠B=180°-∠A-∠C =120°-∠C.由正弦定理和已知条件,得sinC sinB =sin120°-BsinB=3cosB +sinB 2sinB =3cosB 2sinB +12=12+3,∴tanB=12.∴所求∠A=60°,tanB =12.课本本章小结巩固与提高1~8.课堂小结先由学生总结本节课对全章的复习都有哪些收获和提高?解决本章的基本问题都有哪些体会?可让若干学生在课堂上介绍自己的复习心得.教师进一步画龙点睛,总结解题思路:(1)运用方程观点结合恒等变形方法巧解三角形;(2)运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘.作业1.巩固与提高9~12 2.自测与评估1~7设计感想本教案设计注重了优化知识结构,进一步加深对知识的巩固.在此过程中,学生对思想方法的领悟也更具深刻性;注重对学生抽象思维、发散思维的培养训练.通过一题多解训练了学生对事物现象选择角度地观察,从而把握事物的本质.本教案设计意图还按照习题的内容分类处理进行;注重了思维引导及方法提炼,展现了学生的主体作用,关注学生愉悦情感的积极体验,深挖了三角形本身内在美的价值,意在激发学生强烈的探究欲望,培养学生积极的向上心态.备课资料一、与三角形计算有关的定理 1.半角定理在△ABC 中,三个角的半角的正切和三边之间有如下的关系: tan A 2=1p -ap -ap -b p -cp,tan B 2=1p -b p -a p -b p -c p , tan C 2=1p -cp -ap -b p -cp,其中p =12(a +b +c).证明:tan A 2=sinA 2cosA 2,因为sin A 2>0,cos A2>0,所以sin A2=1-cosA2=121-b 2+c 2-a 22bc=a 2-b -c24bc=a +b -ca -b +c4bc.因为p =12(a +b +c),所以a -b +c =2(p -b),a +b -c =2(p-c).所以sin A2=p -bp -cbc.而cos A 2=1+cosA2=121+b 2+c 2-a 22bc=b +c 2-a24bc=b +c +ab +c -a4bc=pp -abc ,所以tan A2=sin A 2cos A2=p -bp -cbc pp -a bc=p -b p -c p p -a=1p -a p -a p -b p -cp .所以tan A 2=1p -ap -ap -b p -cp.同理,可得tan B 2=1p -b p -a p -b p -cp ,tan C 2=1p -cp -ap -b p -cp.从上面的证明过程中,我们可以得到用三角形的三条边表示半角的正弦和半角的余弦的公式:sin A 2=p -bp -cbc,cosA 2=pp -abc.同理,可得sin B2=p -ap -cac,sin C2=p -ap -bab,cos B 2=p p -b ac ,cos C2=pp -cab.2.用三角形的三边表示它的内角平分线设在△ABC 中(如图),已知三边a 、b 、c ,如果三个角A 、B 和C 的平分线分别是t a 、t b 和t c ,那么,用已知边表示三条内角平分线的公式是:t a =2b +cbcpp -a;t b =2a +cacpp -b;t c =2a +babpp -c ,其中p =12(a +b +c).证明:设AD 是角A 的平分线,并且BD =x ,DC =y ,那么,在△ADC 中,由余弦定理,得t a 2=b 2+y 2-2bycosC ,①根据三角形内角平分线的性质,得c b =x y ,所以c +b b =x +yy .因为x +y =a ,所以c +b b =a y .所以y =abb +c .②将②代入①,得t a2=b 2+(ab b +c )2-2b(abb +c)cosC=b 2b +c2[b 2+c 2+2bc +a 2-2a(b +c)cosC].因为cosC =a 2+b 2-c22ab ,所以t a 2=b 2b +c 2[a 2+b 2+c 2+2bc -2a(b +c)·a 2+b 2-c 22ab] =bc b +c2(b 2+c 2+2bc -a 2)=bc b +c2(a +b +c)(b +c -a)=bc b +c2·2p·2(p-a)=4b +c2·bcp(p-a).所以t a =2b +cbcpp -a .同理,可得 t b =2a +cacpp -b,t c =2a +babpp -c.这就是已知三边求三角形内角平分线的公式. 3.用三角形的三边来表示它的外接圆的半径设在△ABC 中,已知三边a 、b 、c ,那么用已知边表示外接圆半径R 的公式是R =abc p p -ap -bp -c.证明:因为R =a 2sinA ,S =12bcsinA ,所以sinA =2Sbc .所以R =a 2sinA =abc4S =abc p p -ap -bp -c.二、备选习题1.在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,a∶b∶c=3∶3∶5,则2sinA -sinBsinC等于… ( )A .-15B .-23 C.35D .不是常数2.△ABC 的周长等于20,面积是103,∠A=60°,∠A 的对边为( )A .5B .6C .7D .8 3.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于( )A .-32B .-23 C.23 D.324.已知在△ABC 中,∠B=30°,b =6,c =63,则a =__________,S △ABC =__________.5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b -c)cosA =acosC ,则cosA =__________.6.对△ABC,有下面结论:①满足sinA =sinB 的△ABC 一定是等腰三角形;②满足sinA =cosB 的△ABC 一定是直角三角形;③满足a sinA =b sinB=c 的△ABC 一定是直角三角形.则上述结论正确命题的序号是__________.7.在△ABC 中,D 在边BC 上,且BD =2,DC =1,∠B=60°,∠ADC=150°,求AC 的长及△ABC 的面积.8.在△ABC 中,已知角A 、B 、C 的对边分别为a 、b 、c ,且bcosB +ccosC =acosA ,试判断△ABC 的形状.参考答案:1.C 解析:设a =3k ,则b =3k ,c =5k.∴2sinA -sinB sinC =2a -bc =2×3k-3k 5k =35.2.C 解析:∵a+b +c =20,∴b+c =20-a ,即b 2+c 2+2bc =400-40a +a 2.∴b 2+c 2-a 2=400-40a -2bc.又∵cosA=b 2+c 2-a 22bc =12,∴b 2+c 2-a 2=bc.又∵S △ABC =12bcsinA =103,∴bc=40.将b 2+c 2-a 2=bc 和bc =40,代入b 2+c 2-a 2=400-40a -2bc ,得a =7.3.D 解析:由余弦定理,得cosA =AC 2+AB 2-BC 22AC·AB =4+9-102×2×3=14,∴AB →·AC →=|AB →|·|AC →|·cosA=2×3×14=32. 4.a =6,S =93或a =12,S =18 3 解析:由正弦定理,得b sinB =c sinC ,∴sinC=c b sinB =32.∴∠C=60°或∠C=120°. 当∠C=60°时,则∠A=90°,因此a =12,S =12acsinB =183;当∠C=120°时,则∠A=30°,因此a =6,S =12acsinB =9 3.5.33解析:由正弦定理,得(3b -c)cosA =(3sinB -sinC)cosA =sinA·cosC, 即3sinBcosA =sinA·cosC+sinC·cosA, ∴3sinB·cosA=sin(A +C)=sinB.∴cosA=33.6.①③7.解:如图,在△ABC 中,∠BAD=150°-60°=90°, ∴AD=2sin60°= 3.在△ACD 中,AC 2=(3)2+12-2×3×1×cos150°=7, ∴AC=7.∴AB=2cos60°=1,S △ABC =12×1×3×sin60°=334. 8.解:∵bcosB+ccosC =acosA ,由正弦定理,得sinBcosB +sinCcosC =sinAcosA ,即sin2B +sin2C =2sinAcosA ,∴2sin(B+C)cos(B -C)=2sinAcosA. ∵A+B +C =π,∴sin(B+C)=sinA.而sinA≠0,∴cos(B-C)=cosA ,即cos(B -C)+cos(B +C)=0.∴2cosBcosC=0.∵0<B <π,0<C <π,∴B=π2或C =π2,即△ABC 是直角三角形.。
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
人教版高中必修5(B版)第一章解直角三角形教学设计一、教学目标1.了解直角三角形的概念及其特殊的三角函数关系;2.掌握正弦、余弦、正切函数的定义及其基本性质;3.应用所学的三角函数知识解决一些实际问题;4.培养学生探究问题,实践操作和分析解决问题的能力。
二、教学重点和难点教学重点:1.掌握直角三角形及其相关概念,掌握三角函数的定义、性质和计算方法;2.掌握正弦、余弦、正切函数的定义及其基本性质,并能有效解决相关问题。
教学难点:1.能够利用直角三角形及其三角函数关系解决实际问题;2.了解解三角形三边、三角形面积的相关公式,灵活运用求解。
三、教学内容和过程教学内容1.直角三角形概念及相关概念。
2.正弦函数、余弦函数、正切函数的定义及其基本性质。
3.应用三角函数知识解决实际问题,如计算高度、角度、距离等。
教学过程课前预习环节(5分钟)教师布置题目:小明在造房子时,发现房子旁有一条小溪,想知道自己房子与溪流之间的距离,但是溪流的宽度比较难以测量,请帮他计算一下。
导入环节(10分钟)板书“什么是直角三角形?”>简单介绍直角三角形的定义和特殊性质板书“什么是三角函数?”>简单介绍三角函数以及三角函数的基本性质讲授环节(20分钟)1.讲解正弦函数、余弦函数、正切函数的定义和性质2.利用实例辅助讲解如何求出直角三角形中的角度、高度、距离等练习环节(30分钟)1.给出多个直角三角形例题进行练习,例如:1.在一个直角三角形中,一角为45度,直角边长为4 cm,请计算斜边的长度。
2.在一个直角三角形中,斜边长为5 cm,一角为30度,请计算其它两条边的长度。
3.在一个直角三角形中,一角为60度,斜边长为1,请计算高度和底边长。
2.学生在配合教师纠正答案和思路错误的同时独立完成。
总结环节(5分钟)老师指导学生梳理本节课学习的知识点和重点,强化记忆。
四、教学评价1.学生能够熟练掌握直角三角形的概念及其特殊的三角函数关系;2.学生能够掌握正弦、余弦、正切函数的定义及其基本性质;3.学生能够灵活运用所学的三角函数知识解决一些实际问题。
A BCj图1-2图1-1新课标理念下高中数学必修5第一章 解三角形教法学法的探究交流本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。
本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。
教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。
正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。
本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。
高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。
课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
学法指导:1、重视数学思想方法的运用。
解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。
2、加强新旧知识的联系。
本章知识与初中学习的三角形的边、角关系有着密切联系。
同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。
3、提高数学建模能力。
利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。
学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。
因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。
知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。
比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”3.重视加强意识和数学实践能力学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。
学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。
针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
(三)教学内容及课时安排建议1.1正弦定理和余弦定理(约3课时)1.2应用举例(约4课时)1.3实习作业(约1课时)(四)评价建议1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。
在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。
如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。
在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。
对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。
教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
课题: §1.1.1正弦定理授课类型:新授课●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin bB c=,又sin 1cC ==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin ab=sin c=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A 作j AC ⊥, C由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅ j()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即sin sin =a cA C同理,过点C 作⊥ j BC ,可得 sin sin =b cB C从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。
解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A评述:对于解三角形中的复杂运算可使用计算器。
例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。