基于窄带数字压缩卫星信号的接收和调试、
- 格式:docx
- 大小:287.90 KB
- 文档页数:6
Hot-Point Perspective热点透视DCW133数字通信世界2020.12有线电视前端设备主要包括抛物面天线、噪声变频器、功分器、卫星接收机、解调器和混合器等。
这些前端设备安装时,需要掌握正确的安装技术,这样才能够有效接收数字信号,全面提高人民群众的生活质量。
天线的作用能够将空中的卫星信号进行快速反射,并且聚集成一个点,利用抛物面的形式对天线进行反馈,而高频头则能够扩大卫星信号,确保卫星信号传输质量得到有效强化,卫星接收设备能够对相应的信号进行快速调节,保证信号综合处理,确保电视信息准确传达。
1 村村通有线电视前端设备的安装良好的卫星接收设备必须要有良好的设备选址,这样才能够最大程度强化卫星信号的接收效果,确保广播电视使用和信号接收的整体品质达到最佳。
在天线安装时要尽量保证环境宽敞,周围没有杂物的阻挡,同时还要保证信号接收的视野强大,避免有其他遮挡天线的物体,确保广播卫星信号传输畅通无阻。
在接收卫星信号天线安装时,还要远离高压电线等场所,避免受到雷雨闪电等恶劣天气影响,而造成卫星接收设备出现明显误差,还应该将电视与天线的具体安装位置进行准确衡量,确保两者之间保持短距离,提高信号的整体接收效果。
2 卫星接收设备的主要安装方式在卫星接收设备安装时,需要正确掌握卫星接收设备的安装,确保安装的整体质量达到要求。
在安装之前需要对卫星接收设备说明书进行仔细阅读,明确卫星接收设备的具体安装方式,针对不同部件功能和不同部件安装所需要的注意事项进行清晰准确的把握,对卫星接收设备的不同安装器件也要进行深入了解,从整体上加强安装的质量控制。
目前在卫星接收设备安装时,需要对接收天线高频头和底座按照要求进行连接,并且要合理固定,高频头与卫星接收设备需要利用射频电缆进行快速连接,从而增强安装调试的整体效果,所有的卫星接收设备都要保证联系紧密,强化信号接收的整体质量。
前段设备调试的主要作用在于对各频道信号水平、A/V 比率、视频调制过程、音频频率偏差等情况进行测量与调整。
卫星导航接收机中窄带干扰抑制算法
卫星导航接收机是一种用于接收全球定位系统(GPS)信号的设备。
然而,在实际应用中,卫星导航接收机常常会受到各种干扰,其中最常见的是窄带干扰。
窄带干扰是指在接收机频带内出现的狭窄频率干扰信号,它会对接收机的性能产生严重影响,降低定位精度和可靠性。
为了解决这个问题,研究人员提出了一种窄带干扰抑制算法。
该算法基于自适应滤波器和频域分析技术,能够有效地抑制窄带干扰信号,提高接收机的性能。
具体来说,该算法首先通过频域分析技术对接收信号进行频谱分析,确定干扰信号的频率和带宽。
然后,利用自适应滤波器对干扰信号进行抑制,使其在接收机输出中的功率降至最小。
最后,将抑制后的信号送入解调器进行解调和定位。
该算法具有以下优点:
1. 高效性:该算法能够快速准确地抑制窄带干扰信号,提高接收机的性能。
2. 自适应性:该算法能够自适应地调整滤波器参数,适应不同的干扰信号特征。
3. 可靠性:该算法能够有效地抑制干扰信号,提高接收机的可靠性和稳定性。
窄带干扰抑制算法是卫星导航接收机中一种重要的信号处理技术,它能够有效地抑制窄带干扰信号,提高接收机的性能和可靠性。
未来,随着卫星导航技术的不断发展,该算法将会得到更广泛的应用和发展。
北斗卫星导航接收机抗窄带干扰技术研究抗干扰技术一直是卫星导航通信方向研究的前沿,特别是在军事领域的应用,是决定信息化战争成败的关键因素之一。
虽然我国卫星导航系统起步晚,但发展迅速。
对干扰抑制技术的不断研究会在更加完善的第三代北斗卫星导航系统(Beidou Navigation Satellite System,BDS)中发挥不可或缺的作用。
接收机天线收到的导航信号微弱,容易受到周围电磁波和干扰的破坏。
窄带干扰(Narrowband Interference,NBI)是接收机常见的干扰类型。
为了提高接收机抗窄带干扰的性能,有必要在接收机中加入窄带干扰抑制模块。
本文主要深入的研究了时域和频域的自适应抑制窄带干扰的方法,并选择了一种频域自适应门限算法进行了硬件实现。
以接收机收到的卫星导航信号和噪声、干扰的混合信号为前提,本文主要完成了以下工作:(1)介绍了卫星导航系统中采用的扩频通信技术,以直接序列扩频(Direct Sequence Spread Spectrum,DSSS)系统为例,对窄带干扰下扩频前后的误码率曲线进行了仿真,由结果对比分析了其抗干扰性能。
接着根据北斗信号和窄带干扰的结构,给出了数学模型,并阐述了导航接收机原理和自适应滤波技术理论。
(2)从自适应预测估计角度,研究了时域抑制窄带干扰技术。
详细介绍了最小均方(Least Mean Square,LMS)、递归最小二乘(Recursion Least Square,RLS)以及改进的可变步长最小二乘(Variable Step-size Least Mean Square,VSLMS)算法,对比了各算法抑制窄带干扰前后的仿真结果图,分析了算法的收敛性。
从滤波器结构角度对IIR陷波器进行了改进,并对改进前后进行了仿真对比。
(3)从自适应门限与并行处理数据角度,研究了频域抑制窄带干扰技术。
首先介绍了频域滤波的思路,加窗函数的原因以及减少影响的措施,接着重点研究了频域滤波中自适应门限值的设定方法,并对改进后的N-sigma算法、自适应门限μ值法以及块处理数据的FBLMS算法进行了抗窄带干扰仿真。
卫星导航接收机中窄带干扰抑制算法导航系统是现代交通、航空、军事等领域不可或缺的重要技术,而卫星导航接收机则是实现导航系统功能的重要组成部分。
然而,在实际使用过程中,接收机可能会受到各种干扰信号的影响,其中窄带干扰是常见的一种类型。
针对窄带干扰的抑制,研究人员提出了多种算法,下面将介绍几种常用的窄带干扰抑制算法。
首先,经典的窄带干扰抑制算法是滤波算法。
该算法通过在接收机中引入滤波器,将干扰信号的频率范围内的信号进行滤波处理,以减小干扰信号对导航信号的干扰程度。
滤波算法的核心是选择合适的滤波器类型和设计滤波器参数。
传统的滤波器类型包括低通滤波器、高通滤波器、带通滤波器等,根据干扰信号的特点选择相应的滤波器类型。
另一种常用的窄带干扰抑制算法是自适应滤波算法。
自适应滤波算法通过根据接收机的输入信号来自动调整滤波器的参数,以适应干扰信号的频率和幅度的变化。
该算法的优点是可以在干扰信号频率发生变化时自动调整滤波器的参数,从而更好地抑制干扰。
自适应滤波算法的核心是选择合适的自适应滤波器结构和设计自适应算法。
除了滤波算法和自适应滤波算法外,还有一些其他的窄带干扰抑制算法,如小波变换算法、盲源分离算法等。
小波变换算法通过对接收信号进行小波变换,将干扰信号和导航信号在小波域中进行分离,从而实现对干扰信号的抑制。
盲源分离算法则是利用接收信号的统计特性来估计干扰信号和导航信号的分离参数,然后通过合适的信号处理方法对干扰信号进行抑制。
需要注意的是,不同的窄带干扰抑制算法具有各自的特点和适用范围。
在实际应用中,需要根据具体的干扰情况选择合适的算法或者结合多种算法来进行干扰抑制。
此外,干扰抑制算法的性能和效果也需要进行实验验证和调优。
综上所述,卫星导航接收机中窄带干扰抑制算法包括滤波算法、自适应滤波算法、小波变换算法、盲源分离算法等。
这些算法都有其优点和适用范围,可以根据实际情况来选择合适的算法或者结合多种算法来进行干扰抑制。
基于低轨卫星互联网的双模通信终端技术目录一、摘要 (2)二、内容概括 (2)三、双模通信终端技术原理 (3)1. 低轨卫星互联网技术 (5)2. 双模通信终端技术概念 (6)四、低轨卫星互联网技术 (7)1. 低轨卫星互联网发展现状 (9)2. 低轨卫星互联网的优势与挑战 (10)五、双模通信终端技术 (11)1. 双模通信终端技术原理 (12)2. 双模通信终端技术分类 (14)六、基于低轨卫星互联网的双模通信终端设计 (15)1. 硬件设计 (16)a. 天线设计 (17)b. 信号处理模块 (18)c. 电源管理模块 (20)2. 软件设计 (21)a. 系统软件 (21)b. 应用软件 (23)c. 数据传输协议 (24)七、基于低轨卫星互联网的双模通信终端实现 (26)1. 系统硬件选型与集成 (27)2. 系统软件开发与调试 (28)3. 系统测试与验证 (28)八、结论与展望 (30)1. 双模通信终端技术的优势与应用前景 (30)2. 未来发展趋势与研究方向 (32)一、摘要本文档重点探讨了基于低轨卫星互联网的双模通信终端技术,低轨卫星互联网以其高速度、广覆盖、低延迟的特点在现代通信领域起到了不可替代的作用。
双模通信终端技术作为实现陆基与卫星网络无缝连接的关键,整合地面通信网络与传统卫星通信网络的优势,显著提高了通信系统的灵活性和可靠性。
本文主要介绍了双模通信终端技术的概念、设计原理、技术难点以及实现方式,同时探讨了其在现代通信领域的应用前景,特别是在偏远地区通信、应急通信以及全球互联网连接等方面的潜在价值。
本文旨在为相关领域的研究人员和技术开发者提供理论基础和实践指导,推动基于低轨卫星互联网的双模通信终端技术的进一步发展。
二、内容概括本文档主要围绕“基于低轨卫星互联网的双模通信终端技术”涵盖了该技术的背景、发展现状以及未来可能的应用前景。
在背景方面,随着全球互联网的快速普及和扩展,网络覆盖范围和通信质量的需求持续提升。
关于北斗导航射频电路抗干扰设计方法研究北斗导航是我国自主研发的卫星导航系统,已经成为国内外用户信赖的卫星导航服务。
随着北斗导航系统的不断完善和应用的拓展,其对射频电路的抗干扰能力提出了更高的要求。
射频电路的抗干扰设计方法研究对于保障北斗导航系统的稳定、可靠运行具有重要意义。
本文结合北斗导航射频电路的特点,探讨其抗干扰设计方法,旨在为北斗导航系统的进一步提升提供有益的参考。
一、北斗导航射频电路的抗干扰特点1. 高频信号干扰:北斗导航系统工作在高频段,容易受到来自其他无线设备的高频信号干扰,射频电路需要具有较强的抗高频干扰能力。
2. 强电磁干扰:卫星导航系统的射频电路在使用过程中会受到来自外部的强电磁干扰,如雷电、电磁辐射等,要求射频电路具有一定的抗干扰能力。
3. 窄带和宽带干扰:北斗导航系统在接收卫星信号的过程中会受到窄带和宽带干扰的影响,射频电路需要具有对窄带和宽带干扰的抑制能力。
以上特点决定了北斗导航射频电路在设计时需要充分考虑抗干扰的需求。
1. 选择抗干扰器件:在射频电路设计中,选择具有较好抗干扰特性的器件非常重要。
选择具有良好线性度和抗干扰能力的放大器、滤波器等器件,能够有效提升整个射频电路的抗干扰能力。
2. 合理布局射频电路:射频电路的布局对于抗干扰能力的提升至关重要。
合理的布局可以减小各部分之间的干扰,降低干扰对系统性能的影响。
通过合理的地线设计和射频信号的屏蔽,能够有效阻止外部干扰信号的影响。
3. 设计滤波器:在北斗导航射频电路中,设计好的滤波器能够有效抑制来自外部的干扰信号,提高接收机的灵敏度和抗干扰能力。
在射频电路设计中,设置滤波器是一种有效的抗干扰设计方法。
4. 优化晶体管工作点:晶体管是射频电路中常用的放大器元件,在设计时需要合理选择晶体管的工作点,使其在工作时能够具有较好的线性度和抗干扰能力。
5. 设计抗干扰电路:在射频电路设计中,可以根据系统对抗干扰性能的要求,设计专门的抗干扰电路。
卫星导航接收机中窄带干扰抑制算法卫星导航接收机(GNSS接收机)中,由于干扰源的复杂性,窄带干扰已成为一种主要的干扰类型。
为了减小窄带干扰对GNSS信号的影响,需要采取一些抑制算法。
窄带干扰抑制算法可分为两类:频域算法和时域算法。
下面分别介绍这两类算法。
1.频域算法。
频域算法利用信号在频域上的不同特性,对频率偏移较大的窄带干扰进行抑制。
以下是常用的频域算法:
1)去除法:利用主要区分GNSS信号和干扰信号的频率差异,进行滤波消除干扰。
2)时域平均法:把连续一段时间内接收到的信号进行时域平均,消除随机噪声和窄带干扰。
3)自适应滤波法:通过不断更新滤波参数,自适应地滤除干扰。
2.时域算法。
时域算法利用信号在时域上的不同特性,对窄带干扰进行抑制。
以下是常用的时域算法:
1)环路滤波法:把接收机的输出信号作为输入信号,经过一系列环路滤波器处理,去除干扰。
2)递归滤波法:利用递归滤波器抑制干扰,但可能会产生稳定性问题。
3)小波变换法:利用小波分析方法对接收到的信号进行分解和重构,以去除干扰。
以上是常用的窄带干扰抑制算法。
在实际应用中,需要根据情况选择
合适的算法进行处理。
Nov2012关于卫星广播通信中常见干扰问题的分析研究+ 张荣建 广电总局无线电台管理局摘要:通过对卫星广播通信中常见干扰的类型和原因进行分析,提出可能的应对方法,以期对从业人员在地球站建设运行维护工作中提供一定的借鉴。
关键词:卫星 通信 干扰 分析一、前言卫星是我国广播电视节目传输的重要渠道之一。
但卫星通信受自身特点的限制和环境的影响,不可避免地会遇到各种干扰。
特别是常见通信卫星采用透明转发器,更容易受到一些不可预见的干扰。
随着通信技术的快速发展和广泛应用,卫星信号传输路径上的干扰将越来越多,干扰类型也越来越复杂,需要对此进行分析研究以便采取一定的措施进行识别和克服。
二、干扰的种类和原因及危害程度根据干扰的来源和危害程度,干扰的种类主要可分为地面干扰、空间段各类自然噪声干扰、空间不明无意干扰、空间恶意干扰等。
1.地面干扰 (1)地球站设备的杂波干扰对于上行系统设备,杂散指标不合格,工作载波中携带有杂波或谐波;调制器、上变频器输出电平过高,或者“高功放”工作在非线性状态,出现频谱扩散;上变频器、高功放的工作点设置不当,造成载波噪声抬高;上变频器频率漂移等等都会引起干扰,严重影响上行信号传输质量。
典型事例1:某地球站数字电视节目因不明原因最大功率上行时,造成临近卫星转发器节目载波信号质量下降从而提升功率,经查,该地球站大功率上行时,其带外杂散严重超标,更换高功放速调管通道后杂散消失,确认为速调管该通道指标下降引起。
(2)电磁干扰对于卫星通信,特别是C频段,由于地面存在着大量的微波、雷达、无线电视、调频广播、寻呼业务、工业电磁噪声等干扰。
这些干扰源很容易串入地球站上行链路发射上星,造成上行干扰。
串入下行链路造成接收干扰。
地球站播出设备接地不良,接地电阻过高,串入交流噪声;电缆屏蔽性能差,电缆插头接地不良;链路电平配置不合理,引起某些设备产生自激等等,都可能在有用频带内串入调频信号产生杂波干扰,这种现象在调频电台附近的地球站会经常会遇到。
技术Special TechnologyI G I T C W 专题0 引言地面信号接收站作为一个重要的基础设施,我们要对其中的重要设备进行一定的了解,首先我们要了解的就是卫星信号接收天线,其中的所有设备都是基于它而工作的,它是直接对信号质量影响的重要因素,在长期的发展过程中,已经有了对地面卫星信号接收站的一些规定,比如卫星天线必须具有方向性强,不能产生极大的噪音和极高的温度,根据这项规定,我们要在合适的地点进行基站安装,并且要用专业的方法对其中的重要设备进行定期的维护和保养。
1 选择合适的地址是重中之重为了保证基站可以长期稳定地接收卫星信号,我们在选址的时候要十分谨慎,确保基站能够正常运行,首先基站不能在城市中,要选在比较偏远的郊区。
地址所在地要保证土地平坦,具有较为开阔的视野,周围没有特别高大的树木和建筑。
在基站的上空,不能出现飞机的航道,否则卫星的信号将会被打乱。
同样的高压线也不能出现在它的周围,以防这些设备产生的电磁波,对卫星信号造成干扰。
在真正落实的时候,我们必须要用微波探测设备进行检查,除了这些,最基本的供电供水肯定是要有的,这样可以保证工作人员能够在其中生存,有一个良好的工作环境。
2 正确并合理的对设备进行安装2.1 如何对卫星天线进行安装在确定选址地点后,我们要用一定的仪器,精准的测量出正南方向或者正北方向的赤道位置。
然后根据两个重要标准,一个是卫星天线接收信号的能力,另一个是底座几何尺寸的要求,根据这两个标准,对基站进行建设,打完地基以后,最先安装的应该是基座,之后才能进行立柱的安装,安装基座的时候我们一定不要把其固定死,这样可以方便以后对立柱的安装,当这二者能够稳定地结合后,再把基座锁紧。
在对天线支架进行安装时,我们一定要用精密仪器对其进行多次测量,这样才能保证其能够与水平面相对垂直,保证以后天线在工作的过程中能够灵活的转动。
这些工作完成后,我们开始对天线的抛面进行拼装,首先我们要把抛面在地面上拼装好,然后再用起重机将拼装好的抛面架到主轴的上部,在地面拼装的时候,一定要选择干燥平坦的地面,这样才能够稳定地将抛面拼装好,在拼装的过程中,我们需要用到大量的螺杆、螺母及垫片等,平坦的地面也可以保证这些零件不会随意的滚动,防止丢失,在固定抛面的时候,我们要按照由里到外的拼装顺序进行,这样可以有效的保证设备的稳定性。
基于ASIC的海五卫星信号接收技术及实现韩星;张华冲;杨松【摘要】针对海事五代(Inmarsat-5)高通量卫星信号的特点,结合卫星前向多波束信号接收处理的需求,设计了一种基于专用处理芯片的接收处理设备,该设备采用子板+载板的结构形式以及ASIC+FPGA+DSP的架构.经过实星信号接收测试,该设备能够实现Inmarsat-5高通量卫星固定点波束信号和高容量点波束信号的实时接收处理,具有工作稳定、接口丰富、软件可升级等优点,可以广泛用于各种相同信号体制的高通量卫星信号接收机.【期刊名称】《无线电工程》【年(卷),期】2018(048)010【总页数】4页(P896-899)【关键词】高通量卫星;专用处理芯片;Inmarsat-5系统;接收机【作者】韩星;张华冲;杨松【作者单位】中国电子科技集团公司第五十四研究所,河北石家庄 050081;中国电子科技集团公司第五十四研究所,河北石家庄 050081;中国电子科技集团公司第五十四研究所,河北石家庄 050081【正文语种】中文【中图分类】TN9110 引言Inmarsat-5是第五代海事卫星通信系统,是目前第一个使用Ka频段的全球性商业宽带高通量卫星(High Throughput Satellite,HTS)通信系统,该系统使用Ka波段,采用多点波束配置,具有通信容量大等优点[1]。
随着人们对无缝移动宽带互联网接入需求的不断增长,针对Inmarsat-5卫星信号的接收技术的研究具有重要意义[2]。
传统的接收设备通常采用国外公司的专用处理设备,价格昂贵且使用不够灵活,无法自定义修改[3]。
本文针对Inmarsat-5卫星固定点波束和高容量点波束信号实时接收处理的需求,提出了一种基于ASIC+FPGA+DSP接收处理方案,并详细介绍了软硬件实现结构以及性能测试结果,该接收设备具有低功耗、低成本、工作稳定、性能优异和可自定义升级等特点。
1 研究背景1.1 高通量卫星高通量卫星是新一代宽带通信卫星的统称,通常情况下,一个HTS卫星具有多波束覆盖、频率重复使用、通常使用Ka频段[4]等特征。