(四) 不相关与相互独立的关系:
a. 若X, Y相互独立, 则X, Y不相关; b. 上面的逆命题一般不真;
反例, 二维r.v.( X , Y )的密度函数是
f
(
x,
y)
1
,
x2 y2 1,
0, 其它,
其Cov(
X
,Y
)
0,
但f ( x, y)
f
X
(
x)
fY
(
y).
c. 当(X, Y)服从二维正态分布时, 逆命题亦成立
(4.1)
又若( X ,Y )为离散型r.v.
其分布律为P X xi ,Y yj pij , i, j 1, 2,3,
则有E(Z ) E g( X ,Y ) g( xi , yj ) pij , (4.2) j1 i1
(假设上述积分、级数分别绝对收敛)
例4. 设随机变量( X ,Y )的概率密度为
则其密度函数为
f
(
x)
e1
x
,
x 0,
0 , x 0.
E(X)
D( X ) E( X 2 ) [ E( X )]2 2
30 正态分布: 设X~N(, 2 ) E(X) ,D(X) 2
§3. 协方差和相关系数
(一) 定义:
二维r.v.( X , Y ) ,若E{[X E( X )][Y E(Y )]}存在,
四. n维正态随机变量:
1. 定义 : 设有n维r.v.( X1, X 2 , , X n ), 记
x1
1
11 12
X
x2
,
2
,
C
21
22
1n
2n