河北省廊坊市2018-2019学年高一下学期期末考试数学试题(PDF版)
- 格式:pdf
- 大小:1.22 MB
- 文档页数:13
2018-2019学年度第二学期期末考试高一数学 卷Ⅰ一、选择题(每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请把符合要求的选项选出来。
)1. 二进制数化为十进制数为( )A.B.C.D.2. 现从编号为的台机器中,用系统抽样法抽取台,测试其性能,则抽出的编号可能为( )A. ,,B. ,,C. ,,D. ,,3. 不等式的解集是( ) A. B.C. D.4. 在中,,那么等于( )A.B.C.D.5. 执行如图1所示的程序框图,若输入的值为3,则输出的值是( )A. 1B. 2C. 4D. 7 6. 在区间上随机地取一个数,则事件“”发生的概率为( )A. B. C. D.7. 下列说法正确的是 ( )A. 已知购买一张彩票中奖的概率为,则购买张这种彩票一定能中奖;B. 互斥事件一定是对立事件;C. 如图,直线是变量和的线性回归方程,则变量和相关系数在到之间;D. 若样本的方差是,则的方差是。
8. 某超市连锁店统计了城市甲、乙的各台自动售货机在中午至间的销售金额,并用茎叶图表示如图.则有( )A. 甲城销售额多,乙城不够稳定B. 甲城销售额多,乙城稳定C. 乙城销售额多,甲城稳定D. 乙城销售额多,甲城不够稳定9. 等差数列{a n}的前n项和为S n,若,,则()A. 12B. 18C. 24D. 4210. 设变量满足则目标函数的最小值为()A. B. 2 C. 4 D.11. 若函数在处取最小值,则 ( ).A. B. C. D.12. 在数列中,,,则=( )A. B. C. D.卷Ⅱ(解答题,共70分)二、填空题(本大题共4小题,每小题5分,共20分。
)13. 已知数列中,,(),则数列的前9项和等于____________.14. 若函数的定义域为R,则实数的取值范围是________.15. 读右侧程序,此程序表示的函数为_______________16. 若对任意,恒成立,则的取值范围是_______________.三、解答题(本题有6个小题,共70分,解答应写出文字说明,证明过程或演算步骤。
2018-2019学年河北省廊坊市省高一下学期期末考试数学试题一、选择题1.7sin 6π= ( )A. 12B. 12- C. 2 D. 2-2.已知向量()2,1a =, (),2b x =-,若//a b ,则a b +等于( ) A. ()2,1-- B. ()2,1 C. ()3,1- D. ()3,1-3.右图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A. 84, 4.84B. 84, 1.6C. 85, 1.6D. 85, 4 4.已知圆C 圆心是直线10x y -+=与x 轴的交点,且圆C 与直线30x y ++=相切,则圆C 的方程是( )A. ()2212x y ++= B. ()2212x y -+= C. ()2218x y ++= D. ()2218x y -+=5.若以连续掷两次骰子分别得到的点数m 、 n 作为P 点的坐标,求点P 落在圆2216x y +=外部的概率是 ( )A. 59B. 23C. 79D. 896.要得到函数cos2y x x =+的图像,只需将函数2sin2y x =的图象( )A. 向左平移6π个单位 B. 向右平移6π个单位C. 向左平移12π个单位D. 向右平移12π个单位7.如图是计算1111 (3519)++++的值的程序框图,在图中①、②处应填写的语句分别是( )A. 2,10?n n i =+>B. 2,10?n n i =+≥C. 1,10?n n i =+>D. 1,10?n n i =+≥8.任取,62x ππ⎡⎤∈-⎢⎥⎣⎦,则使sin cos x x ⎡+∈⎣的概率是( ) A. 12 B. 34 C. 23 D. 139.设平面上有四个互异的点A 、B 、C 、D ,已知()()20DB DC DA AB AC +-⋅-=,则ABC ∆的形状是( )A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 等边三角形10.已知0ω>,函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭在,2ππ⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围是( )A. 17,36⎡⎤⎢⎥⎣⎦B. 15,36⎡⎤⎢⎥⎣⎦C. 10,3⎡⎤⎢⎥⎣⎦D. []0,311.已知直线()200x y k k +-=>与圆224x y +=交于不同的两点,,A B O 是坐标原点,且有3OA OB AB +≥,那么k 的取值范围是( )A. )+∞B. )5,25⎡⎣C. )+∞D.12.已知定义在R 上的奇函数()f x ,满足()()2f x f x -=-,且当[]0,1x ∈时,()2sin f x x x x =++,若方程()()0f x m m =>在区间[]4,4-上有四个不同的根1234,,,x x x x ,则1234x x x x +++的值为( )A. 2B. 2-C. 4D. 4-二、填空题13.在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组由表中数据求得y 关于x 的线性回归方程为0.6ˆˆy x a =+,若年龄x 的值为50,则y 的估计值为 .14.已知1tan 2α=-,则22cos sin αα-的值为__________.15.若圆()22:25C x y +-=与恒过点()0,1P 的直线交于,A B 两点,则弦AB 的中点M 的轨迹方程为__________.16.如图,半径为1的扇形AOB 的圆心角为120,点C 在AB 上,且30COA ∠=,若OC OA OB λμ=+,则λμ+=__________.三、解答题17.已知,a b 为两个非零向量,且()2,1,a b a b b ==+⊥. (1)求a 与b 的夹角; (2)求32a b -.18.某地政府调查了工薪阶层1000人的月工资收人,并根据调查结果画出如图所示的频率分布直方图,其中工资收人分组区间是[)[)[)[)[)[]10,15,15,20,20,25,25,30,30,35,35,40.(单位:百元)(1)为了了解工薪阶层对工资收人的满意程度,要用分层抽样的方法从调查的1000人中抽取100人做电话询问,求月工资收人在[)30,35内应抽取的人数;(2)根据频率分布直方图估计这1000人的平均月工资为多少元.19.已知 ()4cos 5πα+=,且2παπ<<.(1)求()()5sin 4tan 3αππα+--的值;(2)若()0,cos 2πββα<<-=sin 22πβ⎛⎫+ ⎪⎝⎭的值. 20.某游乐场推出了一项趣味活动,参加活动者需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为,x y ,奖励规则如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.21.已知 ()()2cos ,cos ,cos a x x b x x ωωωω==,函数()·f x a b m =+(其中0,)m R ω>∈,且()f x 图象在y 轴右侧的第一个最高点的横坐标为6π,并过点()0,2.(1)求函数()f x 的解析式及单调增区间;(2)若对任意12,0,2x x π⎡⎤∈⎢⎥⎣⎦都有()()12f x f x a -≤,求实数a 的取值范围.22.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点()2,4A .(1)是否存在直线:3l y kx =+与圆M 有两个交点,B C ,并且AB AC =,若有,求此直线方程,若没有,请说明理由;(2)设点(),0T t 满足:存在圆M 上的两点P 和Q 使得TA TP TQ +=,求实数t 的取值范围.2018-2019学年河北省廊坊市省高一下学期期末考试数学试题一、选择题1.7sin 6π= ( )A. 12B. 12--【答案】B【解析】试题分析: 7sin sin sin 666ππππ⎛⎫=+=-= ⎪⎝⎭ 12-。
廊坊市重点名校2018-2019学年高一下学期期末检测数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若某几何体的三视图如图所示,则该几何体的体积是( )A .13B .32C .34D .3【答案】B 【解析】 【分析】先由三视图判断该几何体为底面是直角三角形的直三棱柱,由棱柱的体积公式即可求出结果. 【详解】据三视图分析知,该几何体是底面为直角三角形的直三棱柱,且三棱柱的底面直角三角形的直角边长分别为133,所以该几何体的体积1313322V =⨯=. 【点睛】本题主要考查几何体的三视图,由三视图求几何体的体积,属于基础题型.2.在区间[2,7]-上随机选取一个实数x ,则事件“2log 10x -≥”发生的概率是( ) A .13B .59C .79D .89【答案】B 【解析】 【分析】根据2log 10x -≥求出x 的范围,再由区间长度比即可得出结果. 【详解】区间[]2,7-的长度为()729--=;由2log 10x -≥,解得2x ≥,即[]2,7x ∈,区间长度为725-=,事件“2log 10x -≥”发生的概率是59P =.故选B. 【点睛】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.3.要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象( ) A .向右平移6π个单位 B .向右平移3π个单位 C .向左平移3π个单位 D .向左平移6π个单位 【答案】D 【解析】 【分析】直接根据三角函数的图象平移规则得出正确的结论即可; 【详解】解:函数sin 2sin 236y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴要得到函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象向左平移6π个单位. 故选:D . 【点睛】本题考查三角函数图象平移的应用问题,属于基础题.4.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为n π,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值加2n π可表示成( )A .360sinnnπ︒ B .360cosnnπ︒ C .180cosnnπ︒ D .90cosnnπ︒ 【答案】C 【解析】 【分析】设圆的半径为r ,由内接正n 边形的面积无限接近圆的面积可得:180180sincosn n n nπ⨯=⨯,由内接正2n 边形的面积无限接近圆的面积可得:2180sin n n nπ⨯=,问题得解. 【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形,由内接正n 边形的面积无限接近圆的面积可得:221360sin2r n r n π≈⨯⨯,整理得:1360sin 2n nπ≈⨯⨯, 此时1360sin 2n n n π⨯⨯=,即:180180sin cosn n n nπ⨯=⨯ 同理,由内接正2n 边形的面积无限接近圆的面积可得:2213602sin22r n r n π≈⨯⨯,整理得:13601802sin sin22n n n nπ≈⨯⨯=⨯ 此时2180sinn n nπ⨯= 所以2180sin180cos nn n nnππ==⨯ 故选C 【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.5.若直线310x y ++=与直线2(1)10x a y +++=互相平行,则a 的值为( ) A .4 B .43-C .5D .53-【答案】C 【解析】 【分析】根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出a 的值. 【详解】直线310x y ++=的斜率为13-,在纵轴的截距为13-,因此若直线310x y ++=与直线()2110x a y +++=互相平行,则一定有直线()2110x a y +++=的斜率为13-,在纵轴的截距不等于13-,于是有2113a -=-+且1113a -≠-+,解得5a =,故本题选C. 【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题: 若直线1110A x B y C ++=与直线2220A x B y C ++=平行, 则有1221A B A B =且1221A C A C ≠.6.已知△ABC 的项点坐标为A (1,4),B (﹣2,0),C (3,0),则角B 的内角平分线所在直线方程为( ) A .x ﹣y+2=0 B .x 2-y+2=0C .x 3-y+2=0D .x ﹣2y+2=0【答案】D 【解析】 【分析】由已知可得|AB|=|BC|=5,所以角B 的内角平分线所在直线方程为AC 的垂直平分线,继而可以求得结果. 【详解】由已知可得|AB|=|BC|=5,所以角B 的内角平分线所在直线方程为AC 的垂直平分线,又线段AC 中点坐标为(2,2),40213AC k -==-- 则角B 的内角平分线所在直线方程为y ﹣2()122x =-,即x ﹣2y+2=1. 故选:D . 【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC 的垂直平分线是关键,属于中档题.7.执行如图所示的程序语句,输出的结果为( )A .1011B .910C .190D .1110【答案】B 【解析】 【分析】通过解读算法框图功能发现是为了求数列的和,采用裂项相消法即可得到答案. 【详解】由已知中的程序语句可知:该程序的功能是求1111223910+++⨯⨯⨯的值, 输出的结果为11111119112239101010⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选B.【点睛】本题主要考查算法框图基本功能,裂项相消法求和,意在考查学生的分析能力和计算能力. 8.已知1x >,则41x x +-的最小值为 A .3 B .4C .5D .6【答案】C 【解析】 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为( ) A .24cm B .26cmC .28cmD .216cm【答案】A 【解析】 【分析】利用弧长公式、扇形的面积计算公式即可得出. 【详解】设此扇形半径为r ,扇形弧长为l=2r 则2r+2r =8,r=2, ∴扇形的面积为12l r=224r cm =故选A 【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题. 10.等差数列{}n a 中,若243,7a a ==,则6a =( ) A .11 B .7C .3D .2【答案】A 【解析】 【分析】根据2642a a a +=和已知条件即可得到. 【详解】等差数列{}n a 中,2642a a a642227311a a a故选A . 【点睛】本题考查了等差数列的基本性质,属于基础题.11.无论m 取何实数,直线:120l mx y m +-+=恒过一定点,则该定点坐标为( )A .()-21,B .()2,1--C .()2,1D .()2,1-【答案】A 【解析】 【分析】通过整理直线的形式,可求得所过的定点. 【详解】直线:120l mx y m +-+=可整理为()210m x y ++-=,当2010x y +=⎧⎨-=⎩ ,解得2,1x y =-=,无论m 为何值,直线总过定点()2,1-. 故选A. 【点睛】本题考查了直线过定点问题,属于基础题型.12.在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,己知A=60°,a b ==B=( ) A .45° B .135°C .45°或135°D .以上都不对【答案】A 【解析】 【分析】利用正弦定理求出sin B 的值,再结合a b >,得出A B >,从而可得出B 的值。
廊坊市省高一下学期期末考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的前几项为,,,,…,则此数列的通项公式可能是()A. B. C. D.2. 对于任意实数,下列结论:①若,则;②若,则;③若,则;④若,则;正确的结论为()A. ①B. ②C. ③D. ④3. 在空间直角坐标系中,点关于面对称的点的坐标是()A. B. C. D.4. 直线在轴上的截距是-1,且它的倾斜角是直线的倾斜角的2倍,则()A. B. C. D.5. 圆心为且与直线相切的圆的方程为()A. B. C. D.6. 若等比数列的各项都是正数,且成等差数列,则()A. B. C. D.7. 关于的不等式的解集为,则关于的不等式的解集为()A. B. C. D.8. 某观察站与两灯塔的距离分别为米和米,测得灯塔在观察站西偏北,灯塔在观察站北偏东,则两灯塔间的距离为()A. 米B. 米C. 米D. 米9. 设为空间不重合的直线,是空间不重合的平面,则下列说法准确的个数是()①,则;②,则;③若,则;④若,则;⑤若,则;⑥,则A. 0B. 1C. 2D. 310. 设是内一点,且的面积为2,定义,其中分别是,,的面积,若内一动点满足,则的最小值是()A. 1B. 4C. 9D. 1211. 若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. B. C. D.12. 定义为个正数的“均倒数”,若已知数列的前项的“均倒数”为,又,则()A. B. C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若直线与互相垂直,则点到轴的距离为__________.14. 已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________.15. 若实数满足,则的最小值是__________.16. 已知点是直线上一动点,是圆的两条切线,是切点,若四边形的最小面积是2,则的值为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,满足.(1)求角;(2)若,,求的面积.18. 如图,在四棱锥中,底面的平行四边形,,,平面,为的中点.(1)求证:;(2)若,求三棱锥的体积.19. 已知是各项为正数的等比数列,是等差数列,且,,.(1)求和的通项公式;(2)设,,求数列的前项和为.20. 已知圆,直线,.(1)求证:对,直线与圆总有两个不同的交点;(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线;(3)是否存在实数,使得原上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由.21. 如图,三棱柱的底面是边长为2的正三角形,且侧棱垂直于底面,侧棱长是,是的中点.(1)求证:平面;(2)求二面角的大小;(3)求直线与平面所成的角的正弦值.22. 数列的前项和为,且,.(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前项和.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的前几项为,,,,…,则此数列的通项公式可能是()A. B. C. D.【答案】A【解析】数列为其分母为,分子是首项为,公差为的等比数列,故通项公式为. 点睛:本题主要考查根据数列的前几项,猜想数列的通项公式.首项观察到数列有部分项是分数的形式,所以考虑先将所有项都写成分数的形式,每项的分母都为,而分子是首项为,公差为的等比数列,由此可求得数列的通项公式.要注意的是,由部分项猜想的通项公式可以有多个.2. 对于任意实数,下列结论:①若,则;②若,则;③若,则;④若,则;正确的结论为()A. ①B. ②C. ③D. ④【答案】C【解析】若所以①错误;若所以②错误;③正确;若无意义所以④错误,故选C.3. 在空间直角坐标系中,点关于面对称的点的坐标是()A. B. C. D.【答案】C【解析】关于面对称的点为4. 直线在轴上的截距是-1,且它的倾斜角是直线的倾斜角的2倍,则()A. B. C. D.【答案】B【解析】设直线的倾斜角是,则直线的倾斜角为5. 圆心为且与直线相切的圆的方程为( )A. B.C.D.【答案】C【解析】设圆的半径为 ,则由题意可得 ,代入圆的标准方程可得选C 6. 若等比数列的各项都是正数,且成等差数列,则( )A.B.C.D.【答案】D【解析】三个数成等差数列,故,即,解得,所以.7. 关于的不等式的解集为,则关于的不等式的解集为( )A.B.C.D.【答案】B【解析】设,解集为所以二次函数图像开口向下,且与 交点为,由韦达定理得所以的解集为,故选B.8. 某观察站与两灯塔的距离分别为米和米,测得灯塔在观察站西偏北,灯塔在观察站北偏东,则两灯塔间的距离为( )A. 米B.米 C.米 D.米【答案】A【解析】依题意,作出上图,∵,∴由余弦定理得:,故选A.9. 设为空间不重合的直线,是空间不重合的平面,则下列说法准确的个数是()①,则;②,则;③若,则;④若,则;⑤若,则;⑥,则A. 0B. 1C. 2D. 3【答案】C【解析】试题分析:①显然正确;②可能相交;③l可能在平面内;④l可能为两个平面的交线,两个平面可能相交;⑤可能相交;⑥显然正确,故选C.考点:空间中线面,线线,面面关系【易错点睛】解决有关线面平行,面面平行的判定与性质的基本问题要注意:(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.10. 设是内一点,且的面积为2,定义,其中分别是,,的面积,若内一动点满足,则的最小值是()A. 1B. 4C. 9D. 12【答案】C【解析】由已知得,故选C.11. 若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A. B. C. D.【答案】B12. 定义为个正数的“均倒数”,若已知数列的前项的“均倒数”为,又,则()A. B. C. D.【答案】C【解析】由已知得,当时,,当时也成立,故选C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若直线与互相垂直,则点到轴的距离为__________.【答案】或【解析】试题分析:当时,,即,,即,此时两直线垂直,点到轴的距离为;当时,由题意有,解得,点到轴的距离为.考点:1、直线与直线的位置关系;2、点到直线的距离.14. 已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________.【答案】【解析】试题分析:已知圆锥的母线长为5cm,侧面积为,所以圆锥的底面周长:6π,底面半径是:3,圆锥的高是:4此圆锥的体积为:考点:棱柱、棱锥、棱台的体积15. 若实数满足,则的最小值是__________.【答案】2【解析】三角形阴影部分为满足不等式的解集;令,则;由,当直线过点时截距最大,此时最小,故答案为16. 已知点是直线上一动点,是圆的两条切线,是切点,若四边形的最小面积是2,则的值为__________.【答案】【解析】圆的圆心为,半径为,由圆的性质可知,四边形的面积,又四边形的最小面积是,所以的最小值为为切线长)所以得最小值为,圆心到直线的距离为为的最小值,即,因为,所以.点睛:本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、圆的切线长公式,圆的性质和四边形的性质等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中把四边形的面积转化为,再确定的面积的最小值是解答的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角所对的边分别为,满足.(1)求角;(2)若,,求的面积.【答案】(1)(2)【解析】试题分析:(1)由正弦定理,转化为角做,可求的A角。
河北省廊坊市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共14分)1. (1分) (2018高一上·台州期末) 函数的定义域是________.2. (1分) (2016高三上·泰兴期中) =________.3. (1分) (2018高二上·普兰期中) 已知中,,,,那么 ________.4. (1分)设x,y满足约束条件,则z=x﹣2y的最大值为________5. (1分) (2019高三上·广州月考) 已知数列为等比数列,为其前n项和,,且,,则 ________.6. (1分) (2018高二上·长安期末) 做一个无盖的圆柱形水桶,若要使其体积是,且用料最省,则圆柱的底面半径为________ .7. (1分) (2016高三上·扬州期中) 若a>0,b>2,且a+b=3,则使得取得最小值的实数a=________.8. (1分) (2019高二上·湖南期中) 已知,是方程的两个实数根,则________.9. (1分) (2018高一下·鹤岗期中) 若不等式的解集为,则________.10. (1分)(2017·安庆模拟) 已知数列{an}的前n项和为Sn ,且,则Sn=________.11. (1分)已知tanx=3,则 =________.12. (1分) (2018高一下·安庆期末) 将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两条直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两条直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)13. (1分) (2015高二上·太和期末) 命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为________.14. (1分)函数f(x)是定义在实数集R上的不恒为零的偶函数,f(﹣1)=0,且对任意实数x都有xf(x+1)=(1+x)f(x),则f(0)+f()+f(1)+…+f()的值是________.二、解答题 (共6题;共60分)15. (10分) (2016高二上·惠城期中) 等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.(1)求数列{an}﹑{bn}的通项公式;(2)令cn=a n•bn,求数列{cn}的前n项和Sn.16. (5分) (2017高一下·正定期末) 如图,在四棱锥中,底面,,.(Ⅰ)求证:平面平面;(Ⅱ)试在棱上确定一点,使截面把该几何体分成的两部分与的体积比为;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.17. (10分)已知,计算:(1)tan2α;(2).18. (10分)(2020·海南模拟) 在平面四边形中,已知,,.(1)若,,,求的长;(2)若,求证: .19. (15分) (2016高一下·抚顺期末) 已知 =(sinx,cosx), =(sinx,sinx),函数f(x)= .(1)求f(x)的对称轴方程;(2)求使f(x)≥1成立的x的取值集合;(3)若对任意实数,不等式f(x)﹣m<2恒成立,求实数m的取值范围.20. (10分) (2016高一下·成都期中) 已知数列{an}的前n项和为Sn , a1=1,且(n+1)an=2Sn(n∈N*),数列{bn}满足,,对任意n∈N* ,都有.(1)求数列{an}、{bn}的通项公式;(2)令Tn=a1b1+a2b2+…+anbn.若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.参考答案一、填空题 (共14题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题 (共6题;共60分)15-1、15-2、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、。
2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
廊坊市2018-2019学年高一数学上学期期末试卷一、选择题1.已知等差数列{}n a 中,510a =,714a =,则公差d =( ) A .1 B .2C .2-D .1-2.已知集合,,则A .B .C .D .3.(2)(1)=( )A .4B .C .4+D4.已知函数()4f x x x=+, ()2xg x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦, []22,3x ∃∈,使得()()12f x g x ≥,则实数a 的取值范围是( ) A.(],1-∞B.[)1,+∞C.(],2-∞D.[)2,+∞5.已知点P 的极坐标是,则过点P 且垂直极轴所在直线的直线方程是A .B .C .D .6.函数2cos (1sin )y x x =+在区间[0,]2π上的最大值为( )A.2B.1+C.1+7.正方体中,若外接圆半径为,则该正方体外接球的表面积为( )A .B .C .D .8.若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞B .[2,)+∞C .(,1]-∞-D .(,2]-∞-9.小方,小明,小马,小红四人参加完某项比赛,当问到四人谁得第一时,小方:“我得第一名”;小明:“小红没得第一名”;小马:“小明没得第一名”;小红:“我得第一名”.已知他们四人中只有一人说真话,且只有一人得第一名.根据以上信息可以判断出得第一名的人是 A .小明 B .小马 C .小红 D .小方 10.设2sin xy e x =-则'y 等于( ) A.2cos x e x -B.2sin x e x -C.2sin x e xD.()2cos sin xex x -+11.已知随机变量X 服从正态分布()22,N σ且P (X ≤4)=0.88,则P (0<X <4)=( )A.0.88B.0.76C.0.24D.0.1212.某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的22⨯列联表.根据列联表的数据判断有多少的把握认为“成绩与班级有关系”( )临界值表:参考公式:()()()()()2n ad bc K a b c d a c b d -=++++.A.90%B.95%C.99%D.99.9%二、填空题 13.已知双曲线的左支上一点到左焦点的距离为10,则点到右焦点的距离为______.14.如果直线:0l x y b +-=与曲线:C y =有两个公共点, 那么b 的取值范围是_______________15.运行下面的程序框图,最后输出结果为_______.16.已知34a b R a ib i i+=+∈,(,)其中i 为虚数单位,则a bi +=________; 三、解答题 17.已知.(1)若函数的单调递减区间为,求函数的图像在点处的切线方程;(2)若不等式恒成立,求实数的取值范围.18.已知函数(1)当时,解不等式;(2)若时,不等式成立,求实数的取值范围。
2018-2019学年下学期高一年级期末考试试卷高一数学36分)共第一部分(选择题一、选择题:本大题共12小题,每小题3分,共36分,在每小题列出的四个选项中,选出符合题目要求的一项.(x)851分,数.某同学参加期末模拟考试,考后对自己的语文和数学成绩进行了如下估计:语文成绩高于(y) 08 .不低于)学成绩分,用不等式组可以表示为(x?8585?85x≤x?85x????D BA ....????y?8080?yy≥80x≥80??????aa?a?1 2?.,则数列的通项可以是(中,),.在数列N n?nn1n?n21?n?a?1n?a?na?a?2 AD B....nnnn?43?sin17cossin43?cos17?? 3 ..的值为()132 BD A ....1222 ??aa?2a?a?15a? 4 .中,已知),则,.在等差数列(n8531018132664 D AB....s 5 .).执行如图所示的程序框图,则输出的值为(12?3 D B A ....232 1开0sisss+i=i输结束3?6为公比的等比数列,若从这八个数中随机抽取一个数,则.现有八个数,它们能构成一个以为首项.18 .它大于)的概率是(3517 AD B ....288811nmnm??7 .,与.若不等式)为实数)同时成立,则((nm0??n?mn?0mnm0?m?n?0 A D B ....8,受地理条件和测量工具的限制,采用如下办法:.欲测量河宽即河岸之间的距离(河的两岸可视为平行)?CBA75CAB∠C??∠?45,如图所示,在河的一岸边选取,测得,,两个观测点,观察对岸的点BA0.97??sinAB?12075 .(),)米,参考数据米,由此可得河宽约为(精确到12.45?61101708095 D A B米米.米米...CBAA ....2010次,三人测试成绩的频率分布条形图分别如图所示若.甲、乙、丙三名运动员在某次测试中各射击 2s??ss .分别表示他制测试成绩的标准差,则它们的大小关系为()乙甲丙s?s?ss?s?ss?s?ss?s?s B A D【注意有文字】....甲乙甲乙甲甲乙乙丙丙丙丙频率频率频率0.250.300.300.200.208910108797环数环数98107环数丙甲乙2??0,2 11 .的概率是(中随机地取两个数,则这两个数中较小的数大于.若在区间)31142 D A B....3939?2016?201720162017 12,这个数列的特点是从第二项起,每一项都等于它.已知数列,,,,,1 2017 .项之和等于(的前后两项之和,则这个数列的前)0201620174033 D B A....64 分)第二部分(非选择题共二、填空题:本大题共6小题,每小题3分,共l8分将答案填在题中横线上.13___________ 2.的解集为.不等式0?x≤2x12014名,这三个班的男、女生人数如下表所示.已知在全年级中随机抽.某校高一年级三个班共有学生x?___________30.现用分层抽样的方法在全年级抽取名学生,抽到二班女生的概率是,则取20.1___________ .名学生,则应在三班抽取的学生人数为一二三班班班女生人yx20 数男生人2020 z 数15通常将阅读量作为微信公众号受关注度的评判标准,.小亮开通了一个微信公众号,每天推送一篇文章,100篇文章的阅读量进行了统为了提升公众号的关注度,进一步了解大家的需求,小亮对之前推送的 3计,得到如下的频率分布直方图:?a ___________.则图中的频率组距0.0020.002a0.00080.00060.00040.00020900700800200100300400500600)(次阅读量1aax?≥0?x ___________16.的取值范围是.当恒成立,则实数时,不等式x??na?a?1a?S?aS ___________17,___________?.则的前;.已知数列项和为,,且N?n nnnn1n10018两种型号的单车:辆,现有.某共享单车公司欲在某社区投放一批共享单车,单车总数不超过,BA30005000.5/元/车,骑行半小时需花费其中型为运动型,成本为型车为轻便型,成本为元元;BA10万元,且投入的车辆平均每车每天会被元.若公司投入成本资金不能超过车,骑行半小时需花费1,则在该社区单车公司可获得的总收入最多次,每次不超过半小时(不足半小时按半小时计算)骑行2 ___________元.为分,解答应写出文字说明、证明过程或演算步骤.5小题,共46三、解答题:本大题共7 19分)(本题满分.AC?7DC?35?△ABC∠B?45BCAD?.,已知,在边上的一点,,,是D∠ADC I的大小.)求(的长.(Ⅱ)求AB ACBD7 20分)(本题满分.??aa?2a12?a?.已知为等差数列,,n651 4??naS I.)求数列项和(的通项公式以及前nn n14S?的值.的最小正整数(Ⅱ)求使得n10 21分)(本题满分.??0sin??2cos.已知π????tan I的值.()求??4?????sinsin2?cos 的值.(Ⅱ)求?sin10 22分)(本题满分.两班学生手机上网的时长,分,长时间使用手机上网,会严重影响学生的身体健康.某校为了解BA5名同学进行调查,将他们平均每周手机上网的时长(小时)作为样本,绘制成茎叶别从两个班中随机抽.图如图所示(图中的茎表示十位数学,叶表示个位数字)I)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长.(a 班的样本数据中随机抽取一个不超过,从(Ⅱ)从班的样本数据中随机抽取一个不超过的数据记BA21ba?b 的概率.,求的数据记为21B班班A0914112215063123 分)(本题满分12f(x)f(x)f(x))xf(,,给出如下定义:若,已知函数,,均为定义在同一个数集下的函数,n21f((f(x))x)f(x)ff(x)?x(x)?f)f(x3n?2,,,,,且为一个嵌,其中,则称,,,421nnn?11???????)xff(x)()f(x)x?f((fx)?为套函数列,记为使得嵌套函数列则称,满足,若存在非零实数,nnnn1n?类等比函数列.x1??)xf(??f(x) .是定义在上的嵌套函数列,若(Ⅰ)已知R n24(2)f(2)f(2)f①求,,.321???(fx)②证是类等比函数列.??n2????)x(g(1,??)上嵌套函数列.是定义在(Ⅱ)已知n 51111????x)g(gxxg()??x)?(x.若,求证??n?n1n x22x?? 6。