中考四模 辽宁省营口市2015届九年级中考模拟考试(四)数学试题及答案
- 格式:doc
- 大小:600.00 KB
- 文档页数:16
2015年辽宁省营口市中考数学试卷一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)=32.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()3.(3分)(2015•营口)函数y=中自变量x的取值范围是()4.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()7.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这cm,3πcm2B cm cm cm,6πcm28.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()10.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c=.12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为.13.(3分)(2015•营口)不等式组的所有正整数解的和为.14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n=.三.解答题(19小题10分,20小题10分)19.(10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;B两组主要成因的市民有多少人?四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)23.(12分)(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.24.(12分)(2015•营口)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].25.(14分)(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.26.(14分)(2015•营口)如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线y=x﹣与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①若使△BPQ为直角三角形,请求出所有符合条件的t值;②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.2015年辽宁省营口市中考数学试卷参考答案与试题解析一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)=3,故本选项正确;≠,故本选项错误.2.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()3.(3分)(2015•营口)函数y=中自变量x的取值范围是()4.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()7.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这cm,3πcm2B cm cm cm,6πcm2=28.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()=,,9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()与,,,与联立得;位于直线就是求不等式>10.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()AOB=AOB=二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c=﹣c(a+b)(a﹣b).12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 3.12×106.13.(3分)(2015•营口)不等式组的所有正整数解的和为6.﹣≤不等式组不等式组14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为24 cm2.,∠=××=24.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.(×=,故答案为:.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12.BG=DG=,AD=2.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n=5.,(,x=(n=5.三.解答题(19小题10分,20小题10分)19.(10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.﹣÷﹣•﹣==5﹣20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;B两组主要成因的市民有多少人?四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.=,两白的概率,一红一白的概率,×××乙品牌化妆品获礼金券的平均收益是:×××22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)BC=××),==10EDH=×tECD===ECD=23.(12分)(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.PD=AC=4﹣的中点,,,EM=,.24.(12分)(2015•营口)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].;,解得,解得;,解得,解得,,,25.(14分)(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.,BE==7,∠EC==.BE==7﹣26.(14分)(2015•营口)如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线y=x﹣与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①若使△BPQ为直角三角形,请求出所有符合条件的t值;②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.分别代入然后时,作;当OEF=分别代入),将(,,即y=时,.t=t=t=或t=,﹣>;y=,所以x,时,作﹣联立方程组),﹣=3m,,﹣EF=,OEF=。
2015年初中毕业生毕业升学考试数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第二部分(主观题)时,将答案写在答题卡对应的区域内,写在本试卷上或答题卡指定的区域外无效。
4.考试结束后,将本试卷和答题卡一并交回。
第 一 部 分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分) 1.下列计算正确的是A .22--=B .236a a a ⋅=C .()213--=D =4.□ABCD 中,对角线AC 与BD 交于点O ,∠DAC =42º,∠CBD =23º,则∠COD 是 A .61º B .63º C .65º D .67º5.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是 A .100元,100元 B .100元,200元 C .200元,100元 D .200元,200元6.若关于x 的分式方程2233x mx x++=--有增根,则m 的值是A .1m =-B .0m =C .3m =D .0m =或=3m7.将弧长为2πcm 、圆心角为120º的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是A 2πcmB .2πcmC .2πcmD 2πcm 6第4题图 B C DA O 第5题图 /元8.如图,△ABE 和△CDE 是以点E 为位似中心的位似图形,已知点A (3,4),点C (2,2),,双曲线11y x=在第一象限内的图象经过点B ,设直线AB 的解析式为22y k x b =+,当12y y >时,x 的取值范围是A .51x -<<B .0<<1x 或<5x -C .61x -<<D .01x <<或6x <-10.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是A .25︒B .30︒C .35︒D .40︒第 二 部 分(主观题)二、填空题(每小题3分,共24分)11.分解因式:22a c b c -+= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少 3 120 000吨二氧化碳的排放量.把数据 3 120 000用科学记数法表示为 .13.不等式组2151132523(2)≤x x x x -+⎧-⎪⎨⎪-<+⎩的所有正整数解的和为 . 14.圆内接正六边形的边心距为,则这个正六边形的面积为 cm 2. 15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .16.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为 元时,该服装店平均每天的销售利润最大.17.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径....... 如图,△ABC 中,∠ABC =90º,以AC 为一边向形外作菱形ACEF ,点D 是菱形ACEF 对角线的交点,连接BD ,若∠DBC =60º,∠ACB =15º,BD=则菱形ACEF 的面积为 . 18.如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1、A 2、A 3、…、A n-1为OA 的n 等分点,B 1、B 2、B 3、…、B n-1为CB 的n 等分点,连接A 1B 1、A 2B 2、A 3B 3、…、A n-1B n-1,分别交21y x n=(0x ≥)于点C 1、C 2、C 3、…、C n-1,当252525258B C C A =时,则n = .三、解答题(19小题10分,20小题10分,共20分) 19.先化简,再求值:2222111121m m m m m -⎛⎫-÷- ⎪+--+⎝⎭.其中m满足一元二次方程2o o )12cos600m m +-=.20.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.⑴本次被调查的市民共有多少人?⑵分别补全条形统计图和扇形统计图,并计算图2中区域B 所对应的扇形圆心角的度数.⑶若该市有100万人口,请估计持有 A 、B 两组主要成因的市民有多少人?四、解答题(21小题12分,22小题12分,共24分)21.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和图1组别/组第20题图 图2 D C 15% B A 45%2个白球,除颜色外其它都相同,摇奖者必须从摇奖机中一次连续摇出两个球,根据球的(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.如图,我南海某海域A 处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值. (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒)五、解答题(23小题12分,24小题12分,共24分)23.如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线; (2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积; (3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第22题图 BAEOD24.某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的45倍,且每天包装大黄米和江米的质量之和为45千克. (1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在节日前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部出售,已知大黄米成本价为每千克7.9元,江米成本价为每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元? [总利润=售价额-成本-包装费用]第24题图六、解答题(本题满分14分) 25.【问题探究】 (1)如图1,锐角△ABC 中,分别以AB 、AC 为边向外作等腰△ABE 和等腰△ACD ,使AE=AB ,AD=AC ,∠BAE =∠CAD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,四边形ABCD 中,AB =7cm ,BC =3cm ,∠ABC =∠ACD =∠ADC =45º,求BD 的长. (3)如图3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.七、解答题(本题满分14分)第25题图图1 B EDCA 图3BD CA图2 B D CA26.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =-1和x =3时,y 的值相等.直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式. (2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时动点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQ P 的面积有最小值,最小值是多少? (3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(02m <<),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.第26题图图2 CPAM DO x B y备用图CPAMDO xB y图1QOCP AMx B y2015年初中毕业生毕业升学考试 数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。
2015年辽宁省营口市中考数学试卷一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)=32.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()3.(3分)(2015•营口)函数y=中自变量x的取值范围是()4.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()7.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这cm,3πcm22cm cm,6πcm28.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()10.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c=.12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为.13.(3分)(2015•营口)不等式组的所有正整数解的和为.14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n=.三.解答题(19小题10分,20小题10分)19.(10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;B两组主要成因的市民有多少人?四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)23.(12分)(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.24.(12分)(2015•营口)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].25.(14分)(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.26.(14分)(2015•营口)如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线y=x﹣与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①若使△BPQ为直角三角形,请求出所有符合条件的t值;②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.2015年辽宁省营口市中考数学试卷参考答案与试题解析一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)=3,故本选项正确;=2,故本选项错误.2.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()3.(3分)(2015•营口)函数y=中自变量x的取值范围是()4.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()7.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这cm,3πcm22cm cm,6πcm2=2(8.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()=,=9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()与,,解得:.与联立得;解得:位于直线就是求不等式>10.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()AOB=AOB=∠二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c=﹣c(a+b)(a﹣b).12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为 3.12×106.13.(3分)(2015•营口)不等式组的所有正整数解的和为6.解:由﹣不等式组不等式组14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为24 cm2.,∠OA==4××=24cm.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.(×∴这个点取在阴影部分的概率为:,故答案为:.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12.BG=DG=AC=2AD=2.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n=5.=,y==×)n=5.三.解答题(19小题10分,20小题10分)19.(10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)m﹣12cos60°=0.﹣÷﹣•﹣==,5﹣20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;B两组主要成因的市民有多少人?四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.,两白的概率,一红一白的概率,××12+乙品牌化妆品获礼金券的平均收益是:×××22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)CG=BC=××,CD==10EDH=×===ECD=.23.(12分)(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.PD=AD=﹣的中点,,,EM==4CE=CM+EM=724.(12分)(2015•营口)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].;则可列方程组为,解得则可列方程组为,解得;则可列方程组为,解得则可列方程组为,解得,,,.<.25.(14分)(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.,BE==7,∠EC==,.BE==7BD=CE=726.(14分)(2015•营口)如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线y=x﹣与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①若使△BPQ为直角三角形,请求出所有符合条件的t值;②求t为何值时,四边形ACQP的面积有最小值,最小值是多少?(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.分别代入GQ=;当OEF=分别代入),将(,,即y=.t=;t=;t=或t=GQ=﹣=>;y=,所以x,﹣联立方程组,,FH=﹣﹣=时,设,,﹣EF=,OEF==。
辽宁省营口市中考数学模拟试题〔四〕本卷须知:1.本试卷分第一局部〔客观题〕和第二局部〔主观题〕两局部。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定区域粘贴条形码。
2.答复第一局部时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.答复第二局部时,用黑色字迹的签字笔将答案写在答题卡上各题的答题区内,写在本试卷上无效。
4. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀。
5.考试完毕后,将本试卷和答题卡一并交回。
第 一 部 分〔客观题〕一、选择题〔以下各题的备选答案中,只有一个是正确的,每题3分,共30分〕 1.52-的相反数是〔 ▲ 〕A .25B .-25C .-251 D .2512. 如图是由五个一样的小正方块搭成的几何体,其左视图是( ▲ )3.以下运算正确的选项是 〔 ▲ 〕A .55523a a a -=B .236a a a ⋅=C .235()a a -=- D .2224)()(b a ab ab =-÷-4. 以下说法正确的选项是〔 ▲ 〕A .为了解全省中学生的心理安康状况,宜采用普查方式B .某彩票设“中奖概率为1100〞,购置100张彩票就一定会中奖一次C .某地会发生地震是必然事件D .假设甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.2,那么甲组数据比乙组稳定“孔〞“孟〞“之〞“乡〞“孔孟〞的概率是〔 ▲ 〕6. xx 年某市在创立全国文明卫生城市中,为了打造具有现代化城市街道水平的样板街道,方案撤除异形广告12000平方米,后来由于志愿者的参加,实际每天撤除的广告比原方案多20%,结果提前10天完成任务,设原方案每天撤除x 平方米,那么可列方程为〔 ▲ 〕 A .﹣=10 B .﹣=10C .+5=D .﹣=107.把不等式组 ⎩⎨⎧≥--〉+4)2(3042x x x 的解集表示在数轴上,正确的选项是〔 ▲ 〕A .B .C .D .8.如图,Rt △ABC 中,∠ACB=90°,AC=3,BC=4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,两条折痕与 斜边AB 分别交于点E 、F ,那么线段B′F 的长为〔 ▲ 〕 A . B .C. D .9.如图,在x 轴上方,∠BOA=90°且其两边分别与反比例 函数y=﹣、y=x3的图象交于B 、A 两点,那么∠OAB 的正切 值为〔 ▲ 〕 A .31 B .33 C .3 D .61 10.如图,抛物线y 1=ax 2+bx+c 〔a ≠0〕的顶点坐标A 〔﹣1,3〕,与x 轴 的一个交点B 〔﹣4,0〕,直线y 2=mx+n 〔m ≠0〕与抛物线交于A ,B 两点,以下结论:①2a ﹣b=0;②abc <0;③抛物线与x 轴的另一个 交点坐标是〔3,0〕;④方程ax 2+bx+c ﹣3=0有两个相等的实 数根;⑤当﹣4<x <﹣1时,那么y 2<y 1.其中正确的选项是〔 〕Y=x3OBA MC DEA .①②③B .①③⑤C .①④⑤D .②③④第 二 部 分〔主 观 题〕二、填空题〔每题3分,共24分〕11.据中国新闻网消息,今年高校毕业生人数将到达人,将数8200000用科学记数法表示为 ▲ . 12.因式分a 3-4a 2+4a= ▲ .13.圆锥底面圆的直径是20cm ,母线长40cm ,其侧面展开图圆心角的度数为 ▲ . 14.某校开展“节约用电,保护环境〞活动,为了了解开展活动一个月以来节约用电情况,从九年级的300名同学中随机 选取40名同学,统计了他们各 自家庭一个月节约用电的情 况,绘制统计表如下:请你估计九年级300名同学的家庭一个月节约用电的总量大约是 ▲ 度.15.如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 与BC 交于点D ,与AC 交于点E ,连OD 交BE 于点M ,且MD =2,那么BE 的长为 ▲ .16. 有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.那么tan ∠HDG 的值为 ▲ .17.如图,AB 为半圆O 的直径,以AO 直径作半圆M ,C 为OB 的中点,D 节电量/度 2 3 4 5 6 家庭数/个5121283yA BCDE GH 16题15题17题〔营口〕xx 年中考模拟〔四〕数学 第2页 共6页且CD ⊥MD ,延长AD 交半圆O 于点E,且AB=4, 那么圆中阴影局部的面积为 ▲ .18.如图,在直角坐标系中点1A 的坐标为〔1,0〕, 过点A 1作x 轴的垂线交直线y=2x 于A 2,过点A 2 作直线y=2x 的垂线交x 轴于A 3,过点A 3作x 轴 的垂线交直线y=2x 于A 4…,依此规律, 那么A xx 的坐标为 ▲ .三、解答题〔19题10分,20题10分,共20分〕 19.(10分)化简a aa a a a -÷-+•-2132422并求值,其中a 与2、3构成△ABC 的三边 且a 为整数.20.(10分)某校随机抽取局部学生,就“学习习惯〞进展调查,将“对自己做错的题目进展整理、分析、改正〞 (选项为:很少、有时、常常、总是)的调查数据进展了整理,绘制成局部统计图如下:请根据图中信息,解答以下问题:〔1〕该调查的样本容量为 ,a = %,b = %.“很少〞对应扇形的圆心角为 ;〔2〕请补全条形统计图;〔3〕假设该校共有3500名学生,请你估计其中“总是〞对错题进展整理、分析、改正的学生有多少名?四、解答题〔21题12分,22题12分,共24分〕21.〔12分〕小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个方法,拿了八张扑克牌,将数字为第23题图1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规那么进展:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,那么小莉去;如果和为奇数,那么哥哥去.〔1〕请用列表或者树状图的方法求小莉去看中国篮球职业联赛总决赛的概率;〔2〕哥哥设计的游戏规那么公平吗?假设公平,请说明理由;假设不公平,请你设计一种公平的游戏规那么.22.如下列图,台阶CD 为某校运动场观赛台,台阶每层高0.3米,AB 为运动场外的一幢竖直居民楼,且AC=51.7米,设太阳光线与水平地面的夹角为α,当α=60°时,测得居民楼在地面上的影长AE=30米.〔参考数据:73.13≈〕 〔1〕求居民楼的高度约为多少米?〔2〕当α=45°时,请问在台阶的MN 这层上观看比赛的学生是否还晒到太阳?请说明理由.五、解答题〔23题12分,24题12分,共24分〕23.如图,在Rt △ABC 中,∠C=90°,BD 为∠ABC 的平分线,DF ⊥BD 交AB 于点F ,第22题图△BDF 的外接圆⊙O 与边BC 相交于点M ,过点M 作AB 的垂线交BD 于点E ,交⊙O 于点N ,交AB 于点H ,连结FN . 〔1〕求证:AC 是⊙O 的切线;〔2〕假设AF=4,tan ∠N=34,求⊙O 的半径长;〔3〕在〔2〕的条件下,求MN 的长.24.我市某企业接到一批产品的生产任务,按要求必须在14天内完成.每件产品的出厂价为60元.工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系:7.5(04)510(414)x x y x x ≤≤⎧=⎨+<≤⎩ (1)工人甲第几天生产的产品数量为70件?(2)设第x 天生产的产品本钱为P 元/件,P 与x 的函数图象如图.工人甲第x 天创造的利润为W 元,求W 与x 的函数关系式,并求出第几天时利润最大,最大利润是多少?GABCDEFNFGBC ADE N六、解答题〔此题总分值14分〕25. 〔14分〕如图〔1〕,正方形ABCD ,E 是线段BC 上一点,N 是线段BC 延长线上一点,以AE 为边在直线BC 的上方作正方形AEFG.图〔1〕 图〔2〕〔1〕连接GD ,求证:DG =BE ; 〔2〕连接FC ,求∠FCN 的度数;〔3〕如图〔2〕,将图〔1〕中正方形ABCD 改为矩形ABCD ,AB=m ,BC=n 〔m 、n 为常数〕,E 是线段BC 上一动点〔不含端点B 、C 〕,以AE 为边在直线BC 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变?假设∠FCN 的大小不变,请用含m 、n 的代数式表示tan∠FCN 的值;假设∠FCN 的大小发生改变,请画图说明.七、解答题〔此题总分值14分〕26.〔14分〕如图,抛物线y=﹣x 2+2x+6与x 轴交于A ,B 两点〔点A 在点B 的左侧〕,与y 轴交于点C ,其对称轴与抛物线交于点D .与x 轴交于点E . 〔1〕求点A ,B ,D 的坐标;〔2〕点G 为抛物线对称轴上的一个动点,从点D 出发,沿直线DE 以每秒2个单位长度的速度运动,过点G 作x 轴的平行线交抛物线于M ,N 两点〔点M 在点N 的左边〕. 设点G 的运动时间为ts .①当t为何值时,以点M,N,B,E为顶点的四边形是平行四边形;②连接BM,在点G运动的过程中,是否存在点M.使得∠MBD=∠EDB,假设存在,求出点M的坐标;假设不存在,请说明理由;〔3〕点Q为坐标平面内一点,以线段MN为对角线作萎形MENQ,当菱形MENQ为正方形时,请直接写出t的值.数学模拟〔四〕参考答案一、DADDB ABCBC×106 12.a 〔a-2〕2 ° 14.1140 15.816.3117. 3243π+ 18.〔51008,2×51008〕三、19.解:原式 =13a -- ∵a 与2、3构成ABC ∆的三边,且a 为整数 ∴15a << 由题可知0a ≠、2±、3∴4a = ∴原式=1143-=-- 20.(1) 200 12 36 43.2 (2)图略 〔3〕解:答:估计其中“总是〞对错题进展整理、分析、改正的学生有1260多少名。
中考模拟考试数学试题含答案一.填空题(共6小题)1.如图,点A所表示的数的绝对值是.2.已知反比例函数y=的图象经过点(1,2),则k的值是.3.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于.4.如图,将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,若∠AOB=20°,则∠AOB′的度数是.5.如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.6.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为.一.选择题(共8小题)7.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1 8.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π9.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.010.一个多边形的外角和与它的内角和相等,则多边形是()A.三角形B.四边形C.五边形D.六边形11.下列对于二次根式的计算正确的是()A.B.2=2 C.2=2 D.2=12.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°13.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下表:则关于这20名学生阅读小时数的说法正确的是()阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3A.中位数是3 B.中位数是3.5C.众数是8 D.众数是414.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.三.解答题(共9小题)15.已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.16.先化简,再求值:•﹣(),其中x=.17.11月21日,“中国流动科技馆”榆林市第二轮巡展启动仪式在榆阳区青少年校外活动中心盛大举行,此次巡展以“体验科学”为主题.榆林市某中学举行了“科普知识”竞赛,为了解此次“科普知识”竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 6B组70≤x<80 aC组80≤x<90 12D组90≤x<100 14 (1)表中a=;一共抽取了个参赛学生的成绩;(2)补全频数分布直方图;(3)计算扇形统计图中“B”与“C”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比是多少?18.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.如图,对称轴为直线x=﹣2的抛物线y=x2+bx+c与x轴交于A(﹣5,0),B(1,0)两点,与y轴相交于点C.(1)求抛物线的解析式,并求出顶点坐标.(2)若点P在抛物线上,且S△POC=4S△BOC,求出点P的坐标.21.为了尽快实施“精准扶贫”,某县扶贫工作队为某村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.22.如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).23.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:△CBE≌△CPE;(2)求证:四边形AECF为平行四边形;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.参考答案与试题解析一.填空题(共6小题)1.如图,点A所表示的数的绝对值是 3 .【分析】数轴上某个数与原点的距离叫做这个数的绝对值.由数轴可知,﹣3与原点距离为3,所以|﹣3|=3.【解答】解:由数轴可知,﹣3与原点的距离为3,∴|﹣3|=3.故答案为3.2.已知反比例函数y=的图象经过点(1,2),则k的值是 2 .【分析】把(1,2)代入函数y=,可求出k的值.【解答】解:∵点(1,2)在函数y=上,则有2=,即k=2.故答案为:2.3.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于41 .【分析】一元二次方程的根判别式为:△=b2﹣4ac,代入计算即可【解答】解:依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案为:414.如图,将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,若∠AOB=20°,则∠AOB′的度数是35°.【分析】由旋转的性质可得∠AOB=∠A'OB'=20°,∠AOA'=55°,可求∠AOB′的度数.【解答】解:∵将△ABO绕点O按逆时针方向旋转55°后得到△A′B′O,∠AOB=20°,∴∠AOB=∠A'OB'=20°,∠AOA'=55°,∴∠AOB'=∠AOA'﹣∠A'OB'=35°故答案为:35°5.如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.【分析】AB=AD+BD=5,由∠ACD=∠B,∠A=∠A,得出△ACD∽△ABC,得出=,即AC2=AD•AB,即可得出答案.【解答】解:∵AD=2,BD=3,∴AB=AD+BD=2+3=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD•AB=2×5=10,∴AC=,故答案为:.6.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为4037 .【分析】设第n层有a n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n=2n﹣1”,再代入n=2019即可求出结论.【解答】解:设第n层有a n个三角形(n为正整数),∵a1=1,a2=2+1=3,a3=2×2+1=5,a4=2×3+1=7,…,∴a n=2(n﹣1)+1=2n﹣1.∴当n=2019时,a2019=2×2019﹣1=4037.故答案为:4037.二.选择题(共8小题)7.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.8.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π【分析】根据三视图可以判定此几何体为圆锥,根据三视图的尺寸可以知圆锥的底面半径为3,圆锥的母线长为5,代入公式求得即可.【解答】解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积==×6π×5=15π,故选:B.9.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x﹣3=0,解得:x=3,故选:A.10.一个多边形的外角和与它的内角和相等,则多边形是()A.三角形B.四边形C.五边形D.六边形【分析】任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可.【解答】解:设多边形的边数为n.根据题意得:(n﹣2)×180°=360°,解得:n=4.故选:B.11.下列对于二次根式的计算正确的是()A.B.2=2 C.2=2 D.2=【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选:C.12.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.13.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下表:则关于这20名学生阅读小时数的说法正确的是()阅读时间(小时) 2 2.5 3 3.5 4学生人数(名) 1 2 8 6 3A.中位数是3 B.中位数是3.5C.众数是8 D.众数是4【分析】根据表格中的数据可以得到这组数据的中位数和众数,从而可以解答本题.【解答】解:由表格可得,中位数是:3,故选项A正确,选项B错误,众数是3,故选项C、D错误,故选:A.14.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF 可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.【解答】解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.三.解答题(共9小题)15.已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).16.先化简,再求值:•﹣(),其中x=.【分析】原式第一项变形后约分化简,括号中两项通分并利用同分母分式的加法法则计算,得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•﹣=﹣=,当x=+1时,原式=.17.11月21日,“中国流动科技馆”榆林市第二轮巡展启动仪式在榆阳区青少年校外活动中心盛大举行,此次巡展以“体验科学”为主题.榆林市某中学举行了“科普知识”竞赛,为了解此次“科普知识”竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<70 6B组70≤x<80 aC组80≤x<90 12D组90≤x<100 14 (1)表中a=8 ;一共抽取了40 个参赛学生的成绩;(2)补全频数分布直方图;(3)计算扇形统计图中“B”与“C”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比是多少?【分析】(1)利用总人数与个体之间的关系解决问题即可.(2)根据频数分布表画出条形图即可解决问题.(3)利用圆心角=360°×百分比计算即可解决问题.(4)根据优秀人数以及总人数求出优秀率即可.【解答】解:(1)由题意:a=8,总人数=6+8+12+14=40(人),故答案为8,40.(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°,“C”对应的圆心角度数=360°×=108°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.18.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?【分析】(1)根据利润=甲商品的单件利润×数量+乙商品的单件利润×数量,即可得出y关于x的函数解析式;(2)根据总价=甲的单价×购进甲种商品的数量+乙的单价×购进乙种商品的数量,列出关于x的一元一次不等式,解不等式即可得出x的取值范围,再利用一次函数的性质即可解决最值问题;【解答】解:(1)已知可得:y=(60﹣40)x+(120﹣90)(100﹣x)=﹣10x+3000(0<x<100).(2)由已知得:40x+90(100﹣x)≤8000,解得:x≥20,∵﹣10<0,∴y随x的增大而减小,∴当x=20时,y有最大值,最大值为﹣10×20+3000=2800.故该商场获得的最大利润为2800元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.如图,对称轴为直线x=﹣2的抛物线y=x2+bx+c与x轴交于A(﹣5,0),B(1,0)两点,与y轴相交于点C.(1)求抛物线的解析式,并求出顶点坐标.(2)若点P在抛物线上,且S△POC=4S△BOC,求出点P的坐标.【分析】(1)把A、B两点坐标代入,根据待定系数法可求得抛物线解析式,进而可求出顶点坐标;(2)根据S△POC=4S△BOC,可得P到OC的距离是OB的4倍,可得P点的横坐标,根据自变量与函数值的对应关系,进而得到点P的坐标.【解答】解:(1)把A(﹣5,0),B(1,0)两点代入y=x2+bx+c得,解得:,∴抛物线解析式为y=x2+4x﹣5,∴顶点坐标为(﹣2,9);(2)由S△POC=4S△BOC,得P到OC的距离是OB的4倍,即P点的横坐标为4或﹣4,当x=4时,y=42+4×4﹣5=19,P1(4,19)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣5=5,即P2(﹣4,3),综上所述:P1(4,19),P2(﹣4,3).21.为了尽快实施“精准扶贫”,某县扶贫工作队为某村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得=,解得x=5.经检验x=5是原分式方程的解,且符合题意.答:梨树苗的单价是5元.(2)设购买梨树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得(5+2)(1100﹣a)+5a≤6 000,解得a≥850.答:梨树苗至少购买850棵.22.如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).【分析】(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【解答】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣=6﹣π.23.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:△CBE≌△CPE;(2)求证:四边形AECF为平行四边形;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.【分析】(1)由折叠的性质可知:EP=EB,CP=CE,根据SSS证明三角形全等即可.(2)由折叠的性质得到BE=PE,EC与PB垂直,根据E为AB中点,得到AE=EB=PE,利用三角形内一边上的中线等于这条边的一半的三角形为直角三角形,得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(3)过P作PM⊥CD,在直角三角形EBC中,利用勾股定理求出EC的长,利用面积法求出BQ的长,根据BP=2BQ求出BP的长,在直角三角形ABP中,利用勾股定理求出AP 的长,根据AF﹣AP求出PF的长,由PM与AD平行,得到三角形PMF与三角形ADF相似,由相似得比例求出PM的长,再由FC=AE=3,求出三角形CPF面积即可.【解答】(1)解:由折叠可知,EP=EB,CP=CB,∵EC=EC,∴△ECP≌△ECB(SSS).(2)证明:由折叠得到BE=PE,EC⊥PB,∵E为AB的中点,∴AE=EB=PE,∴AP⊥BP,∴AF∥EC,∵AE∥FC,∴四边形AECF为平行四边形;(2)∵△AEP为等边三角形,∴∠BAP=∠AEP=60°,AP=AE=EP=EB,∵∠PEC=∠BEC,∴∠PEC=∠BEC=60°,∵∠BAP+∠ABP=90°,∠ABP+∠BEQ=90°,∴∠BAP=∠BEQ,∴△ABP≌△EBC(AAS),∵△EBC≌△EPC,∴△ABP≌△EPC;(3)过P作PM⊥DC,交DC于点M,在Rt△EBC中,EB=3,BC=4,根据勾股定理得:EC==5,∵S△EBC=EB•BC=EC•BQ,∴BQ==,由折叠得:BP=2BQ=,在Rt△ABP中,AB=6,BP=,根据勾股定理得:AP==,∵四边形AECF为平行四边形,∴AF=EC=5,FC=AE=3,∴PF=5﹣=,∵PM∥AD,∴=,即=,解得:PM=,则S△PFC=FC•PM=×3×=.中考模拟考试数学试卷一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.下列四个图形中,是轴对称图形的是()A.B.C.D.5.下列几何体的左视图为长方形的是()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.510.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.参考答案与试题解析一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.4.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.5.下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到各图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是=;故选:A.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:由图和题意可知,第一天产生新的微生物有6个标号,第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,而前四天所有微生物的标号共有3+6+12+24+48=93个,所以标号为100的微生物会出现在第五天.故选:C.9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.5【分析】先根据平移的性质求出平移后直线的解析式,由于,故可得出设B(a,n),D(3a,n﹣4),再根据反比例函数中k=xy为定值求出n.【解答】解:∵将直线y=n向下平移4个单位长度后,∴平移后直线的解析式为y=n﹣4,∵,∴CD=3AB,设B(a,n),D(3a,n﹣4),∵B、D在反比例函数的图象上,∴an=3a•(n﹣4)∴n=6故选:B.10.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+。
2015辽宁中考数学模拟冲刺试题2015.5一、单项选择题(每题3分,满分30分)1.下列各式:①x 2+x 3=x 5.②a 2·a 3=a 6③2=-④(11()33-=⑤0(1)1π-=,其中正确的是( )A .④⑤B .③④ c .②③ D .①④ 2.下列图形既是轴对称图形,又是中心对称图形的是 ( )3.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个 字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是 ( )4.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的0A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是OA 上的一点,且∠EPF =450,图中阴影影部分的面积为 ( ) A .4一π 8.4—2π C 、8+πⅡ D .8-2π孔5.2012年5月份,齐齐哈尔市一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是( )A.32,31 B.31,31 C.31,32 D.32,35 +6.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米)与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是( )A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了—会儿书,继续向前走了一段,18分钟后开始返回7,为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动,有A、B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有( )A.3种B.4种c.5种D.6种8.已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b④a+b>0,则其中正确结论的个数是( )A.1个B.2个C.3个D.4个9.若关于x的分式方程2213m xx x+-=-无解,则m的值为( )A.一l.5 B.1 C.一l.5或2 D.一0.5或一l.510.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=900,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF BC②S△AEF≤14S△ABC③S四边形AEDF=AD·EF④AD≥EF⑤AD与EF可能互相平分,其中正确结论的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题3分,满分30分)11.2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福,将691万人用科学记数法表示为人.(结果保留两个有效数字)12.函数1x中,自变量x的取值范围是13.如图,己知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是(填一个即可)14.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个自球的概率是14,则y与x之间的函数关系式为15.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为16.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是17.用半径为9,圆心角为1200的扇形围成一个圆锥,则圆锥的高为.18.Rt△ABC中,∠A=900,BC=4,有一个内角为600,点P是直线AB上不同于A、B的一点,且∠ACP=300,则PB的长为.19.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,点C、D在x轴上,若四边形ABDC为矩形,则它的面积为20.如图,在平面直角坐标系中有一边长为l的正方形OABC,边0A、0C分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB l为边作第三个正方形OB l B2C2,照此规律作下去,则点B2012的坐标为三、懈答题(满分60分)21.(本小题满分5分豢22.(本小题满分6分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9 X9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为l个单位长度.(1)在网格中画出△ABC向上平移4个单位后得到的△A l B l C l.(2)在网格中画出△ABC 绕点A 逆时针旋转900后得到的△AB 2C 2 (3)在(1)中△ABC 向上平移过程中,求边AC 所扫过区域的面积. 23.(本小题满分6分) 如图,抛物线y =212x+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =2,OC =3.(1)求抛物线的解析式.(2)若点D (2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP 的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.24.(本小题满分7分) 6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:(1)直接写当a 的值,并补全频数分布直方图. .(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人? (3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为8Q 分 的至少有多少人?25.(本小题满分8分) 黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式(3)在渔政船驶往黄岩离的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?26.(本小题满分8分)27.(本小题满分10分)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价l80元,售价320元;乙种服装每件进价l50元,售价280元.(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元,且不超过26800元,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?28.(本小题满分10分)如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且0A、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段A0上以每秒l个单位长度的速度向点0运动;同时,动点Q从点8开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标。
营口初三模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333(无限循环小数)B. πC. √2D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -44. 下列哪个不等式是正确的?A. |-3| < 3B. |-3| > 3C. |-3| = 3D. |-3| ≠ 35. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π6. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -37. 一个多项式P(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. -1, 2, 3C. 1, 3, 4D. 2, 3, 48. 一个等差数列的首项是2,公差是3,那么第5项是:A. 17B. 14C. 11D. 89. 如果一个函数是奇函数,那么它的图象关于:A. 原点对称B. y轴对称C. x轴对称D. 都不是10. 下列哪个是二次方程的根?A. x = 2B. x = -2C. x = 1D. x = -1二、填空题(每题3分,共15分)11. 一个数的立方根是2,那么这个数是_________。
12. 一个圆的直径是14,那么它的周长是_________。
13. 一个二次方程x^2 + 4x + 4 = 0的判别式是_________。
14. 如果一个数列的前三项是2, 5, 8,那么它的通项公式是_________。
15. 一个函数f(x) = 3x^2 + 2x - 5在x = 1处的导数是_________。
三、解答题(共55分)16. 解方程:2x - 5 = 11(5分)17. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
辽宁省营口市中考数学模拟试题及答案2015.6考生须知1.本试卷共8页,26道题,满分150分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
内.每小题3分,共24分)1.4的值为A.2 B.-2 C.±2 D.22.2.如图,有4个汽车标致图案,其中是中心对称图形但不是轴对称图形的是A B C D3.下列说法中正确的是A.一个抽奖活动的中奖率是5%,则抽100次奖一定会中奖5次B.了解某批炮弹的杀伤半径,采取普查方式C.一组数据1、2、3、4的中位数是2.5D.若甲组数据的方差是S甲2=0.1,乙组数据的方差是S乙2=0.01,则甲组数据比乙组数据稳定4.由一些相同的小立方体组成的立体图形的三视图都相同,如图所示,那么组成这个几何体的个数是A.3 B.4 C.5 D.65将如图①的矩形ABCD纸片沿EF折叠得到图②,折叠后DE与BF相交于点P,如果∠BPE=130°,则∠PEF的度数为()A.60°B.65°C.70°D.75°第4题图6.如图3,正方形ABCD 位于第二象限,AB =1,顶点 A 在直线y =-x 上,其中A 点的横坐标为-1,且 两条边AB 、AD 分别平行于x 轴、y 轴,若双曲线y = (k ≠0)与正方形ABCD 有公共点.则k 的取值范围是A .-4≤k ≤-1B .-4<k <-1C . -4≤k <-1D .1≤k ≤47.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为二、填空题(每小题3分,共24分)9.今年我国西南五省市发生旱灾,尤其以云南省受灾最为严重,云南的经济损失已经超过170亿元,那么170亿元用科学记数法表示为_____________________元.10.两条宽度都为1的纸条,交叉重叠放在一起, 且它们的交角为α,则它们重叠部分(图中阴影部分) 的面积为_____________________.11.分解因式: 2a 3-32 a =______________________.第10题图y xOy x O B . C . y x O A . y x O D .1- 1O x y(第7题图) 8第6题图12.关于x 的一元二次方程(m -1)x 2-x+ m 2-1=0的一个解是x=0,则m 值是_________.13.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才所想数字,把乙所猜数字记为b ,且a ,b 分别取0,1,2,3,若a ,b 满足|a-b|≤1,则称甲、乙两人“心有灵犀”,现任意找两个玩这个游戏,得出“心有灵犀”的概率为_______________. 14.在函数y= 中,自变量x 的取值范围是___________.15.一圆锥的侧面展开图是一个半径是8cm 的半圆,则这个圆锥的底面半径是__________cm . 16.把一组数据进行蛇形排列如下,观察并回答:1 32 4 5 6 10 9 8 7 ……若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是 ___________-三、(每小题8分,共16分)17.先化简,再求值:144)131(2-+-÷--+x x x x x ,其中x 满足方程:x 2+x ﹣6=0.18.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2)、B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1. (1)点A 关于点O 中心对称的点的坐标为 ; (2)点A 1的坐标为 ;(3)在旋转过程中,求线段AB 扫过的面积?四、(每小题10分,共20分)19.一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(,结果保留整数)。
辽宁省营口市2015届九年级数学模拟考试试题2015年中考模拟考试数学参考答案一、1.D 2.C 3.D 4.C 5.A 6.B 7.D 8.B 9.D 10.A 二、11.4×10-512.x (x-1)213.x ≥-1,且x ≠0 14.31 15.60°16.4 17.1-n 2118.5 三、19.解:1a 2a 2a 2a 1a 1122+----÷⎪⎭⎫ ⎝⎛+a 2)1()1(2)1)(1(1----+⨯+=a a a a a a a …………………………2分1211---=a a ……………………………4分 11--=a ……………………………6分 a=23+4-1-23=3, ……………………………8分 当a=3时,原式=-131-=-21……………………………10分 20.解:(1)15÷10℅=150(名)所以在这项调查中,共调查了150名学生.………………………………2分 (2)如图: ……………………………………4分(3)(1-10%-20%-40%)×360°=108°所以统计图①中B 项目对应的扇形圆心角的度数为108°.…………6分 第一人 第二人A 1 A 2 A 3B 1 B 2 A 1 (A 2,A 1)(A 3, A 1) (B 1, A 1) (B 2, A 1) A 2 (A 1 ,A 2) (A 3 ,A 2)(B 1 ,A 2) (B 2, A 2) A 3 (A 1, A 3) (A 2, A 3) (B 1 ,A 3)(B 2 ,A 3) B 1 (A 1 ,B 1) (A 2 ,B 1) (A 3 ,B 1)(B 2 ,B 1)B 2(A 1 ,B 2)(A 2 ,B 2)(A 3 ,B 2)(B 1 ,B 2)所有可能的结果共有20种,刚好抽到同性别学生的结果8种,P=520=………12分 四、21.解:分别过A 、B 两点作AE ⊥CD ,BF ⊥CD 交CD 延长线于点E 、F.第20题图A B C D 40 100 人数项目 15 6030图②45∴AE=BF=5m ,∠CAE=45°,∠DBF=30° …………………1分 在Rt △ACE 中,cos ∠CAE=ACAE∴cos45°=AC5 ∴AC=52≈7.07(m) ………………4分又∵tan ∠CAE=AE CE ∴tan45°=5CE∴CE=5(m)在Rt △BDF 中,cos ∠DBF=BDBF∴cos30°=BD 5∴BD=310≈5.77(m) ……7分 ∵tan ∠DBF=BFDF∴DF=BFtan30°∴D F=335∴AB=EF=CD+DF-CE=3.4+335-5≈1.29(m)……………10分 22.解:(1)设平均增长率为x …………………1分根据题意得:64(1+x )2=100 …………………4分 解得:x=0.25=25%或x=﹣2.25四月份的销量为:100(1+25%)=125辆……………5分 答:四月份的销量为125辆.………………………6分(2)设购进A 型车x 辆,则购进B 型车100050030000x 辆,即为(30-x 21)辆.……7分根据题意得:2×(30-x 21)≤x≤2.8×(30-x 21) ……………9分解得:30≤x≤35.设利润为W 元,则W=(700﹣500)x+(1300﹣1000)×(3-x 21)=50x+900. ……10分 ∵k=50>0,∴W 随着x 的增大而增大.当x=35时,3-x 21不是整数,故不符合题意, ∴x=34,此时3-x 21=13. ……………………………11分答:为使利润最大,该商城应购进34辆A 型车和13辆B 型车. …………12分 五、23.证明:(1)如图,连接OD,则OD=OB, ∴∠OBD=∠ODB ………………2分 又∵BD 平分∠CBN ∴∠OBD=∠DBE∴∠ODB=∠DBE …………………4分第21题图3.4m5m BA 30°45°C D E F∵DE⊥MN ∴∠BED=90°∴∠DBE+∠BDE=90°∴∠ODB+∠BDE=90°即∠ODE=90° ∴OD ⊥DE∴DE 与⊙O 相切 …………………6分 (2)解:连接CD∵BC 是⊙O 的直径,∴∠CDB=90° ∴∠CDB=∠DEB=90° 又∵∠CBD=∠DBE∴△CBD ∽△DBE ………………………8分 ∴EBDB DB CB =即DB 2=CB ·EB ∵BC=10,BE=2∴DB 2=10×2=20∴DB=25 …………………………10分 又∵∠BAD=∠BCD ∴sin ∠BAD=sin ∠BCD=1052=55………12分 24.解:(1)当0≤x ≤6时,y=100x …………3分当6<x ≤14时,设y=kx+b ∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+0146006b k b k 解得⎩⎨⎧=-=105075b k ∴y=-75x+1050∴y=⎩⎨⎧≤+≤≤)<14x 1050(675x -6)x 100x(0…………………8分(2)当x=7时,y 乙=y 甲=-75×7+1050=525,v 乙=7525=75(km/h )………12分 六、25.证明:(1)∵∠BAC=∠DAE =90° ∴∠BAD=∠CAE又∵AB=AC ,AD=AE∴△ABD ≌△ACE …………………4分 ∴∠ABD =∠ACE=45°,BD=CE∴∠ACB+∠ACE=90°∴BD ⊥CE ,CE=BC-CD …………………6分 (2)CE=BC+CD …………………8分 (3) △ACF 是等腰三角形 …………………9分 理由:∵∠BAC=∠DAE =90° ∴∠BAD=∠CAE 又∵AB=AC,AD=AEB · AMCNOED第23题图∴△ABD ≌△ACE ……………………12分 ∴∠ABD=∠ACE又∵∠ABC=∠ACB=45° ∴∠ACE =∠ABD =135°∴∠DCE=90° ………………13分 又∵点F 是DE 的中点 ∴AF=CF=21DE ∴△ACF 是等腰三角形………………14分七、26.解:(1)由题⎪⎩⎪⎨⎧==++=+-30636024c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=3141c b a ……………3分所以抛物线的解析式为y=-41x 2+x+3 …………………………4分 (2)因为y=-41x 2+x+3 ∴对称轴直线x=2∵CD ∥x 轴,c (0,3) ∴D (4,3) ∴S △BCD =21CD ·OC=21×4×3=6 …………5分当L 平移至L 1处,L 1与CD ,B C 分别交于点M 、N∴∠MCN=∠CBO ,∠CMN=∠BOC=90° ∴△CMN ∽△BOC∴236===OC BO MN CM ∴CM=2MN∴S △CMN =21CM ·MN=41CM 2…………………7分 当S △CMN =21 S △BCD ,41CM 2=3∴CM=23当L 平移到直线x=23处时,恰好将△BCD 的面积分为相等的两部分.…………8分 (3)对称轴L 交CD 于点P ,过点E 作EQ ⊥y 轴,Q 为垂足.∵E (2,4),C (0,3),CD ∥x 轴 ∴21==CP EP OQ EQ 又∵∠EQO=∠EPC=90°D CXYL EBA O第26题图MNL 1∴△EQO ∽△EPC∴∠COE=∠ECD ………………10分 ∵OC=3,CE=5,OE=25 当△COE ∽△ECF 时,∴CF OE CE CO = ∴CF=310∴F (310,3) …………12分当△COE ∽△FCE 时,∴CE OECF CO =∴CF=23∴F (23,3)综上所述,满足条件的点F (310,3)或(23,3)…………14分第26题图。
营口市2015年中考模拟试题(四)数学试卷考试时间:120分钟试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第一部分(客观题)一、选择题(本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项正确)A.±8 B. 8 C. 2 D.±22.大自然中存在很多轴对称现象,下列植物叶子图案中既是轴对称图形,又是中心对称图形的是(▲ )3.下列运算正确的是(▲ ).A. 236()a a -= B .()222a b a b +=+ C . 8-2=2D.4=4.如图,已知DE ∥BC ,AB=AC,∠1=125°,则∠C 的度数是(▲ ) A. 55° B. 45° C. 35° D. 65°5.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7, 14,10,8,9,7 (单位:个).关于这组数据,下列结论正确的是( ▲ ).A .极差是6B .众数是7C .中位数是8D .平均数是106.不等式组21,217x x -≥⎧⎨--⎩>的解集在数轴上表示正确的是( ▲ )A .B .C .D . 7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是 ( ▲ )A .B . C. D.8.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔ABD E1 (第4题图)C芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x元和每盒笔芯y 元,根据题意所列方程组正确的是( ▲ )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩9.把一副三角板如图甲放置,其中∠ACB=∠DEC=90º,∠A =45º,∠D =30º,斜边AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转15º得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( ▲ )A.510.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲)第二部分(主观题)D CA E BAD 1O E 1BC图甲图乙二、填空题(每小题3分,共24分)11.2014年3月14日,“玉兔号”月球车成功在距地球约384400公里远的月球上自主唤醒,将384400用科学计数法表示为 12.分解因式2224)1(a a -+= .13.用一个圆心角为120°,半径为9㎝的扇形围成一个圆锥侧面,则圆锥的高是 ㎝; 14. 若式子xx 1-无.意义..,则x 的取值范围是_________. 15.体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的16.如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为 cm 17.双曲线1y 、2y 在第一象限的图像如图,14y x=,过1y 上的任意一点A ,作x轴的平行线交2y 于B ,交y 轴于C ,若1AOB S ∆=,则2y 的解析式是 . 18. 已知,如图,△OBC 中是直角三角形,OB 与x 轴正半轴重合,∠OBC=90°,且OB=1,BC=3,将△OBC 绕原点O 逆时针旋转60°再将其各边扩大为原来的2倍,使OB 1=OC ,得到△O B 1C 1,将△OB 1C 1绕原点O 逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是.三、解答题(共96分)19.(10分)已知2340x x+-=,求代数式22221211x x x xx x x x⎛⎫--÷⎪--+-⎝⎭的值.20.(12分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期三个月的跟踪调查,并将调查结果分成四类,A:特别好;B:17题18题好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21. (10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y货(千米)与货车出发时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y轿(千米)与货车出发时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间第二次与轿车相遇(结果精确到0.01).(第21题图)22.(12分)如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1海里);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)23.(12分)如图,已知AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,4cos5BED∠=,求AD的长.MCA O BE D24. (12分)某市2013年启动省级园林城市创建工作,计划2015年下半年顺利通过验收评审。
该市为加快道路绿化及防护绿地等各项建设。
在城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?N25. (14分)已知,点P是△ABC边AB上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是 ;(2)如图2,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明;(3)如图3,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.26. (14分)如图,二次函数22y x x c =++的图象与x 轴交于点A 和点B (1,0),以AB 为边在x 轴上方作正方形ABCD ,动点P 从点A 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,同时动点Q 从点C 出发,以每秒1个单位长度的速度沿CB匀速运动,当点Q到达终点B时,点P停止运动,设运动时间为t秒.连接DP,过点P作DP的垂线与y轴交于点E.(1)求二次函数的解析式及点A的坐标;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,并求出这个最大值;(3)在P,Q运动过程中,求当△DPE与以D、C、Q为顶点的三角形相似时t数学参考答案一、CDCAB DABBC二、11.3.844×10512.(a+1)2(a-1)213. 62 14.x <1 15. 方差16.413 17.26y x=18.(22016,0) 三、19. x= - 4,x=1,x=1不合题意舍去。
原式=1x +=-3 20.解:(1)20, 2 , 1; (2) 如图 (3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率P=63=2121.(1)根据图象信息:货车的速度V 货=3005=60(千米/时) ∵轿车到达乙地的时间为4.5小时∴货车距乙地路程=300-60×4.5=30(千米) 答:轿车到达乙地后,货车距乙地30千米. (2)设CD 段函数解析式为y =kx +b (k ≠0)(2.5≤x ≤4.5) ∵C (2.5,80),D (4.5,300)在其图象上 ∴ 2.5804.5300k b k b ⎧+=⎨+=⎩ ∴110195k b ⎧=⎨=-⎩∴CD 段函数解析式:y =110x -195(2.5≤x≤4.5) (3)设x 小时后两车第二次相遇根据图象信息:V 货车=60 V 轿车=110∴110(x -4.5)+60x =300 ∴x ≈4.68(小时)答:出发4.68小时后轿车再与货车相遇. 22.解:(1)C 作AB 的垂线,设垂足为D ,根据题意可得:∠MAC=∠ACD =42°,∠CBN=∠BCD =55°, 设CD 的长为x 海里, 在Rt △ACD 中,tan42°=,则AD=x•tan42°, 在Rt △BCD 中,tan55°=,则BD=x•tan55°,∵AB=80,∴AD+BD=80,∴x•tan42°+x•tan55°=80,解得:x≈34.4, 答:海轮在航行过程中与灯塔C 的最短距离是34.4海里; (2)在Rt △BCD 中,cos55°=,∴BC=≈60海里,答:海轮在B 处时与灯塔C 的距离是60海里. 23.解:(1)AC 与⊙O 的相切.证明如下:OC AD ⊥∵290AOC ∴∠+∠=°. 又2C BED ∠=∠=∠, 90AOC C ∠+∠=∴°.AB AC ⊥∴ 即AC 与⊙O 的相切. (2)解:连接BD .AB ∵是⊙O 直径,90ADB ∴∠=︒在Rt AOC ∆中,90CAO ∠=︒,8AC =,90ADB ∠=°.4cos cos 5C BED ∠=∠=. 6AO ∴=,12AB ∴=在Rt ABD ∆中,4cos 2cos 5BED ∠=∠=, 4cos 2125AD AB ∴=⋅∠=⨯=485.24.解:(1)设乙队单独完成这项工程需x 天, 根据题意得,6020+24(601+x1)=1 解得,x=90,经检验,x=90是原方CO BED1 2M N程的根。