2014年辽宁省营口市中考数学试卷含答案解析
- 格式:doc
- 大小:522.50 KB
- 文档页数:22
2014年辽宁省营口市中考数学试题及参考答案与解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1.﹣6的倒数是( )A .﹣6B .6C .16D .16- 2.如图是某个几何体的三视图,该几何体是( )A .长方体B .三棱柱C .正方体D .圆柱3)A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列运算正确的是( )A .a+a=a 2B .(﹣a 3)4=a 7C .a 3•a=a 4D .a 10÷a 5=a 25.下列说法正确的是( )A .“明天的降水概率是80%”表示明天会有80%的地方下雨B .为了解学生视力情况,抽取了500名学生进行调查,其中的样本是500名学生C .要了解我市旅游景点客流量的情况,采用普查的调查方式D .一组数据5,1,3,6,9的中位数是56.不等式组()1103327x x ⎧-⎪⎨⎪--⎩≤<的解集在数轴上表示正确的是( )A .B .C .D .7.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,∠B=50°,∠A=26°,将△ABC 沿DE 折叠,点A 的对应点是点A′,则∠AEA′的度数是( )A .145°B .152°C .158°D .160°8.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D .二、填空题(每小题3分,共24分)9.全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽,将数577 000 000 000 000用科学记数法表示为 .10.函数()02y x =-中,自变量x 的取值范围是 . 11.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为S 12、S 22,根据图中的信息判断两人方差的大小关系为 .12.如图,直线a ∥b ,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2= .13.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是27,则袋中红球约为 个. 14.如图,圆锥的底面半径OB 长为5cm ,母线AB 长为15cm ,则这个圆锥侧面展开图的圆心角α为 度.15.如图,在平面直角坐标系中,△ABC 的边AB ∥x 轴,点A 在双曲线5y x =(x <0)上,点B 在双曲线k y x=(x >0)上,边AC 中点D 在x 轴上,△ABC 的面积为8,则k= .16.如图,在平面直角坐标系中,直线l :3y x =,直线l 2:y =,在直线l 1上取一点B ,使OB=1,以点B 为对称中心,作点O 的对称点B 1,过点B 1作B 1A 1∥l 2,交x 轴于点A 1,作B 1C 1∥x 轴,交直线l 2于点C 1,得到四边形OA 1B 1C 1;再以点B 1为对称中心,作O 点的对称点B 2,过点B 2作B 2A 2∥l 2,交x 轴于点A 2,作B 2C 2∥x 轴,交直线l 2于点C 2,得到四边形OA 2B 2C 2;…;按此规律作下去,则四边形OA n B n C n 的面积是 .三、解答题(17小题8分,18小题8分,共16分)17.(8分)先化简,再求值:3222a ab ab b b a a b a b ⎛⎫---÷- ⎪+-⎝⎭,其中a=tan45°,b=2sin60°. 18.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2).(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并直接写出C 1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后D的对应点D2的坐标.四、解答题(19小题10分,20小题10分,共20分)19.(10分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m=,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?20.(10分)第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.五、解答题(21小题8分,22小题10分,共18分)21.(8分)如图,王老师站在湖边度假村的景点A处,观察到一只水鸟由岸边D处飞向湖中小岛C 处,点A到DC所在水平面的距离AB是15米,观测水鸟在点D和点C处时的俯角分别为53°和11°,求C、D两点之间距离.(精确到0.1.参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)22.(10分)如图,在⊙O中,直径AB平分弦CD,AB与CD相交于点E,连接AC、BC,点F 是BA延长线上的一点,且∠FCA=∠B.(1)求证:CF是⊙O的切线.(2)若AC=4,tan∠ACD=12,求⊙O的半径.六、解答题(23小题10分,24小题10分,共20分)23.(10分)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?24.(10分)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.(1)求y与x之间的函数表达式;(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?七、解答题(本题满分14分)25.(14分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO 的度数.八、解答题(本题满分14分)26.(14分)已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).(1)求抛物线的表达式及顶点D的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.参考答案与解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1.﹣6的倒数是()A.﹣6 B.6 C.16D.16-【知识考点】倒数.【思路分析】根据倒数的定义求解.【解答过程】解:﹣6的倒数是16 -,故选:D.【总结归纳】本题主要考查了倒数的定义,解题的关键是熟记定义.。
【关键字】数学初中毕业生毕业升学考试数学试卷考试时间:120分钟试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第二部分(主观题)时,将答案写在答题卡对应的区域内,写在本试卷上或答题卡指定的区域外无效。
4.考试结束后,将本试卷和答题卡一并交回。
第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.下列计算正确的是A.B.C.D.2.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能是A.5或6 B.5或7C.4或5或6 D.5或6或73.函数中自变量的取值范围是A.x≥-3 B.C.x≥-3或D.x≥-3且4.□ABCD中,对角线AC与BD交于点O,∠DAC=42º,∠CBD=23º,则∠COD是A.61ºB.63ºC.65ºD.67º5.云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是A.100元,100元B.100元,200元C.200元,100元D.200元,200元6.若关于的分式方程有增根,则的值是A.B.C.D.或7.将弧长为2πcm、圆心角为120º的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是A.B.C.D.8.如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是A.(4,2)B.(4,1)C.(5,2)D.(5,1)9.如图,在平面直角坐标系中,A(-3,1),以点O为直角顶点作等腰直角三角形AOB,双曲线在第一象限内的图象经过点B,设直线AB的解析式为,当时,的取值范围是A.B.或C.D.或10.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是A.B.C.D.第二部分(主观题)二、填空题(每小题3分,共24分)11.分解因式:= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少 3 120 000吨二氧化碳的排放量.把数据 3 120 000用科学记数法表示为.13.不等式组的所有正整数解的和为.14.圆内接正六边形的边心距为,则这个正六边形的面积为cm2.15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.16.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件.当每件的定价为元时,该服装店平均每天的销售成本最大.17.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90º,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD,若∠DBC=60º,∠ACB=15º,BD=,则菱形ACEF的面积为.18.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An-1为OA的n等分点,B1、B2、B3、…、Bn-1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An-1Bn-1,分别交()于点C1、C2、C3、…、Cn-1,当时,则n= .三、解答题(19小题10分,20小题10分,共20分)19.先化简,再求值:.其中满足一元二次方程.20.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计Array图表,观察分析并回答下列问题.⑴本次被调查的市民共有多少人?⑵分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.⑶若该市有100万人口,请估计持有A、212(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品卷,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.22.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60 º方向以每小时30海里的速度航行半小时到达C 处,同时捕鱼船低速航行到A 点的正北1.5海里D 处,渔政船航行到点C 处时测得点D 在南偏东53 º方向上.(1)求CD 两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E 处相会合,求∠ECD 的正弦值. (参考数据:5453sin ≈︒,5353cos ≈︒,3453tan ≈︒) 五、解答题(23小题12分,24小题12分,共24分)23.如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 24.某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的45倍,且每天包装大黄米和江米的质量之和为45千克. (1)求平均每天包装大黄米和江米的质量各是多少千克? (2)为迎接今年6月20日的“端午节”,该超市决定在节日前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围. (3)假设该超市每天都会将当天包装后的大黄米和江米全部出售,已知大黄米成本价为每千克7.9元,江米成本价为每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元? [总利润=售价额-成本-包装费用]六、解答题(本题满分14分) 25.【问题探究】(1)如图1,锐角△ABC 中,分别以AB 、AC ABE 和等腰△ACD ,使AE=AB ,AD=AC ,∠BAE =∠CAD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由. 【深入探究】(2)如图2,四边形ABCD 中,AB =7cm ,BC =3cm ,∠ABC =∠ACD =∠ADC =45º,求BD 的长. (3)如图3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.七、解答题(本题满分14分) 26.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 当x =-1和x =3时,y 的值相等.直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时动点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.第22题图C北 东 60º 53º 第23题图B A E PO D C 第24题图 15 20 天数/天 每天包装的质量/千克4038 0第25题图 图1 B E D C A 图3B D A 图2 B DC A①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQ P 的面积有最小值,最小值是多少? (3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(02m <<),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.第26题图图2 CPAM DO x B y备用图CPAMDO xB y图1QOCPAMx B y初中毕业生毕业升学考试 数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。
2014中考数学试题及答案2014年中考数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比?A. 2:3B. 1.5:2.5C. 0.6:0.2D. 3.14:2.72. 绝对值不大于5的所有整数之和为:A. 0B. 10C. 15D. 203. 若a、b、c是等差数列,且a+b+c=6,b+c+d=9,则d的值为:A. 1B. 2C. 3D. 44. 一个圆的半径是7厘米,求这个圆的周长(π取3.14):A. 42厘米B. 28厘米C. 18厘米D. 14厘米5. 下列哪个选项是反比例函数的图象?A. 过原点的直线B. 经过第二象限的曲线C. 经过第一、三象限的曲线D. 双曲线6. 一个等腰三角形的底边长为6厘米,腰长为5厘米,这个三角形的面积是多少平方厘米?A. 12B. 14C. 16D. 187. 下列哪个选项是一元二次方程的解?A. x = 2B. x = -2C. x = 1或x = -1D. x = 08. 已知函数f(x) = 2x + 1,求f(3)的值:A. 7B. 6C. 5D. 49. 下列哪个选项是正确的小数与分数之间的转换?A. 0.75 = 3/4B. 0.8 = 4/5C. 0.125 = 1/8D. 0.2 = 1/510. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,求这个长方体的体积:A. 24立方厘米B. 21立方厘米C. 16立方厘米D. 12立方厘米二、填空题(共5小题,每小题4分,满分20分)11. 已知一个等差数列的前三项分别是2、5、8,那么第100项是______。
12. 一个圆的直径是10厘米,那么这个圆的面积(π取3.14)是______平方厘米。
13. 一个三角形的三个内角之比为2:3:5,那么这个三角形的最大内角是______度。
14. 已知函数g(x) = x^2 - 3x + 2,求g(4)的值是______。
2015年辽宁省营口市中考数学试卷一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)1.(3分)(2015•营口)下列计算正确的是()A.|﹣2|=﹣2B.a2•a3=a6C.(﹣3)﹣2=D.=32.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或73.(3分)(2015•营口)函数y=中自变量x的取值范围是()A.x≥﹣3B.x≠5C.x≥﹣3或x≠5D.x≥﹣3且x≠54.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()A.100元,100元B.100元,200元C.200元,100元D.200元,200元6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=37.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是()A.c m,3πcm2B.2cm,3πcm2C.2cm,6πcm2D.c m,6πcm28.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A (3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2)B.(4,1)C.(5,2)D.(5,1)9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1B.0<x<1或x<﹣5C.﹣6<x<1D.0<x<1或x<﹣610.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c= .12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为.13.(3分)(2015•营口)不等式组的所有正整数解的和为.14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n= .三.解答题(19小题10分,20小题10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)19.(10分)m﹣12cos60°=0.20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品并说明理由.22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)23.(12分)(2015•营口)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.24.(12分)(2015•营口)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克元,江米成本每千克元,二者包装费用平均每千克均为元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元[总利润=售价额﹣成本﹣包装费用].25.(14分)(2015•营口)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.26.(14分)(2015•营口)如图1,一条抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且当x=﹣1和x=3时,y的值相等,直线y=x﹣与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q 从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①若使△BPQ为直角三角形,请求出所有符合条件的t值;②求t为何值时,四边形ACQP的面积有最小值,最小值是多少(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥x轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿x轴向左平移m个单位长度(0<m<2),将平移后的三角形与△ODM重叠部分的面积记为S,求S与m的函数关系式.2015年辽宁省营口市中考数学试卷参考答案与试题解析一.选择题(每小题3分共30分,四个选项中只有一个选项是正确的)1.(3分)(2015•营口)下列计算正确的是()A.|﹣2|=﹣2B.a2•a3=a6C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.2.(3分)(2015•营口)如图,是由若干个相同的小立方体搭成的几何体生物俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或7考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.解答:解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.点评:本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.3.(3分)(2015•营口)函数y=中自变量x的取值范围是()A.x≥﹣3B.x≠5C.x≥﹣3或x≠5D.x≥﹣3且x≠5考点:函数自变量的取值范围.分析:利用二次根式的性质以及分数的性质分别得出关系式求出即可.解答:解:由题意可得:x+3≥0,x﹣5≠0,解得:x≥﹣3且x≠5.故选:D.点评:此题主要考查了函数自变量的取值范围,熟练掌握二次根式的性质是解题关键.4.(3分)(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61°B.63°C.65°D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.5.(3分)(2015•营口)云南鲁甸发生地震后,某社区开展献爱心活动,社区党员积极向灾区捐款,如图是该社区部分党员捐款情况的条形统计图,那么本次捐款钱数的众数和中位数分别是()A.100元,100元B.100元,200元C.200元,100元D.200元,200元考点:众数;条形统计图;中位数.分析:认真观察统计图,根据中位数和众数的定义求解即可.解答:解:从图中看出,捐100元的人数最多有18人,所以众数是100元,捐款人数为48人,中位数是第24、25的平均数,所以中位数是200元,故选:B.点评:本题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),从统计图中获取正确的信息是解题的关键.6.(3分)(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=3考点:分式方程的增根.分析:方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.(3分)(2015•营口)将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是()A.c m,3πcm2B.2cm,3πcm2C.2cm,6πcm2D.c m,6πcm2考点:圆锥的计算.分析:已知弧长为2πcm,圆心角为120°的扇形为4 cm,就可以求出扇形的半径,即圆锥的母线长,根据扇形的面积公式可求这个圆锥的侧面积,根据勾股定理可求出圆锥的高.解答:解:(2π×180)÷120π=3(cm),2π÷π÷2=1(cm),=2(cm),=3π(cm2).故这个圆锥的高是2cm,侧面积是3πcm2.故选:B.点评:考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.8.(3分)(2015•营口)如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A (3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2)B.(4,1)C.(5,2)D.(5,1)考点:位似变换;坐标与图形性质.分析:设点B的坐标为(x,y),然后根据位似变换的性质列式计算即可得解.解答:解:设点B的坐标为(x,y),∵△ABE和△CDE是以点E为位似中心的位似图形,∴=,=,解得x=5,y=2,所以,点B的坐标为(5,2).故选C.点评:本题考查了位似变换,坐标与图形性质,灵活运用位似变换的性质并列出方程是解题的关键.9.(3分)(2015•营口)如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1B.0<x<1或x<﹣5C.﹣6<x<1D.0<x<1或x<﹣6考点:反比例函数与一次函数的交点问题.专题:计算题.分析:由△AOB是等腰三角形,先求的点B的坐标,然后利用待定系数法可求得双曲线和直线的解析式,然后将将y1=与y2=联立,求得双曲线和直线的交点的横坐标,然后根据图象即可确定出x的取值范围.解答:解:如图所示:∵△AOB为等腰直角三角形,∴OA=OB,∠3+∠2=90°.又∵∠1+∠3=90°,∴∠1=∠2.∵点A的坐标为(﹣3,1),∴点B的坐标(1,3).将B(1,3)代入反比例函数的解析式得:3=,∴k=3.∴y1=将A(﹣3,1),B(1,3)代入直线AB的解析式得:,解得:,∴直线AB的解析式为y2=.将y1=与y2=联立得;,解得:,当y1>y2时,双曲线位于直线线的上方,∴x的取值范围是:x<﹣6或0<x<1.故选:D.点评:本题主要考查了反比例函数和一次函数的交点问题,求得双曲线和直线的交点的横坐标是解题的关键,同时本题还考查了函数与不等式的关系:从函数的角度看,y1>y2就是双曲线y1=位于直线y2=上方部分所有点的横坐标的集合;从不等式的角度来看y1>y2就是求不等式>的解集.10.(3分)(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.二.填空题(每小题3分,共24分)11.(3分)(2015•营口)分解因式:﹣a2c+b2c= ﹣c(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:首先提公因式﹣c,然后利用平方差公式分解.解答:解:原式=﹣c(a2﹣b2)=﹣c(a+b)(a﹣b).故答案是:﹣c(a+b)(a﹣b).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.(3分)(2015•营口)过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量.把数据3120000用科学记数法表示为×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3120000用科学记数法表示为×106.故答案为:×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)(2015•营口)不等式组的所有正整数解的和为 6 .考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:由﹣≤1,得x≥1;由5x﹣2<3(x+2),得x<4,不等式组的解集是1≤x<4,不等式组的所有正整数解的和为1+2+3=6,故答案为:6.点评:本题考查了一元一次不等式组的解集,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(3分)(2015•营口)圆内接正六边形的边心距为2,则这个正六边形的面积为24 cm2.考点:正多边形和圆.分析:根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.解答:解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.点评:此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质即锐角三角函数的定义解答即可.15.(3分)(2015•营口)如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.考点:几何概率.分析:先求出正方形的面积,阴影部分的面积,再根据几何概率的求法即可得出答案.解答:解:∵S=(3×2)2=18,正方形S阴影=4××3×1=6,∴这个点取在阴影部分的概率为:=,故答案为:.点评:本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.16.(3分)(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22 元时,该服装店平均每天的销售利润最大.考点:二次函数的应用.分析:根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.解答:解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.点评:此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.17.(3分)(2015•营口)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为12 .考点:菱形的性质;圆周角定理;解直角三角形.专题:新定义.分析:首先取AC的中点G,连接BG、DG,再根据∠ADC=90°,∠ABC=90°,判断出A、B、C、D四点共圆,点G是圆心;然后求出∠BGD=90°,即可判断出△BGD是等腰直角三角形;最后解直角三角形,分别求出AD、CD的值,再根据三角形的面积的求法,求出菱形ACEF的面积为多少即可.解答:解:如图1,取AC的中点G,连接BG、DG,,∵四边形ACEF是菱形,∴AE⊥CF,∴∠ADC=90°,又∵∠ABC=90°,∴A、B、C、D四点共圆,点G是圆心,∴∠ACD=∠ABD=90°﹣∠DBC=90°﹣60°=30°,∵∠AGB=15°×2=30°,∠AGD=30°×2=60°,∴∠BGD=30°+60°=90°,∴△BGD是等腰直角三角形,∴BG=DG=,∴AC=2,∴AD=2,∴,∴菱形ACEF的面积为:3==故答案为:12.点评:(1)此题主要考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3)此题还考查了解直角三角形问题,以及勾股定理的应用,要熟练掌握.18.(3分)(2015•营口)如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、A n﹣1为OA的n等分点,B1、B2、B3、…B n﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、A n﹣1B n﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、C n﹣1,当B25C25=8C25A25时,则n= 5 .考点:正方形的性质;二次函数图象上点的坐标特征.专题:规律型.分析:根据题意表示出OA,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算25得到答案.解答:解:∵正方形OABC的边长为n,点A,A2,…,A n﹣1为OA的n等分点,点B1,B2,…,1B n﹣1为CB的n等分点,∴OA25=,A25B25=n,∵B25C25=8C25A25,∴C25(,),∵点C25在y=x2(x≥0)上,∴=×()2,解得n=5.故答案为:5.点评:本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.三.解答题(19小题10分,20小题10分)(2015•营口)先化简,再求值:﹣÷(1﹣).其中m满足一元二次方程m2+(5tan30°)(10分)19.m﹣12cos60°=0.考点:分式的化简求值;解一元二次方程-因式分解法;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,求出m的值代入计算即可求出值.解答:解:原式=﹣÷=﹣•=﹣==,方程m2+(5tan30°)m﹣12cos60°=0,化简得:m2+5m﹣6=0,解得:m=1(舍去)或m=﹣6,当m=﹣6时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(10分)(2015•营口)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.解答:解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.点评:本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键.四.解答题21.(12分)(2015•营口)某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品并说明理由.考点:列表法与树状图法.分析:(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可.解答:解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴甲品牌化妆品获礼金券的平均收益是:×6+×12+×6=10元.乙品牌化妆品获礼金券的平均收益是:×12+×6+×12=8元.∴我选择甲品牌化妆品.点评:本题主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(12分)(2015•营口)如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B 处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD 的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)考点:解直角三角形的应用-方向角问题.分析:(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=×2×t=3t,∠EDC=53°,过点E作EH⊥CD于点H,根据三角函数表示出EH,在Rt△EHC中,根据正弦的定义求值即可.解答:解:(1)过点C、D分别作CH⊥AB,DF⊥CH,垂足分别为H,F,。
营口市初中毕业生学业考试数学试卷第一部分(客观题)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分) 1.6-的倒数是( ) A .6-B .6C .61D .61- 2.右图是某个几何体的三视图,该几何体是( )A .长方体B .三棱柱C .正方体D .圆柱3.估计30的值是( ) 第2题图 A .在3到4之间 B .在4到5之间 C .在5到6之间 D .在6到7之间 4.下列运算正确的是( ) A .2a a a =+ B .()743a a =- C .43a a a =⋅ D .2510a a a =÷5.下列说法正确的是( ) A .“明天的降水概率是80%”表示明天会有80%的地方下雨B .为了解学生视力情况,抽取了500名学生进行调查,其中的样本是500名学生C .要了解我市旅游景点客流量的情况,采用普查的调查方式D .一组数据5,1,3,6,9的中位数是56.不等式组()⎪⎩⎪⎨⎧--≤-7230131<x x 的解集在数轴上表示正确的是( )3-203-203-203-20A .B .C .D .7.如图,在ABC ∆中,点D 、E 分别是边AB 、AC 的中点,︒=∠50B ,︒=∠26A ,将ABC ∆沿DE 折叠,点A 的对应点是点'A ,则'AEA ∠的度数是( ) A .︒145 B .︒152 C .︒158 D .︒160A'DEBAC ED CAB P 30000127777555333333y x yxyx x y第7题图 第8题图 A . B . C . D .俯视图8.如图,在矩形ABCD 中,2=AB ,3=AD ,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径E C D A →→→运动,则APE ∆的面积y 与点P 经过的路径长x 之间的函数关系用图像表示大致是( )第二部分(主观题)二、填空题(每小题3分,共24分)9.全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽, 将数577 000 000 000 000用科学记数法表示为 . 10.函数()021-+-=x x y 中,自变量x 的取值范围是 .11.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为21S 、22S ,根据图中的信息判断两人方差的大小关系为 .ab第11题图 第12题图12.如图,直线a ∥b ,一个含有30°角的直角三角板放置在如图所示的位置,若︒=∠241,则=∠2 .13.一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是72,则袋中红球约为 个.14.如图,圆锥的底面半径OB 长为cm 5,母线AB 长为cm 15,则这个圆锥侧面展开图的圆心角α 为 度. BAOαxy DC BOA第14题图 第15题图 第16题图 15.如图,在平面直角坐标系中,ABC ∆的边AB ∥x 轴,点A 在双曲线xy 5=(x <0)上,点B 在双曲线xky =(x >0)上,边AC 中点D 在x 轴上,ABC ∆的面积为8,则=k .21小苗小华l 2l 1O C3C 2C 1B 3B 2B 1B A 3A 2A 1y x16.如图,在平面直角坐标系中,直线x y l 33:1=,直线x y l 3:2=,在直线1l 上取一点B ,使1=OB ,以点B 为对称中心,作点O 的对称点1B ,过点1B 作11A B ∥2l ,交x 轴于点1A ,作11C B ∥x 轴,交直线2l 于点1C ,得到四边形111C B OA ;再以点1B 为对称中心,作O 点的对称点2B ,过点2B 作22A B ∥2l ,交x 轴于点2A ,作22C B ∥x 轴,交直线2l 于点2C ,得到四边形222C B OA ;…;按此规律作下去,则四边形n n n C B OA 的面积是 . 三、解答题(17小题8分,18小题8分,共16分)17.先化简,再求值:⎪⎪⎭⎫⎝⎛---÷+--b a b ab a b a ab a b 2232,其中︒=45tan a ,︒=60sin 2b .18.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别 为A (2-,1),B (1-,4),C (3-,2).(1)画出ABC ∆关于y 轴对称的图形111C B A ∆,并直接写出1C 点坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的左侧, 画出ABC ∆放大后的图形222C B A ∆,并直接写出2C 点坐标;(3)如果点D (a ,b )在线段AB 上,请直接写出经过(2)的 第18题图 变化后D 的对应点2D 的坐标.四、解答题(19小题10分,20小题10分,共20分)19.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A .没影响 B .影响不大 C .有影响,建议做无声运动 D .影响很大,建议取缔 E .不关心这个问题市民对“广场舞”噪音干扰的态度扇形统计图 调查中给出建议....的人数条形统计图 -111OCBAxym%33%20%5%10%E D CB A第19题图 人数/人年龄/岁655545352515706050403020100根据以上信息解答下列问题:(1)根据统计图填空:=m ,A 区域所对应的扇形圆心角为 度; (2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人? (3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议.... 20.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,2,22(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看. (1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.五、解答题(21小题8分,22小题10分,共18分)21.如图,王老师站在湖边度假村的景点A 处,观察到一只水鸟由岸边D 处飞向湖中小岛C 处,点A 到DC 所在水平面的距离AB 是15米,观测水鸟在点D 和点C 处时的俯角分别为︒53和︒11,求C 、D 两点之间距离. (精确到1.0.参考数据80.053sin ≈︒,60.053cos ≈︒, 33.153tan ≈︒,19.011sin ≈︒,98.011cos ≈︒, 19.011tan ≈︒) 第21题图22.如图,在⊙O 中,直径AB 平分弦CD ,AB 与CD 相交于点E ,连接AC 、BC ,点F 是BA 延长线上的一点,且B FCA ∠=∠.(1)求证:CF 是⊙O 的切线. C DA EAD OF(2)若4=AC ,21tan =∠ACD ,求⊙O 的半径.第22题图六、解答题(23小题10分,24小题10分,共20分) 23.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所化钱数与原来相同.问学校获奖的同学有多少人?24.随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年..开始投入生产净水器,生产净水器的总量y (台)与今年..的生产天数x (天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台. (1)求y 与x 之间的函数表达式; (2)已知该厂家去年平均每天的生产数量与今年前90天 平均每天的生产数量相同,求厂家去年生产的天数;(3)如果厂家制定总量不少于6000台的生产计划,那么在 改进技术后,至少还要多少天完成生产计划?第24题图七、解答题(本题满分14分)25.四边形ABCD 是正方形,AC 与BD ,相交于点O ,点E 、F 是直线AD 上两动点,且DF AE =,CF 所在直线与对角线BD 所在直线交于点G ,连接AG ,直线AG 交BE 于点H .x/天y/台906030021001500(1)如图1,当点E 、F 在线段AD 上时,①求证:DCG DAG ∠=∠;②猜想AG 与BE 的位置关系,并加以证明; (2)如图2,在(1)条件下,连接HO ,试说明HO 平分BHG ∠;(3)当点E 、F 运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出BHO ∠的度数.图1HG F OCBD AE图2HG F E OCBD A图3FCBD AE八、解答题(本题满分14分)26.已知:抛物线c bx ax y ++=2(0≠a )经过点A (1,0),B (3,0),C (0,3-). (1)求抛物线的表达式及顶点D 的坐标;(2)如图①,点P 是直线BC 上方抛物线上一动点,过点P 作y 轴的平行线,交直线BC 于点E .是否存在一点P ,使线段PE 的长最大?若存在,求出PE 长的最大值;若不存在,请说明理由;(3)如图②,过点A 作y 轴的平行线,交直线BC 于点F ,连接DA 、DB .四边形OAFC 沿射线CB 方向运动,速度为每秒1个单位长度,运动时间为t 秒,当点C 与点B 重合时立即停止运动.设运动过程中四边形OAFC 与四边形ADBF 重叠部分面积为S ,请求出S 与t 的函数关系式.xyECDBOAP xyO'C'A'F C DBOAF'xy AF CDBO图① 图② 图③第26题图。
1.下列等式正确的是()A.1)1(2-=- B.632222=⨯ C.020= D.1)1(2=--2.下列图形中,不是..轴对称图形的是()A. B. C. D.3.估计627-的值在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间。
4题A .2B .4C .8D .165.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( ) A.13 B.14 C.15 D.166. 如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C , 连结BC ,若∠A=36°,则∠C 等于( )A.36°;B.54°;C.60°;D.27°. 7. 据某旅游局最新统计,2014年“五一”期间,某景区旅游收入约为11.3亿元,而2012年“五一”期间,该景区旅游收入约为8.2亿元,假设这两年该景区旅游收入的平均增 长率为x ,根据题意,所列方程为( ) A. 11.3(1-x %)2=8.2 B .11.3(1-x)2=8.2 C. 8.2(1+x %)2=11.3 D .8.2(1+x)2=11.3 8.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC= 60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t≤4),则能大致反映S 与t 的函数关系的图象是 ( )5题A第II 卷(非选择题 共126分)二、填空题(共24分) 9. 函数y =x -2+31-x 中自变量x 的取值范围是 。
10.2014年索契冬奥会,大部分比赛将在总占地面积为142000平方米的“菲什特奥林匹克体育场”进行.将142000平方米用科学用科学记数法表示是 平方米 11.如图,ABC ∆中,=∠C 90°,34tan =A , 以C 为圆心的圆与AB 相切于D .若圆C 的 半径为1,则阴影部分的面积=S .12.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则cos ∠AED=________.13.如图,□ABCD 的周长为16㎝,AC 、BD 交于点O ,且AD >CD,过O 作OM ⊥AC ,交AD 于点M,则△CDM 的周长为_________㎝.11题 12题M ODBCA13题14.2014年春节期间我市持续好天气,监测数据显示,1月30日至2月6日期间,我市空气质量均为良,空气污染指数如下表:则这组数据的中位数和平均数分别为15.计算:2201520132014222-+= . 16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表: 则a n = (用含n 的代数式表示). 三、解答题(共102分) 17.(8分)先化简,再求值(﹣1)÷,其中x=2sin60°+1.16题18.(8分)在正方形网格中建立如图所示的平面直角坐标系xoy ,ABC ∆的三个顶点都在格点 上,点A 的坐标是()44,,请解答下列问题: (1) 将ABC ∆向下平移5个单位长度,画出..平移后的111A B C ∆并写出点A 的对应点1A 的坐标;(2)画出..111A B C ∆关于y 轴对称的222A B C ∆并写出 2A 的坐标; (3)=∆ABC S19.(10分)为了贯彻落实国家关于增强青少年体质的计划,我市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如图所示的两幅不完整的统计图.(1) 该班共有多少人?(2)求出喜好A 和C 学生奶口味的人数 (3)该班五种口味的学生奶喜好人数组成一组统计数据,求出这组数据的平均数. (4)将折线统计图补充完整;20.(10分)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG . 求证:⑴AE=CG ; ⑵AE ⊥CG .21.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用树状图或列表法求恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其余都相同的乒乓球,设计一个摸球的实验(至少摸两次),并根据该实验写出一个发生概率与(1)所求概率相同的事件.22. (10分)某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)23.(10分)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BCABCOF第23题图E(营口)中考模拟数学(三)第5页共8页(1)求AB的长;(2)求⊙O的半径.24.(10分)某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单元,则销售量为(用含x的代数式表示);求日均毛利润(毛利润=售价-进价-固定成本)y 与x之间的函数关系式.(2)若要使日均毛利润达到1400元,则销售单价应定为多少元?(3)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?25.(12分)在四边形ABCD 中,对角线AC 、BD 相交于点O ,设锐角∠AOB =α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M .(1)当四边形ABCD 为矩形时,如图1.求证:△AOC ′≌△BOD ′. (2)当四边形ABCD 为平行四边形时,设AC =kBD ,如图2.①猜想此时△AOC ′与△BOD ′有何关系,证明你的猜想;②探究AC ′与BD ′的数量关系以及∠AMB 与α的大小关系,并给予证明.图1D ′图226.(14分)如图,对称轴为直线12x 的抛物线与y轴交于点C(0,-3),与x轴交于A、B两点(点A在点B的左侧),AB=5(1)求A、B两点的坐标及该抛物线对应的解析式;(2)D为BC的中点,延长OD与抛物线在第四象限内交于点E,连结AE、BE.①求点E的坐标;②判断ABE的形状,并说明理由;(3)在x轴下方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.数学模拟(三)参考答案一、DCBB BDDC二、9. x≤2且x ≠3 10. 1.42×10511.24625π-, 13.8 14. 81,78 15.2116.13+n ; 三、17.解:原式=11--x 当x=2sin60°+1=2×23+1=3 +1时原式=11--x =31-=33-。
2014辽宁中考数学试题及答案2014年辽宁中考一直都在大家的关注中,中考频道将届时为您整理发布2014年辽宁中考数学真题及答案解析。
还有更多2014中考真题及答案资讯尽在中考真题栏目及中考答案栏目,请广大考友及时关注,同时祝广大中考人都能金榜题名!2014年辽宁中考数学试题及答案发布入口中考注意事项:超常考场发挥小技巧认真审题,每分必争审题是生命线。
审题是正确答题的前导。
从一个角度看,审题甚至比做题更重要。
题目审清了,解题就成功了一半。
认真审准题,才能正确定向,一举突破。
每次考试,总有一些考生因为审题失误而丢分。
尤其是那些似曾相识的题,那些看似很简单的题,考试要倍加细心,以防“上当受骗”。
我曾给学生一副对联:似曾相识“卷”归来,无可奈何“分”落去。
横批:掉以轻心。
越是简单、熟悉的试题,越要倍加慎重。
很多学生看题犹如“走马观花”,更不思考命题旨意,待到走出考场才恍然大悟,但为时已晚矣。
考试应努力做到简单题不因审题而丢分。
“两先两后”,合理安排中考不是选拔性考试,在新课改背景下,试卷的难度理应不会太大。
基础题和中等难度题的分值应占到80%。
考生拿到试卷,不妨整体浏览,此时大脑里的思维状态由启动阶段进入亢奋阶段。
只要听到铃声一响就可开始答题了。
解题应注意“两先两后”的安排:1.先易后难一般来说,一份成功的试卷,题目的排列应是遵循由易到难,但这是命题者的主观愿望,具体情况却因人而异。
同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。
”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
2.先熟后生通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。
万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。
2014年中考模拟数学试题(一)(考试时间120分钟,试卷满分150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.使用答题卡答题,请将答案正确填写在答题卡上第I 卷(选择题部分 共24分)一、选择题(每题3分,共24分,请将正确答案填在下面的表格内)1.下列手机软件图标中,属于中心对称的是( ▲ )A .B .C .D .2.下列运算正确的是( ▲ ) A.()b a ab 33= B.1-=+--ba ba C. 326a a a =÷ D.222)(b a b a +=+3.如图,△ABC 中,DE 是AC 的垂直平分线,AE=4cm, △ABD 的周长为14cm ,则△ABC 的周长为( ▲ )A .18 cmB . 22 cmC .24 cmD . 26 cm 4则该篮球课外活动小组21名同学身高的众数和中位数分别是( ▲ ) A .176,176 B .176,177 C .176,178 D .184,1785.半径为2的圆中,弦AB 、AC 的长分别2和BAC 的度数是( ▲ ) A .15° B.105° C.15°或75° D.15°或105° 6.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点, 将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( ▲ ) A .矩形 B . 菱形 C . 正方形 D . 梯形 7.某种商品每件的标价是330元,按标价的八折销售时, 仍可获利10%,则这种商品每件的进价为( ▲ ) A .200元 B .240元 C .250元 D .300元 8.二次函数y=ax2+bx+c (a ≠0)的图象如图所示,则函数y=xa 与y=bx+c 在同一直角坐标系内的大致图象是( ▲ )第7第II 卷(非选择题 共126分)二、填空题(每题3分,共24分。
2014年中考模拟数学试题(二)(考试时间120分钟,试卷满分150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.使用答题卡答题,请将答案正确填写在答题卡上第I 卷(选择题部分 共24分)一、选择题(每题3分,共24分,请将正确答案填在下面的表格内)1.某跨海大桥,近日获国家发改委批准建设,该桥估计总投资1 460 000 000。
数据1 460 000 000用科学记数法表示应是( ▲ )A .146×107B .1.46×109C .1.46×1010D .0.146×10102.如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子,看到的是( ▲ )。
3.下列运算正确的是( ▲ )A .(-2x 2)3=-6x6 B .x 4÷x 2=x 2C .2x +2y =4xyD .(y +x)(-y +x)=y 2-x 24.把不等式组1010x x +>⎧⎨-⎩,≤的解集表示在数轴上,正确的是( ▲ )5.布袋中装有大小一样的3个白球、2个黑球,从布袋中任意摸出一个球,则下列事件中是必然事件的是 ( ▲ ) A.摸出的是白球或黑球; B.摸出的是黑球;C.摸出的是白球;D.摸出的是红球.6.已知⊙O 1与⊙O 2相切,若⊙O 1的半径为1,两圆的圆心距为5,则⊙O 2的半径为( ▲ )A .4B .6C .3或6D .4或6 7.如图圆P 经过点A(0,3),O(0,0),B(1,0),点C 在第一象限的弧AB 上运动,则∠BCO 的度数为( ▲ )A .15° B.30° C.45° D.60°8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( ▲ )1-1A.1-1B .1-1C.1-1D.第II 卷(非选择题 共126分)二、填空题(每题3分,共24分。
2019年辽宁省营口市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)5-的相反数为( ) A .15-B .5C .15D .5-2.(3分)如图所示几何体的俯视图是( )A .B .C .D .3.(3分)下列计算正确的是( ) A .824x x x ÷= B .2(2)(2)2x x x +-=-C .3585315y y y =D .633a a -=4.(3分)如图,AD 是ABC ∆的外角EAC ∠的平分线,//AD BC ,32B ∠=︒,则C ∠的度数是( )A .64︒B .32︒C .30︒D .40︒5.(3分)反比例函数4(0)y x x=->的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)如图,在ABC ∆中,//DE BC ,23AD AB =,则ADE DBCE S S ∆四边形的值是( )A .45B .1C .23D .497.(3分)如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ∠=︒,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒8.(3分)若关于x 的方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k =B .13k -…且0k ≠C .13k -…D .13k >-9.(3分)如图,在四边形ABCD 中,90DAB ∠=︒,//AD BC ,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B C D .1310.(3分)如图,A ,B 是反比例函数(0,0)ky k x x=>>图象上的两点,过点A ,B 分别作x 轴的平行线交y 轴于点C ,D ,直线AB 交y 轴正半轴于点E .若点B 的横坐标为5,3CD AC =,3cos 5BED ∠=,则k 的值为( )A .5B .4C .3D .154二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)因式分解:3x y xy -= .12.(3分)2018年国家级经济开发区成为经济发展重要增长点,实现进口总额62000亿元,用科学记数法表示为 元.13.(3,则这个长方形的面积为 .14.(3分)在一次青年歌手演唱比赛中,10位评委给某位歌手的打分分别是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,则这组数据的众数是 .15.(3分)圆锥侧面展开图的圆心角的度数为216︒,母线长为5,该圆锥的底面半径为 .16.(3分)如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为 .17.(3分)如图,ABC ∆是等边三角形,点D 为BC 边上一点,122BD DC ==,以点D 为顶点作正方形DEFG ,且DE BC =,连接AE ,AG .若将正方形DEFG 绕点D 旋转一周,当AE 取最小值时,AG 的长为 .18.(3分)如图,在平面直角坐标系中,直线1:l y =x 轴交于点1A ,与y 轴交于点2A ,过点1A 作x 轴的垂线交直线2:l y 于点1B ,过点1A 作11A B 的垂线交y 轴于点2B ,此时点2B 与原点O 重合,连接21A B 交x 轴于点1C ,得到第1个△112C B B ;过点2A 作y 轴的垂线交2l 于点3B ,过点3B 作y 轴的平行线交1l 于点3A ,连接32A B 与23A B 交于点2C ,得到第2个△223C B B ⋯⋯按照此规律进行下去,则第2019个△201920192020C B B 的面积是 .三、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)先化简,再求值:2821(3)33a aaa a+++-÷++,其中a为不等式组121232aa-<⎧⎪⎨+>⎪⎩的整数解.20.(10分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数1-,2,3-,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.四、解答题(本大题共2小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤)21.(12分)为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.22.(12分)如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60︒方向上,位于B市北偏西45︒方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A,B两市的高速公路,高速公路AB是否穿过风景区?通过计算加以说明. 1.73)五、解答题(本大题共2小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤)23.(12分)如图,在平行四边形ABCD中,AE BC⊥,垂足为点E,以AE为直径的O与边CD相切于点F,连接BF交O于点G,连接EG.(1)求证:CD AD CE=+.(2)若4AD CE=,求tan EGF∠的值.24.(12分)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量()y kg与时间第t天之间的函数关系式为2100(180y t t=+剟,t为整数),销售单价p(元/)kg与时间第t天之间满足一次函数关系如下表:(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?六、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)25.(14分)如图1,在Rt ABC∆中,90ACB∠=︒,30B∠=︒,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且PC BC<,连接MP交AC于点H.将射线MP绕点M逆时针旋转60︒交线段CA的延长线于点D.(1)找出与AMP∠相等的角,并说明理由.(2)如图2,12CP BC=,求ADBC的值.(3)在(2)的条件下,若MD=,求线段AB的长.七、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)26.(14分)在平面直角坐标系中,抛物线2y ax bx c =++过点(1,0)A -,(3,0)B ,与y 轴交于点C ,连接AC ,BC ,将OBC ∆沿BC 所在的直线翻折,得到DBC ∆,连接OD . (1)用含a 的代数式表示点C 的坐标.(2)如图1,若点D 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式. (3)设OBD ∆的面积为1S ,OAC ∆的面积为2S ,若1223S S =,求a 的值.2019年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)5-的相反数为( ) A .15-B .5C .15D .5-【解答】解:5-的相反数是5, 故选:B .2.(3分)如图所示几何体的俯视图是( )A .B .C .D .【解答】解:根据俯视图的特征,应选B . 故选:B .3.(3分)下列计算正确的是( ) A .824x x x ÷= B .2(2)(2)2x x x +-=-C .3585315y y y =D .633a a -=【解答】解:826x x x ÷=,故选项A 错误;2(2)(2)4x x x +-=-,故选项C 错误; 3585315y y y =,故选项C 正确; 633a a a -=,故选项D 错误;故选:C .4.(3分)如图,AD 是ABC ∆的外角EAC ∠的平分线,//AD BC ,32B ∠=︒,则C ∠的度数是( )A .64︒B .32︒C .30︒D .40︒【解答】解://AD BC ,32EAD B ∴∠=∠=︒,AD 是ABC ∆的外角EAC ∠的平分线,264EAC EAD ∴∠=∠=︒, EAC ∠是ABC ∆的外角,643232C EAC B ∴∠=∠-∠=︒-︒=︒,故选:B .5.(3分)反比例函数4(0)y x x=->的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:反比例函数4(0)y x x=->,40k =-<,∴该函数图象在第四象限,故选:D .6.(3分)如图,在ABC ∆中,//DE BC ,23AD AB =,则ADE DBCE S S ∆四边形的值是( )A .45B .1C .23D .49【解答】解://DE BC ,ADE ABC ∴∆∆∽,∴24()9ADE ABC S AD S AB ∆∆==, ∴45ADE DBCES S ∆=四边形, 故选:A .7.(3分)如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ∠=︒,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒【解答】解:连接AC ,如图, BC 是O 的直径, 90BAC ∴∠=︒, 70ACB ADB ∠=∠=︒, 907020ABC ∴∠=︒-︒=︒.故答案为20︒. 故选:A .8.(3分)若关于x 的方程2304kx x --=有实数根,则实数k 的取值范围是( ) A .0k =B .13k -…且0k ≠C .13k -…D .13k >-【解答】解:当0k ≠时,△3141304k k =+⨯=+…, 13k ∴-…,13k ∴-…且0k ≠,当0k =时, 此时方程为304x --=,满足题意, 故选:C .9.(3分)如图,在四边形ABCD 中,90DAB ∠=︒,//AD BC ,12BC AD =,AC 与BD 交于点E ,AC BD ⊥,则tan BAC ∠的值是( )A .14B C D .13【解答】解://AD BC ,90DAB ∠=︒,18090ABC DAB ∴∠=︒-∠=︒,90BAC EAD ∠+∠=︒, AC BD ⊥, 90AED ∴∠=︒, 90ADB EAD ∴∠+∠=︒, BAC ADB ∴∠=∠, ABC DAB ∴∆∆∽,∴AB BCDA AB =, 12BC AD =, 2AD BC ∴=,2222AB BC AD BC BC BC ∴=⨯=⨯=,AB ∴,在Rt ABC ∆中,tanBC BAC AB ∠===; 故选:C .10.(3分)如图,A ,B 是反比例函数(0,0)ky k x x=>>图象上的两点,过点A ,B 分别作x 轴的平行线交y 轴于点C ,D ,直线AB 交y 轴正半轴于点E .若点B 的横坐标为5,3CD AC =,3cos 5BED ∠=,则k 的值为( )A .5B .4C .3D .154【解答】解://BD x 轴, 90EDB ∴∠=︒,3cos 5ED BED EB ∠==, ∴设3DE a =,5BE a =,4BD a ∴=,点B 的横坐标为5, 45a ∴=,则54a =, 154DE ∴=, 设AC b =,则3CD b =, //AC BD ,∴4433AC BD a EC ED a ===, 34EC b ∴=,315344bED b b ∴=+=, ∴151544b =,则1b =, 1AC ∴=,3CD =,设B 点的纵坐标为n , OD n ∴=,则3OC n =+,(1,3)A n +,(5,)B n ,A ∴,B 是反比例函数(0,0)ky k x x=>>图象上的两点,1(3)5k n n ∴=⨯+=,解得154k =, 故选:D .二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)因式分解:3x y xy -= (1)(1)xy x x -+ . 【解答】解:3x y xy -,2(1)xy x =-⋯(提取公因式) (1)(1)xy x x =+-.⋯(平方差公式)故答案为:(1)(1)xy x x +-.12.(3分)2018年国家级经济开发区成为经济发展重要增长点,实现进口总额62000亿元,用科学记数法表示为 126.210⨯ 元.【解答】解:62000亿元6200000000000=元126.210=⨯元, 故答案为:126.210⨯.13.(3,则这个长方形的面积为【解答】解:长方形的长和宽分别为∴故答案为:14.(3分)在一次青年歌手演唱比赛中,10位评委给某位歌手的打分分别是:9.5,9.8,9.4,9.5,9.6,9.3,9.6,9.4,9.3,9.4,则这组数据的众数是 9.4 . 【解答】解:数据9.4出现了三次最多为众数. 故答案为:9.4.15.(3分)圆锥侧面展开图的圆心角的度数为216︒,母线长为5,该圆锥的底面半径为 3 .【解答】解:设该圆锥的底面半径为r , 根据题意得21652180r ππ=,解得3r =. 故答案为3.16.(3分)如图,在矩形ABCD 中,5AD =,3AB =,点E 从点A 出发,以每秒2个单位长度的速度沿AD 向点D 运动,同时点F 从点C 出发,以每秒1个单位长度的速度沿CB 向点B 运动,当点E 到达点D 时,点E ,F 同时停止运动.连接BE ,EF ,设点E运动的时间为t ,若BEF ∆是以BE 为底的等腰三角形,则t 的值为.【解答】解:如图,过点E 作EG BC ⊥于G ,∴四边形ABGE 是矩形,3AB EG ∴==,2AE BG t ==,5BF EF t ==-,|2(5)||35|FG t t t =--=-,222EF FG EG ∴=+,22(5)(35)9t t ∴-=-+,t ∴=17.(3分)如图,ABC ∆是等边三角形,点D 为BC 边上一点,122BD DC ==,以点D 为顶点作正方形DEFG ,且DE BC =,连接AE ,AG .若将正方形DEFG 绕点D 旋转一周,当AE 取最小值时,AG 的长为 8 .【解答】解:过点A 作AM BC ⊥于M , 122BD DC ==, 4DC ∴=,246BC BD DC ∴=+=+=, ABC ∆是等边三角形, 6AB AC BC ∴===,AM BC ⊥,116322BM BC ∴==⨯=, 321DM BM BD ∴=-=-=,在Rt ABM ∆中,AM === 当点E 在DA 延长线上时,AE DE AD =-. 此时AE 取最小值,在Rt ADM ∆中,AD =∴在Rt ADG ∆中,8AG ==;故答案为:8.18.(3分)如图,在平面直角坐标系中,直线1:l y =x 轴交于点1A ,与y 轴交于点2A ,过点1A 作x 轴的垂线交直线2:l y 于点1B ,过点1A 作11A B 的垂线交y 轴于点2B ,此时点2B 与原点O 重合,连接21A B 交x 轴于点1C ,得到第1个△112C B B ;过点2A 作y 轴的垂线交2l 于点3B ,过点3B 作y 轴的平行线交1l 于点3A ,连接32A B 与23A B 交于点2C ,得到第2个△223C B B ⋯⋯按照此规律进行下去,则第2019个△201920192020C B B 的面积是【解答】解:3y x =+与x 轴交于点1A ,与y 轴交于点2A ,∴12(1,0),A A -,在y =中,当1x =-时,y =,∴1(1,B -, 设直线21A B 的解析式为:y kx b =+,可得:b k b ⎧=⎪⎨-+=⎪⎩,解得:k b ⎧=⎪⎨⎪=⎩∴直线21A B的解析式为:y + 令0y =,可得:34x =-,23(4C ∴-,0),∴1122111113224C B B SB C A B ==⨯==△112A B B ∽△223A B B ,∴△112CB B ∽△223C B B , ∴2231122223221211()()9C BB C B B S B B A B SB B A B ===, ∴2231129C B B C B B SS=, 同理可得:33422398C BB C B B SS==, ∴△201920192020C B B的面积三、解答题(本大题共2小题,共20分.解答应写出必要的文字说明、证明过程或演算步骤)19.(10分)先化简,再求值:2821(3)33a a a a a +++-÷++,其中a 为不等式组121232a a -<⎧⎪⎨+>⎪⎩的整数解.【解答】解:原式28(3)(3)33(1)a a a a a +-++=++2(1)(1)(1)a a a +-=+11a a -=+, 解不等式得 534a <<, ∴不等式组的整数解为2a =,当2a =时, 原式211213-==+. 20.(10分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数1-,2,3-,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为12. (2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.【解答】解:(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率2142==; 故答案为12; (2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8, 所以两次摸出的乒乓球球面上的数之和是正数的概率82123==. 四、解答题(本大题共2小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤)21.(12分)为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题. (1)本次接受问卷调查的学生有 100 名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.【解答】解:(1)本次接受问卷调查的学生有:3636%100÷==(名),故答案为:100;(2)喜爱C的有:10082036630----=(人),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:2036072100︒⨯=︒,故答案为:72︒;(4)82000160100⨯=(人),答:该校最喜爱新闻节目的学生有160人.22.(12分)如图,A,B两市相距150km,国家级风景区中心C位于A市北偏东60︒方向上,位于B市北偏西45︒方向上.已知风景区是以点C为圆心、50km为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A ,B 两市的高速公路,高速公路AB 是否穿过风景区?通过计算加以说明.1.73)【解答】解:高速公路AB 不穿过风景区. 过点C 作CH AB ⊥于点H ,如图所示. 根据题意,得:30CAB ∠=︒,45CBA ∠=︒, 在Rt CHB ∆中,tan 1CHCBH HB∠==, CH BH ∴=.设BH tkm =,则CH tkm =,在Rt CAH ∆中,tan CH CAH AH ∠==,AH ∴.150AB km =,∴150t +=,7575 1.737554.75t ∴=≈⨯-=.54.7550>,∴高速公路AB 不穿过风景区.五、解答题(本大题共2小题,共24分.解答应写出必要的文字说明、证明过程或演算步骤)23.(12分)如图,在平行四边形ABCD 中,AE BC ⊥,垂足为点E ,以AE 为直径的O 与边CD 相切于点F ,连接BF 交O 于点G ,连接EG .(1)求证:CD AD CE =+.(2)若4AD CE =,求tan EGF ∠的值.【解答】(1)证明:四边形ABCD 是平行四边形, //AD BC ∴, AE BC ⊥, AD OA ∴⊥, AO 是O 的半径,AD ∴是O 的切线,又DF 是O 的切线,AD DF ∴=,同理可得CE CF =, CD DF CF =+, CD AD CE ∴=+.(2)解:连接OD ,AF 相交于点M ,四边形ABCD 是平行四边形,AB CD ∴=,AD BC =. 4AD CE =,∴设CE t =,则4AD t =,3BE t ∴=,5AB CD t ==,∴在Rt ABE ∆中,4AE t ==,2OA OE t ∴==,DA ,DF 是O 的两条切线,ODA ODF ∴∠=∠,DA DF =,ODA ODF ∠=∠,AF OD ∴⊥,∴在Rt OAD ∆中,21tan 42AO t ODA AD t ∠===,90OAD AMD ∠=∠=︒, EAF ODA ∴∠=∠,EF EF =, EGF EAF ∴∠=∠, ODA EGF ∴∠=∠,1tan 2EGF ∴∠=. 24.(12分)某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量()y kg 与时间第t 天之间的函数关系式为2100(180y t t =+剟,t 为整数),销售单价p (元/)kg 与时间第t 天之间满足一次函数关系如下表:(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?【解答】解:(1)设销售单价p (元/)kg 与时间第t 天之间的函数关系式为:p kt b =+, 将(1,49.5),(2,49)代入得,49.5249k b k b +=⎧⎨+=⎩,解得:1250k b ⎧=-⎪⎨⎪=⎩,∴销售单价p (元/)kg 与时间第t 天之间的函数关系式为:1502p t =-+;(2)设每天获得的利润为w 元,由题意得,(2100)(500.5)6(2100)w t t t =+--+22384400(19)4761t t t =-++=--+, 10a =-<w ∴有最大值,当19t =时,w 最大,此时,4761w =最大,答:第19天的日销售利润最大,最大利润是4761元.六、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)25.(14分)如图1,在Rt ABC ∆中,90ACB ∠=︒,30B ∠=︒,点M 是AB 的中点,连接MC ,点P 是线段BC 延长线上一点,且PC BC <,连接MP 交AC 于点H .将射线MP 绕点M 逆时针旋转60︒交线段CA 的延长线于点D . (1)找出与AMP ∠相等的角,并说明理由. (2)如图2,12CP BC =,求AD BC 的值. (3)在(2)的条件下,若MD =,求线段AB 的长.【解答】解:(1)D AMP ∠=∠. 理由如下:90ACB ∠=︒,30B ∠=︒, 60BAC ∴∠=︒. 60D DMA ∴∠+∠=︒.由旋转的性质知,60DMA AMP ∠+∠=︒.D AMP ∴∠=∠;(2)如图,过点C 作//CG BA 交MP 于点G . 30GCP B ∴∠=∠=︒,150BCG ∠=︒. 90ACB ∠=︒,点M 是AB 的中点,12CM AB BM AM ∴===. 30MCB B ∴∠=∠=︒. 120MCG ∴∠=︒.18060120MAD ∠=︒-︒=︒. MAD MCG ∴∠=∠.DMG AMG AMC AMG ∠-∠=∠-∠, DMA GMC ∴∠=∠.在MDA ∆与MGC ∆中, MAD MCG AM CMDMA GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩()MDA MGC ASA ∴∆≅∆. AD CG ∴=.12CP BC =. 13CP BP ∴=.//CG BM , CGP BMP ∴∆∆∽.∴13CG CP BM BP ==. 设CG AD t ==,则3BM t =,6AB t =.在Rt ABC ∆中,cos BC B AB ==BC ∴=.∴AD BC ==(3)如图,由(2)知CGP BMP ∆∆∽.则MD MG == //CG MA . CGH AMH ∴∠=∠. GHC MHA ∠=∠, GHC MHA ∴∆∆∽.∴13HG CH CG MH AH AM ===.1144HG MG ∴===.MH ∴==. 由(2)知,CG AD t ==,则3BM AM CA t ===. 34CH t ∴=,94AH t =.MHA DHM ∠=∠,HMA D ∠=∠. MHA DHM ∴∆∆∽.∴MH AH DH MH=.2MH AH DH ∴=,即291344t t =.解得113t =,213t =-(舍去). 62AB t ∴==.七、解答题(本大题共1小题,共14分.解答应写出必要的文字说明、证明过程或演算步骤)26.(14分)在平面直角坐标系中,抛物线2y ax bx c =++过点(1,0)A -,(3,0)B ,与y 轴交于点C ,连接AC ,BC ,将OBC ∆沿BC 所在的直线翻折,得到DBC ∆,连接OD . (1)用含a 的代数式表示点C 的坐标.(2)如图1,若点D 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式. (3)设OBD ∆的面积为1S ,OAC ∆的面积为2S ,若1223S S =,求a 的值.【解答】解:(1)抛物线的表达式为:2(1)(3)(23)y a x x a x x =+-=--, 即3c a =-, 则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , 90CDP PDC ∠+∠=︒,90PDC QDB ∠+∠=︒,QDB DCP ∴∠=∠,设:(1,)D n ,点(0,3)C a -, 90CPD BQD ∠=∠=︒, CPD DQB ∴∆∆∽,∴CP PD CDDQ BQ BD==, 其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =,将以上数值代入比例式并解得:a =, 0a <,故a =,故抛物线的表达式为:2y =++(3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥, 过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=,2112OAC S S m ∆==⨯⨯,而1223S S =,则29m DM =,11299m HN DM OC ===,1193BN BO ∴==,则18333ON =-=,则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠, 则228()99m HN ON BN =⨯==,解得:m =±,|3|CO a =-=解得:a =-,故:a =-C 在x 轴下方时,同理可得:a =a =-a =2018年辽宁省营口市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)3的倒数是( ) A .3-B .13-C .13D .32.(3分)如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A 向右平移2个单位长度后(如图2),所得几何体的视图( )A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图改变,俯视图不变D .主视图不变,俯视图改变3.(3分)下列运算中,正确的是( ) A .339x x x = B .222325x x x += C .235()x x =D .222()x y x y +=+4.(3分)若一组数据1,2,x ,4的平均数是2,则这组数据的众数为( ) A .1B .2C .3D .45.(3分)关于x 的一元二次方程20x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ) A .14m >B .14m =C .14m <D .14m …6.(3分)如图,在ABC ∆中,AB AC =,100BAC ∠=︒,在同一平面内,将ABC ∆绕点A顺时针旋转到△11AB C 的位置,连接1BB ,若11//BB AC ,则1CAC ∠的度数是( )A .10︒B .20︒C .30︒D .40︒7.(3分)如图,线段CD 两个端点的坐标分别为(1,2)C --,(2,1)D --,以原点O 为位似中心,在第一象限内将线段CD 扩大为原来的2倍,得到线段AB ,则线段AB 的中点E 的坐标为( )A .(3,3)B .33(,)22C .(2,4)D .(4,2)8.(3分)一次函数(2)3y k x =-+的图象如图所示,则k 的取值范围是( )A .3k >B .3k <C .2k >D .2k <9.(3分)如图,在锐角三角形ABC 中,4BC =,60ABC ∠=︒,BD 平分ABC ∠,交AC 于点D ,M ,N 分别是BD ,BC 上的动点,则CM MN +的最小值是( )A B .2C .D .410.(3分)如图,在Rt ABC ∆中,90B ∠=︒,3AB =,4BC =,点D 在BC 边上(不与点C 重合),以AC 为对角线作平行四边形ADCE ,连接DE 交AC 于点O .设BD x =,2OD y =,则y 与x 之间的函数关系图象大致为( )A .B .C .D .二、填空题(每小题3分,共24分)11.(3分)胶东半岛最大的湖泊-莱西湖,总库容402000000立方米,被誉为“半岛明珠”,将402000000用科学记数法表示为 .12.(3分)函数y =中,自变量x 的取值范围是 . 13.(3分)在一个不透明的小盒中装有m 张除颜色外其它完全相同的卡片,这m 张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出m 的值约为 .14.(3分)如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,//AB x 轴交反比例函数(0)ky k x=≠的图象于点B ,以AB 为边作平行四边形ABCD ,点C ,点D 在x 轴上.若5ABCDS=,则k = .15.(3分)如图1,OC 是O 的半径,弦AB 垂直平分OC ,垂足为点D ,AB =,连接OA ,OB ,将图中阴影部分的扇形OAB 剪下围成一个圆锥的侧面(如图2),则圆锥的底面圆半径是 .16.(3分)“满意“超市对某瓶装饮料进行打折促销,每瓶比原价便宜了0.6元,已知打折后用20元购买的瓶数和打折前用26元购买的瓶数相等.若设该饮料原价每瓶x 元,则根据题意可列出分式方程为 .17.(3分)如图,在矩形ABCD 中,8AD =,4AB =,将矩形ABCD 折叠,使点A 与点C 重合,折痕为MN .给出以下四个结论:①CDM CEN ∆≅∆;②CMN ∆是等边三角形;③5CM =;④3BN =.其中正确的结论序号是 .18.(3分)如图,在平面直角坐标系中,点A 在第一象限,点B 在y 轴的正半轴上,AOB ∆为等边三角形.射线OP AB ⊥,在射线OP 上依次取点1P ,2P ,3P ,⋯,n P ,使11OP =,122PP =,234P P =,⋯,112(n n n P P n --=为正整数,点0P 即为原点)O 分别过点1P ,2P ,3P ,⋯,n P 向y 轴作垂线段,垂足分别为点1H ,2H ,3H ,⋯,n H ,则点n H 的坐标为 .三、解答题(19小题10分,20小题10分,共20分)19.(10分)先化简,再求值:22322(2)42x x x x x x --+÷+---,其中1322x --.20.(10分)在创建“文明校园”活动中,某校有2名男生和3名女生被评为学校“文明学生”.现要从这5名学生中选拔“学校文明礼仪值周岗”的值周生.(1)从这5名学生中随机选拔1人值周,恰好选到男生的概率是.(2)从这5名学生中随机选拔2人值周,请用树状图或列表法求出恰好选到1个男生和1个女生的概率.四、解答题(21小题12分,22小题12分,共24分)21.(12分)为加强未成年人思想道德建设.某校在学生中开展了“日行一孝”活动.活动设置了四个爱心项目:A项-我为父母过生日,B项-我为父母洗洗脚,C项-我当一天小管家,D项-我与父母谈谈心,要求每个学生必须且只能选择一项参加.为了解全校参加各项目的学生人数,随机抽取了部分学生进行调查,根据调查结果,绘制成如下两幅不完整的统计图,请根据所给信息,解答下列问题:(1)这次抽样调查的样本容量是,补全图1中的条形统计图.(2)在图2的扇形统计图中,B项所占的百分比为%m,则m的值为,C项所在扇形的圆心角α的度数为度.(3)该校参加活动的学生共1200人,请估计该校参加D项的学生有多少人?22.(12分)如图,建筑物AB的高为52米,在其正前方广场上有人进行航模试飞.从建α=︒,同一时刻从建筑物的底端B处测得航模C的仰筑物顶端A处测得航模C的俯角30β=︒,求此时航模C的飞行高度.(精确到1米)角45≈ 2.45)≈ 1.731.41五、解答题(23小题12分,24小题12分,共24分)23.(12分)如图,ABC∆内接于O,AB是O的直径,弦CD与AB交于点E,连接AD,过点A作直线MN,使MAC ADC∠=∠.(1)求证:直线MN是O的切线.(2)若1sin2ADC∠=,8AB=,3AE=,求DE的长.24.(12分)某商场销售A,B两款书包,已知A,B两款书包的进货价格分别为每个30元,50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个.(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:90(6090)y x x=-+剟.设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?六、解答题(本题满分14分)25.(14分)已知:在ABC∆中,90ACB∠=︒,点D是AC边上一点,连接BD,点E是线段BD延长线上一点,连接AE,CE,使CAE CBE∠=∠,过点C作CF CE⊥,交BD 于点F.(1)①如图1,当45ABC∠=︒时,线段AE与BF之间的数量关系是.②如图2,当60ABC∠=︒时,线段AE与BF之间的数量关系是.(2)如图3,当30ABC∠=︒时,线段AE与BF之间具有怎样的数量关系?请说明理由.(3)如图4,当(090)ABCαα∠=︒<<︒时,直接写出线段AE与BF之间的数量关系.(用含α的式子表示)七、解答题(本题满分14分)26.(14分)已知抛物线28(0)y ax bx a =++≠经过点(3,7)A --,(3,5)B ,顶点为点E ,抛物线的对称轴与直线AB 交于点C .(1)求直线AB 的解析式和抛物线的解析式.(2)在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,E ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.2018年辽宁省营口市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.(3分)3的倒数是( ) A .3-B .13-C .13D .3【解答】解:3的倒数是:13.故选:C .2.(3分)如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A 向右平移2个单位长度后(如图2),所得几何体的视图( )A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图改变,俯视图不变D .主视图不变,俯视图改变【解答】解:将正方体A 向右平移2个单位长度后,所得几何体的左视图和主视图不变,俯视图发生改变, 故选:D .3.(3分)下列运算中,正确的是( ) A .339x x x = B .222325x x x += C .235()x x =D .222()x y x y +=+【解答】解:336x x x =,故选项A 错误;222325x x x +=,故选项B 正确;236()x x =,故选项C 错误;222()2x y x xy y +=++,故选项D 错误; 故选:B .4.(3分)若一组数据1,2,x ,4的平均数是2,则这组数据的众数为( ) A .1B .2C .3D .4【解答】解:数据1,2,x ,4的平均数是2, (124)42x ∴+++÷=,解得:1x =,∴这组数据是1,2,1,4, ∴这组数据的众数为1;故选:A .5.(3分)关于x 的一元二次方程20x x m -+=有两个不相等的实数根,则实数m 的取值范围是( )A .14m >B .14m =C .14m <D .14m …【解答】解:根据题意得△2(1)40m =-->, 解得14m <. 故选:C .6.(3分)如图,在ABC ∆中,AB AC =,100BAC ∠=︒,在同一平面内,将ABC ∆绕点A 顺时针旋转到△11AB C 的位置,连接1BB ,若11//BB AC ,则1CAC ∠的度数是( )A .10︒B .20︒C .30︒D .40︒【解答】解:将ABC ∆绕点A 顺时针旋转到△11AB C 的位置, 11100C AB CAB ∴∠=∠=︒,1AB AB =,11CAC BAB ∠=∠, 11//BB AC ,111180C AB AB B ∴∠+=︒, 180AB B ∴∠=︒, 1AB AB =,1180ABB AB B ∴∠=∠=︒, 120BAB ∴∠=︒, 120CAC ∴∠=︒,故选:B .7.(3分)如图,线段CD 两个端点的坐标分别为(1,2)C --,(2,1)D --,以原点O 为位似中心,在第一象限内将线段CD 扩大为原来的2倍,得到线段AB ,则线段AB 的中点E 的坐标为( )A .(3,3)B .33(,)22C .(2,4)D .(4,2)【解答】解:点C 的坐标为(1,2)--,点D 的坐标为(2,1)--,以原点O 为位似中心,在第一象限内将线段CD扩大为原来的2倍,∴点A的坐标为(2,4),点B的坐标为(4,2),点E是线段AB的中点,∴点E的坐标为24(2+,42)2+,即(3,3),故选:A.8.(3分)一次函数(2)3y k x=-+的图象如图所示,则k的取值范围是()A.3k>B.3k<C.2k>D.2k<【解答】解:一次函数的图象过二、四象限,20k∴-<,解得2k<.故选:D.9.(3分)如图,在锐角三角形ABC中,4BC=,60ABC∠=︒,BD平分ABC∠,交AC 于点D,M,N分别是BD,BC上的动点,则CM MN+的最小值是()A B.2C.D.4【解答】解:如图,在BA上截取BE BN=,因为ABC∠的平分线交AC于点D,所以EBM NBM∠=∠,在BME∆与BMN∆中,BE BN EBM NBM BM BM =⎧⎪∠=∠⎨⎪=⎩所以()BME BMN SAS ∆≅∆, 所以ME MN =.所以CM MN CM ME CE +=+…. 因为CM MN +有最小值.当CE 是点C 到直线AB 的距离时,即C 到直线AB 的垂线段时,CE取最小值为:4sin 60⨯︒=故选:C .10.(3分)如图,在Rt ABC ∆中,90B ∠=︒,3AB =,4BC =,点D 在BC 边上(不与点C 重合),以AC 为对角线作平行四边形ADCE ,连接DE 交AC 于点O .设BD x =,2OD y =,则y 与x 之间的函数关系图象大致为( )A .B .C .D .【解答】解:作OG BC ⊥于点G , 在平行四边形ADCE 中, CO AO =,又//OG AB , 1322OG AB ∴==, 122BG BC ==, |2|DG x ∴=-, 223|2|()2y x ∴=-+29(2)4x =-+∴图象是一条开口向上的抛物线,故选:B .二、填空题(每小题3分,共24分)11.(3分)胶东半岛最大的湖泊-莱西湖,总库容402000000立方米,被誉为“半岛明珠”,将402000000用科学记数法表示为 84.0210⨯ . 【解答】解:将402000000用科学记数法表示为84.0210⨯. 故答案是:84.0210⨯.12.(3分)函数y =中,自变量x 的取值范围是 1x …且2x ≠ . 【解答】解:根据题意得:1020x x -⎧⎨-≠⎩…,解得:1x …且2x ≠. 故答案为:1x …且2x ≠. 13.(3分)在一个不透明的小盒中装有m 张除颜色外其它完全相同的卡片,这m 张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出m 的值约为 10 . 【解答】解:由题意可得,30.3m=, 解得,10m =. 故答案为:10.14.(3分)如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,//AB x 轴交反比例函数(0)ky k x=≠的图象于点B ,以AB 为边作平行四边形ABCD ,点C ,点D 在x 轴上.若5ABCDS=,则k = 3- .【解答】解:设点2(,)A x x ,则(2kx B ,2)x ,2kxAB x ∴=-, 则2()52kx x x-=, 3k =-.故答案为:3-.15.(3分)如图1,OC 是O 的半径,弦AB 垂直平分OC ,垂足为点D ,AB =,连接OA ,OB ,将图中阴影部分的扇形OAB 剪下围成一个圆锥的侧面(如图2),则圆锥的底面圆半径是 2cm .【解答】解:弦AB 垂直平分OC , 2OA OC OD ∴==,则30OAD ∠=︒,60AOC ∠=︒, 120AOB ∴∠=︒, 6AB =,AD ∴=,。
2014年辽宁省营口市中考数学试卷
一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)
2.(3分)(2014•营口)如图是某个几何体的三视图,该几何体是()
<
∴
6.(3分)(2014•营口)不等式组的解集在数轴上表示正确的是().B...
,
,
7.(3分)(2014•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()
8.(3分)(2014•营口)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B 的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()
B
CE=
x
(××
x+﹣
x+,
x+(
×
二、填空题(每小题3分,共24分)
9.(3分)(2014•营口)全球每年大约有577 000 000 000 000米3的水从海洋和陆地转化为大气中的水汽,将数577 000 000 000 000用科学记数法表示为 5.77×1014.
10.(3分)(2014•营口)函数y=+(x﹣2)0中,自变量x的取值范围是x≥1且x≠2.
11.(3分)(2014•营口)小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为S12、S22,根据图中的信息判断两人方差的大小关系为S12<S22.
12.(3分)(2014•营口)如图,直线a∥b,一个含有30°角的直角三角板放置在如图所示的位置,若∠1=24°,则∠2=36°.
13.(3分)(2014•营口)一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸
出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是,则袋中红球约为25个.
通过大量重复摸球试验后发现,摸到白球的频率是
∴=
14.(3分)(2014•营口)如图,圆锥的底面半径OB长为5cm,母线AB长为15cm,则这个圆锥侧面展开图的圆心角α为120度.
15.(3分)(2014•营口)如图,在平面直角坐标系中,△ABC的边AB∥x轴,点A在双曲
线y=(x<0)上,点B在双曲线y=(x>0)上,边AC中点D在x轴上,△ABC的面积为8,则k=﹣3.
,)
(﹣
∴),即)
=﹣
∵,
∴,
∴﹣
16.(3分)(2014•营口)如图,在平面直角坐标系中,直线l:y=x,直线l2:y=x,
在直线l1上取一点B,使OB=1,以点B为对称中心,作点O的对称点B1,过点B1作B1A1∥l2,交x轴于点A1,作B1C1∥x轴,交直线l2于点C1,得到四边形OA1B1C1;再以点B1为对称中心,作O点的对称点B2,过点B2作B2A2∥l2,交x轴于点A2,作B2C2∥x轴,交直线l2
于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.
y=x
=
××
三、解答题(17小题8分,18小题8分,共16分)
17.(8分)(2014•营口)先化简,再求值:b2﹣÷(a﹣),其中a=tan45°,b=2sin60°.
•
时,原式
18.(8分)(2014•营口)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;
(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后D的对应点D2的坐标.
四、解答题(19小题10分,20小题10分,共20分)
19.(10分)(2014•营口)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题
根据以上信息解答下列问题:
(1)根据统计图填空:m=32,A区域所对应的扇形圆心角为72度;
(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?
(3)将条形统计图补充完整;
(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?
20.(10分)(2014•营口)第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,,2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;
(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.
;
3
P=
五、解答题(21小题8分,22小题10分,共18分)
21.(8分)(2014•营口)如图,王老师站在湖边度假村的景点A处,观察到一只水鸟由岸边D处飞向湖中小岛C处,点A到DC所在水平面的距离AB是15米,观测水鸟在点D 和点C处时的俯角分别为53°和11°,求C、D两点之间距离.(精确到0.1.参考数据
sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)
∴
∴
22.(10分)(2014•营口)如图,在⊙O中,直径AB平分弦CD,AB与CD相交于点E,连接AC、BC,点F是BA延长线上的一点,且∠FCA=∠B.
(1)求证:CF是⊙O的切线.
(2)若AC=4,tan∠ACD=,求⊙O的半径.
)利用垂径定理推论得出=
∴=
ACD=,
ACD==
∴=
==4
.
六、解答题(23小题10分,24小题10分,共20分)
23.(10分)(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.
(1)求签字笔和笔记本的单价分别是多少元?
(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?
,
.
则可列方程=
24.(10分)(2014•营口)随着生活质量的提高,人们健康意识逐渐增强,安装净水设备的百姓家庭越来越多.某厂家从去年开始投入生产净水器,生产净水器的总量y(台)与今年的生产天数x(天)的关系如图所示.今年生产90天后,厂家改进了技术,平均每天的生产数量达到30台.
(1)求y与x之间的函数表达式;
(2)已知该厂家去年平均每天的生产数量与今年前90天平均每天的生产数量相同,求厂家去年生产的天数;
(3)如果厂家制定总量不少于6000台的生产计划,那么在改进技术后,至少还要多少天完成生产计划?
.
;
七、解答题(本题满分14分)
25.(14分)(2014•营口)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.
(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;
(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;
(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.
八、解答题(本题满分14分)
26.(14分)(2014•营口)已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).
(1)求抛物线的表达式及顶点D的坐标;
(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC
沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t 的函数关系式.
∴
,
,
﹣+时,有最大值为.
的长最大,最大值为
时,如答图
AK=
×t=
2
(﹣﹣t+1<
﹣
=3t t+9
.。