设计CASS工艺中水力停留时间的探讨
- 格式:pdf
- 大小:136.58 KB
- 文档页数:2
一、设计参数设计流量Q 500m3/d 设计进水水质:COD 2500mg/L BOD1500mg/L SS 设计出谁水质:COD 500mg/L BOD400mg/LSS设计计算,采用循环式活性污泥法CASS工艺回流污泥浓度Xr =12000mg/L 污泥回流比R =20%xv =3000二、设计计算(1)污水去除率的计算进入CASS池污水COD浓度S 02500mg/L 出水中非溶解性性COD值为Se 500mg/L (2)COD污泥负荷Ns1)根据经验CASS反应器采用2组并联形势2)假设一个周期为24h,则CASS主反应区容积为250m3式中Ns 污泥负荷率,kgCOD(BOD)/kg污泥·dQ 每天进水水量,m3/d S 去除COD(BOD)浓度,mg/L V 曝气池有效容积,m3(3)反应池容积V式中Ns 污泥负荷率,kgCOD(BOD)/kg污泥·d Q 每天进水水量,m3/dX 混合液污泥浓度,一般取值3000,mg/Lf混合液中挥发性悬浮固体浓度与总悬浮固体浓度比值,0.7~0.8.(4)反应池总水力停留时间由于计算体积V大于假设水池体积,所以取大值(5)CASS池外形尺寸单个反应池总容积V=333.33取值340m3L:B=4L:B=4~6B:H= 1.2B:H=1~2通常有效水深为4m 可调整则B= 4.8m L=19.2m 取整数且满足大于设计容积则B=5m L=18m V1:V2:V3=1:5:30则V1=12m3V2=60m3(6)预反应区长度Lf=(0.16~0.25)L则COD去除率:80%1.33333.330.67d=====VQη=Ns =V =t =(S 0-Se)X100%S0Q×SV ×XQ×(S0-Se)Ns ×x ×f取Lf=0.16L= 2.88m 取3(7)CASS池各部分容积组成及最高水位(H):V=n1(V1+V2+V3)H=H1+H2+H3式中n1CASS池个数2V1,H1变动容积,是指池内设计最高水位至滗水后最低水位之间的容积和水V2,H2滗水水位和泥面之间的容积和水深;V3,H3活性污泥最高泥面至池底的容积和水深;水深H1:Q n1n2A式中n21d内循环周期数n2=1ACASS池平面面积,m2A=120水深H3:H3=H ×X ×SVI ×10^(-6)=1.68m SVI:污泥体积指数:取SVI=140mg/L水深H2:H2=H-H1-H3=0.24m CASS池总高H0=H+0.5=4.5m0.5米为超高2.08m H1==1000mg/L NH3-N500mg/L TP50mg/L400mg/L NH3-N45mg/L TP1mg/L浮固体浓度比值,0.7~0.8.16.00hV3=360m3m满足v2的容积要求滗水后最低水位之间的容积和水深;由停留时间得周期为1m20.5米为超高。
沈阳化工大学水污染控制工程三级项目题目:小区生活污水回用处理设计院系:环境与安全工程学院专业:环境工程提交日期: 2020 年 5 月 26 日摘要本文主要介绍了小区生活污水回用处理设计的过程,其中包括工艺流程、以及流程中各个构筑物的设计计算、高程和平面布置。
循环式活性污泥法(CASS)是序批式活性污泥法工艺(SBR)的一种变形。
它综合了活性污泥法和SBR工艺特点,与生物选择器原理结合在一起,具有抗冲击负荷和脱氮除磷的功能。
本次设计采用了CASS工艺进行设计计算。
其中包括池体的计算和格栅等辅助物尺寸计算,处理后水质达到一级B标准。
关键词:小区生活污水回用循环式活性污泥法设计计算AbstractThis paper mainly introduces the design process of residential sew age reuse treatment, including the process flow, as well as the design of e ach structure in the process, elevation and plane layout. Circulating activa ted sludge process (CASS) is a variation of sequential batch activated slu dge process (SBR). It integrates the characteristics of activated sludge pro cess and SBR process, combines with the principle of biological selector, and has the functions of impact load resistance and denitrification and de phosphorization. This design adopts CASS technology to design and calc ulate. It includes the calculation of the pool body and the size calculation of the grid and other auxiliary objects. After treatment, the water quality r eaches the standard of grade a B.目录摘要 (2)一.生活污水概况 (5)二.工艺流程比较 (5)三.构筑物设计计算 (5)3.1(格栅) (5)3.2(调节池) (7)3.3(曝气沉砂池) (8)3.4(CASS生物池) (9)3.5(混凝气浮池)…………………………………………………103.5.1(混凝工艺) (11)3.5.2(气浮工艺) (11)3.5.3(设计参数) (11)3.6(加氯消毒池) (14)3.7(计量设备——巴氏计量槽) (15)四.污泥处理单元 (17)4.1(贮泥室) (17)4.2(污泥泵) (17)4.3(污泥浓缩机) (17)五.高程计算 (18)5.1(管道沿程水头损失) (18)5.2(管道局部水头损失) (18)5.3(构筑物自身在运转中所产生的水头损失) (19)六.平面布置图 (20)七.工程造价预算 (21)总结 (24)参考文献 (25)一.生活污水概况日平均流量:1000 m3/d表一处理水质情况水质指标COD BOD SS 氨氮pH处理水质425 225 250 37 6-9目标水质60 20 20 8 6-9预将其处理回用为市区景观用水,执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准,全部排放至五类水体。
CASS法用于小区水处理及中水回用工程毕业设计1 前言1.1我国生活污水回用现状今后经济及人口的增长势必使水资源供需矛盾更加突出。
据有关研究报告,到21世纪中叶我国人口达到16亿高峰时,全国总取水量有可能接近可用水资源量的极限。
为保证经济社会的可持续发展,必须要大幅度提高用水效率。
为此,国家在“十五”规划中制定了相应的政策,以控制水污染和用水量的增长。
其中包括三大类:1.采用清洁生产的工艺,减少污染物排放。
例如高纯水制备中采用反渗透、EDI 等膜分离技术代替离子交换技术,可以消除酸碱废水的排放;2.采用低耗水的工艺,减少新鲜水的用量。
例如火力发电厂使用空冷技术、干除灰代替水力除灰等;3.废水回用。
把生活污水、工业废水等经过深度处理后,重复使用,甚至实现零排放。
这实际上是将污水作为一种新的水源加以充分利用,即减少了新鲜水的利用,又降低了废水的排放量。
其中,实现废水回用或者零排放,最关键的一点就是要去除污水、废水中的各种杂质或者污染物,使净化后的水满足各种工业或者生活用水的水质要求。
因此,工程设计时不仅仅要考虑工业或者生活废水实现达标排放,今后越来越多的时候还要考虑将这些废水进一步深度处理,循环使用。
为了节约水资源,政府正在出台一系列的政策,包括水价调控、排污权交易等,这些都将通过经济的杠杆,促进废水处理技术和市场的迅速发展。
1.2相关政策建议城市污水处理和回用是一项艰巨的任务。
近期有关污水处理和回用建设项目投资及相关政策的建议如下:1.重视污水处理和回用建设项目的前期工作。
2.尽快建立科学的城市用水和污水处理收费机制。
3.拓宽城市污水建设项目投资渠道。
4.污水收集系统先行、污水集中和分散处理相结合、污水处理和回用相结合。
5.城市污水回用规划应纳入城市总体(水)规划和流域水资源规划。
6.完善和制定有关技术政策和标准,积极鼓励城市污水回用,重点解决回用水的用户问题。
7.重视污水回用的安全问题,号召公众积极参与。
《CASS工艺的理论与设计计算》篇一一、引言CASS(循环式活性污泥法)工艺是一种常用的污水处理技术,其核心在于通过循环和间歇操作,提高污泥的活性,从而达到高效处理污水的目的。
本文旨在探讨CASS工艺的理论基础、设计原则及计算方法,为相关工程实践提供理论支持。
二、CASS工艺理论基础1. 工艺原理CASS工艺基于活性污泥法原理,通过间歇性进水、曝气、沉淀、排水等操作过程,实现污水的高效处理。
该工艺通过循环利用活性污泥,提高了生物反应器的处理能力,同时减少了污泥的产生量。
2. 生物反应过程CASS工艺的生物反应过程主要包括:进水期、曝气期、沉淀期和排水期。
在进水期,污水进入反应器;在曝气期,通过曝气设备向反应器中供氧,促进微生物的生长和代谢;在沉淀期,活性污泥与水分离,使水得到净化;在排水期,上清液排出,为下一个周期做准备。
三、CASS工艺设计原则1. 满足处理要求:根据污水处理的要求,确定CASS工艺的设计参数,如进水水质、出水水质、处理效率等。
2. 合理布局:根据场地条件和实际需求,合理布局反应器、曝气设备、进出水管道等设施。
3. 节能降耗:在保证处理效果的前提下,尽可能降低能耗和药耗,提高经济效益。
4. 便于操作和维护:设计应考虑操作的便捷性和维护的可行性,方便日常管理和维护。
四、CASS工艺设计计算1. 设计参数计算(1)处理能力计算:根据设计要求,确定污水处理系统的处理能力。
计算过程中需考虑污水的流量、水质等因素。
(2)曝气量计算:根据设计要求和处理能力,计算所需的曝气量。
曝气量的计算需考虑生物反应器的体积、氧气传递效率等因素。
(3)沉淀时间计算:根据污泥的沉降性能和出水要求,确定沉淀时间。
沉淀时间的计算需考虑污泥的沉降速度和体积等因素。
2. 工艺流程设计(1)进水系统设计:设计进水管道、进水阀门等设施,确保污水能够顺利进入反应器。
(2)曝气系统设计:设计曝气设备、曝气管路等设施,为生物反应器提供充足的氧气。
卡死(CASS)的工艺用来处理亦生化降解的生活污水,还是由很多成功的案例,但是用该工艺来处理工业废水尤其是那些含有难生化降解物质的废水如造纸废水,CASS的工艺振会卡死你。
据人大杨小牛教授的调查,CASS工艺处理工业废水,10个有9个是失败的,体现在出水的TSS、COD、氨氮等和设计的预期值相差很大。
杨教授指出:CASS工艺一个最大的缺点是:工业废水中含有表面活性剂,曝气期间回产生大量的泡沫,这些泡沫粘附着很多细碎污泥,当曝气停止时,水中的污泥立即形成一层,开始往下沉,而水面上的泡沫却是慢慢消失的,致使粘附在泡沫上的污泥并没有随污泥层往下沉,而是分散在上清液中。
在撇水阶段,这些污泥的泥就从撇水期排出,因此出水的COD和SS自然就比较高。
如果有设二沉池的话,好氧池泡沫上粘附的细碎污泥在进入二沉池固液分离时,是可以被泥层压下去的。
而集曝气和沉淀为一体的CASS 或SBR是没有办法解决这个问题。
除了泡沫的泥沉降不了以外,CASS工艺不适合大部分工业废水的另一原因:工业废水含有一部分难生化的杂环类物质,这些物质即使经过水解酸化,生化性也提高不了多少,这类的物质需要好氧微生物在比较长水力停留时间,才能获得比较好的生化分解;而CASS工艺进水好氧段通常2-3小时,显然时间太短了。
这些难生化的物质只能靠污泥的吸附和排泥而去除。
一旦CASS 系统污泥出现稍微老化,吸附的物质就释放出来,出水水质变差。
CASS工艺的发明者,已经很清楚指出该工艺适合生活污水处理或易生化工业废水的处理。
而一些不厚道德环保设计公司用它来处理工业废水,忽悠了业主,只强调优点,而不说缺点或更本不知道CASS的缺点。
处理达标不了,还要怪业主生产不正常,真是把业主卡死(CASS)了。
CASS没运行过,但接触过与CASS比较接近的工艺,也算是SBR 的一种变形工艺,所以稍微说几句:1.SBR工艺具体省不省地的问题,关键还是看水力停留时间。
在反应池水深差不多的情况下,水力停留时间相同,占地面积也不会差多少。
CASS工艺运行及主要技术特征完整的CASS工艺可分为4个阶段,以一定的时间序列运行。
1充水-曝气阶段边进水、边曝气,并将主反应区的污泥回流至预反应区(生物选择器)。
在该阶段,曝气系统向反应池内供氧,一方面满足好氧微生物对氧的需要,另一方面有利于活性污泥与有机物的混合与接触,从而使有机亏染物被微生物氧化分解。
同时,污水中的氨氮也通过微生物的硝化作用转化为硝态氮。
2充水-沉淀阶段辱止曝气,进行泥水分离,但不停止进水,且污泥回流也不停止。
停止曝气后,微生物继续利用水中剩余的溶解氧进行氧化分解,随着溶解氧含量的降低,好氧状态逐渐向缺氧转化,并发生一定的反硝化作用。
由于沉淀初期,前一阶段曝气所产生的搅拌作用使污泥发生絮凝作用,随后以区域沉降的形式沉降,因此,即使在该阶段不停止进水,依然能获得良好的沉淀效果。
当混合液的污泥浓度为3500mg/L~5000mg/L,沉淀后污泥浓度可达15000mg/L左右。
3滗水阶段沉淀阶段完成后,置于反应池末端的滗水器在程序控制下开始工作,自上而下逐层排出上清液。
排水结束后,滗水器将自动复位。
排水过程中,反应池底部污泥层内由于较低的溶解氧含量而发生反硝化作用。
CASS反应器在滗水阶段需停止进水。
若处理系统有两个或两个以上CASS池,当一个CASS池处于滗水阶段时,可将原水引入其他CASS池;若处理系统只存在一个CASS反应器时,原水可先流入反应器前的集水井中。
为了提高污泥浓度,加强反硝化及聚磷菌的过量释磷,污泥回流系统照常运行。
4充水-闲置阶段闲置阶段的时间一般较短,主要保证滗水器在此阶段内上升到原始位置,防止污泥流失。
若在此阶段进行适量的曝气,则有利于恢复污泥的活性。
正常的闲置期通常在滗水器恢复待运行状态4min后开始。
CASS工艺的运行就是上述4个阶段依次进行并不断循环重复的过程。
典型的运行周期为4h,其中曝气2h,沉淀1h,滗水1h。
CASS工艺主要技术特征1连续进水,间断排水传统SBR工艺为间断进水,间断排水,而实际污水排放大都是连续或半连续的,CASS工艺可连续进水,克服了SBR工艺的不足,比较适合实际排水的特点,拓宽了SBR工艺的应用领域。
1.1计算BOD-污泥负荷〔N s〕BOD-污泥负荷是CASS工艺的主要设计参数,其计算公式为:〔1〕式中:Ns——BOD-污泥负荷,kgBOD5/(kgMLSS·d),生活污水取0.05~0.1kgBOD5/(kgMLSS·d),工业废水需参考相关资料或通过试验确定;K2——有机基质降解速率常数,L/(mg·d);S e——混合液中残存的有机物浓度,mg/L;η——有机质降解率,%;ƒ——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,一般在生活污水中,ƒ=0.75。
〔2〕式中:MLVSS——混合液挥发性悬浮固体浓度,mg/L;MLSS——混合液悬浮固体浓度,mg/L;1.2 CASS池容积计算CASS池容积采用BOD-污泥负荷进展计算,计算公式为:〔3〕式中:V——CASS池总有效容积,m3;Q——污水日流量,m3/d;S a、S e——进水有机物浓度和混合液中残存的有机物浓度,mg/L;*——混合液污泥浓度〔MLSS〕,mg/L;Ns——BOD-污泥负荷,kgBOD5/(kgMLSS·d);ƒ——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值。
1.3 容积校核CASS池的有效容积由变动容积和固定容积组成。
变动容积〔V1〕指池设计最高水位和滗水器排放最低水位之间的容积;固定容积由两局部组成,一局部是平安容积〔V2〕,指滗水水位和泥面之间的容积,平安容积由防止滗水时污泥流失的最小平安距离决定;另一局部是污泥沉淀浓缩容积〔V3〕,指沉淀时活性污泥最高泥面至池底之间的容积。
CASS池总的有效容积:V=n1×〔V1+V2+V3〕〔4〕式中:V——CASS池总有效容积,m3;V1——变动容积,m3;V2——平安容积,m3;V3——污泥沉淀浓缩容积,m3;n1——CASS池个数。
设池最高液位为H〔一般取3~5m〕,H由三个局部组成:H=H1+H2+H3 〔5〕式中:H1——池设计最高水位和滗水器排放最低水位之间的高度,m;H2——滗水水位和泥面之间的平安距离,一般取1.5~2.0m;H3——滗水完毕时泥面的高度,m;其中:〔6〕式中:A——单个CASS池平面面积,m2;n2——一日循环周期数;H3=H×*×SVI×10-3 〔7〕式中:*——最高液位时混合液污泥浓度,mg/L;污泥负荷法计算的结果,假设不能满足H2≥H-〔H1+H3〕,则必须减少BOD-污泥负荷,增大CASS池的有效容积,直到条件满足为止。
污水处理CASS池设计计算污水处理是将污水中的污染物去除,使其达到排放标准的过程。
其中,CASS池是一种常用的污水处理设备,可以进行混凝沉淀、厌氧消化和活性污泥法处理等工艺。
下面将详细介绍CASS池的设计计算。
首先,需要确定CASS池的体积大小。
CASS池的体积大小可以根据污水处理工艺的要求以及污水产量进行估算。
一般情况下,可以根据单位面积的水力负荷来计算CASS池的尺寸。
水力负荷是指单位面积的污水量,单位通常为m3/(m2·d)。
根据国家标准和实际经验,可根据不同的处理工艺设计进水污水的水力负荷。
其次,需要确定CASS池的沉淀时间。
沉淀时间是指污水在CASS池中停留的时间,也称为污泥停留时间。
污水中的悬浮物在CASS池中通过重力沉淀下来,从而去除污染物。
沉淀时间的选择既要考虑污物的沉淀速度,又要考虑处理效果和设备结构等因素。
根据经验,一般沉淀时间可选择为2-6小时。
此外,还需要确定CASS池的深度。
CASS池的深度一般可以根据进水和出水口的位置来确定。
进水口位于CASS池的上部,污水由上部向下流动,通过重力沉淀。
出水口位于CASS池的底部,出水后进行后续的处理。
深度的选择要保证污水在CASS池中停留足够的时间,以便污染物得到充分的沉淀。
另外,还需要考虑CASS池的通气和搅拌设备。
通气设备有助于提供氧气供给好氧微生物进行降解有机物质的过程,从而提高处理效果。
搅拌设备可以促进污水中悬浮物的混合,防止沉淀物的堆积,同时也有助于组织和活化污泥。
最后,还需要充分考虑CASS池的建设和维护成本。
CASS池的建设成本包括设备投资、土建投资等,维护成本包括设备维修、能耗等。
在设计过程中,要充分考虑处理效果和经济效益的平衡,选择合适的设备和工艺。
综上所述,污水处理CASS池的设计计算主要包括确定CASS池的体积大小、沉淀时间、深度,以及考虑通气和搅拌设备等因素,并综合考虑建设和维护成本。
这样可以有效地设计和运行CASS池,实现污水的有效处理,保护环境。