平行于同一平面的向量叫做共面向量
- 格式:ppt
- 大小:2.04 MB
- 文档页数:55
§2 共面向量定理教学目的:1.掌握共面向量定理2.会用定理证明一些共面,平行等问题教学重难点:共面向量定理的应用教学过程:一、问题情境:平面向量基本定理:注:(1)12,e e 叫平面内所有向量的一组基底(2)a 用12,e e 表示称为向量的分解,当12e e ⊥时称为正交分解。
二、学生活动:上述定理可推广到空间吗?是什么形式?三、数学建构1、共面向量:能平移到同一平面内的向量叫做共面向量(或平行于同一平面的向量)注:两个向量一定共面,三个向量不一定共面2、三个向量共面的条件:(1)若p 与,a b 共面,则由平面向量基本定理:存在唯一实数对,x y ,使p xa yb =+(2)若存在唯一一对实数,x y ,使p xa yb =+在空间中一点M 作,MA a MB b ==且作','MA xa MB yb ==,则MP xa yb p =+= P 在面MAB 内, p ∴与,a b 共面3、共面向量定理:注:(1)p 可用,a b 线性表示(2)作用:证明线面平行,证明点共面(3)推论:点P 在面MAB 内充要条件是:存在,x y 使MP xMA yMB =+四、数学应用:例1、课本如图。
已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M,N 分别在对角线BD,AE 上,且BM=31BD,AN=31AE.求证:CDE MN 平面//.注:(1)找向量关系,封闭图形(2)尽量用面CDE 中向量表示练习:76P 1 3例2、如图,AB 所在直线为AB ,O 为直线AB 外一点,则P 在直线AB 上充要条件是:存在实数t ,使(1)OP t OA tOB =-+证明:(1)若(1)OP t OA tOB =-+,则(OP OA t =+ AP t AB ∴=,,A B P ∴三点共线。
推广:设空间任意一点O 和不共线三点A,B,C 若点P 满足向量关系)1(=++++=→→→→z y x OC z OB y xOA OP 其中,试问:P,A,B,C 四点是否共面?练习:在四棱锥P-ABCD 中,PA ⊥面,ABCD ABCD 为矩形,,M N 在,PC PD 上,且:2:1PM MC =,N 为PD 中点。
第1讲空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。
2.经历由平面向量的运算及其法则推广到空间向量的过程。
3.掌握空间向量的线性运算。
4.掌握空间向量的数量积。
知识梳理1.空间向量的概念与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模,空间向量用字母a,b,c ...表示.2.几个常见的向量零向量长度为0的向量叫做零向量单位向量模为1的向量叫做单位向量相反向量与向量a 长度相等而方向相反的向量,叫做a 的相反向量,记做-a 共线向量如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量。
我们规定:零向量与任意向量平行.相等向量方向相同且模相等的向量叫做相等向量3.向量的线性运算交换律:+=+a b b a ;结合律:()();()()λμλμ+=+=a b +c a +b c a a ;分配律:();()λμλμλλλ+=++=+a a a a b a b .4.共面向量平行于同一平面的向量,叫做共面向量.5.空间向量的数量积||||cos ,⋅=<>a b a b a b 零向量与任意向量的数量积为0.2025高二上数学专题第1讲 空间向量及其运算(解析版)名师导学知识点1空间向量的有关概念【例1-1】(咸阳期末)已知是空间的一个单位向量,则的相反向量的模为A.1B.2C.3D.4【变式训练1-1】(龙岩期末)在平行六面体中,与向量相等的向量共有A.1个B.2个C.3个D.4个知识点2空间向量的线性运算【例2-1】(泰安期末)如图所示,在长方体中,O为AC的中点.化简:________;用,,表示,则________.【例2-2】(河西区期末)在三棱锥中,,,,D为BC的中点,则A. B.C. D.【变式训练2-1】(东湖区校级一模)在空间四边形ABCD中,M,G分别是BC,CD的中点,则A. B. C. D.【变式训练2-2】(随州期末)如图,已知长方体,化简下列向量表达式,并在图中标出化简结果的向量.;.知识点3共面向量【例3-1】(珠海期末)已知A,B,C三点不共线,点M满足.,,三个向量是否共面点M是否在平面ABC内【变式训练3-1】(日照期末)如图所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且,.求证:向量,,共面.知识点4空间向量的数量积【例4-1】(溧阳市期末)已知长方体中,,,E为侧面的中心,F为的中点试计算:.【变式训练4-1】(兴庆区校级期末)如图所示,在棱长为1的正四面体ABCD中,E,F分别是AB,AD的中点,求:.名师导练A 组-[应知应会]1.(台江区校级期末)长方体中,若,,,则等于A. B.C. D.2.(秦皇岛期末)若空间四边形OABC 的四个面均为等边三角形,则的值为A. B. C. D.03.(定远县期末)给出下列几个命题:向量,,共面,则它们所在的直线共面;零向量的方向是任意的;若,则存在唯一的实数,使.其中真命题的个数为A.0B.1C.2D.34.(葫芦岛期末)在下列条件中,使M 与A 、B 、C 一定共面的是A.; B.;C. D.5.(多选)(点军区校级月考)已知1111ABCD A B C D -为正方体,下列说法中正确的是()A .221111111()3()A A A D A B A B ++= B .1111()0AC A B A A -= C .向量1AD 与向量1A B 的夹角是60︒D .正方体1111ABCD A B C D -的体积为1||AB AA AD 6.(都匀市校级期中)空间的任意三个向量,,,它们一定是________向量填“共面”或“不共面”.7.(池州模拟)给出以下结论:两个空间向量相等,则它们的起点和终点分别相同;若空间向量,,满足,则;在正方体中,必有;若空间向量,,满足,,则.其中不正确的命题的序号为________.8.(未央区校级期末)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++ ,若P ,A ,B ,C 四点共面,则实数t =.9.(天津期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC 的值为.10.(三明期中)如图所示,在正六棱柱中化简,并在图中标出表示化简结果的向量化简,并在图中标出表示化简结果的向量.11.(都匀市校级期中)如图所示,在四棱锥中,底面ABCD 为平行四边形,,,底面求证:.12.(西夏区校级月考)如图所示,平行六面体1111ABCD A B C D -中,E 、F 分别在1B B 和1D D 上,且11||||3BE BB =,12||||3DF DD =(1)求证:A 、E 、1C 、F 四点共面;(2)若1EF xAB y AD z AA =++ ,求x y z ++的值.B 组-[素养提升]1.(多选)(三明期中)定义空间两个向量的一种运算||||sin a b a b a =<⊗ ,b > ,则关于空间向量上述运算的以下结论中恒成立的有()A .a b b a =⊗⊗B .()()a b a b λλ=⊗⊗C .()()()a b c a c b c +=+⊗⊗⊗ D .若1(a x = ,1)y ,2(b x = ,2)y ,则1221||a b x y x y =-⊗第1讲空间向量及其运算新课标要求1.经历由平面向量推广到空间向量的过程,了解空间向量的概念。