微细加工技术的应用和趋势
- 格式:doc
- 大小:23.50 KB
- 文档页数:3
电子束微细加工技术的发展及其应用电子束微细加工技术随着科学技术的发展而逐渐成熟,其在加工工业领域有着广泛的应用。
本文将重点探讨电子束微细加工技术的发展历程,技术特点以及在各个领域的应用。
一、电子束微细加工技术的发展历程电子束微细加工技术可以追溯到二十世纪中期,当时美国贝尔实验室的研究人员首次将电子束用于微细加工。
当时,电子束微细加工技术还处于探索阶段,局限于单层薄膜的微细加工。
随着科学技术的发展,电子束微细加工技术经历了从单层薄膜加工到多层薄膜、集成电路、光学器件以及生物医学等领域的拓展过程。
二、电子束微细加工技术的技术特点1.高精度电子束微细加工技术的加工精度可以达到亚微米级别。
由于电子束的微小直径,因此加工精度高。
同时,电子束微细加工技术无需接触到工件表面,因此可以避免因为接触而导致的破坏。
2.高速度电子束微细加工技术的加工速度比传统机械加工技术快得多。
电子束可以在微小的空间内加工,从而提高加工效率。
3.可控性强电子束微细加工技术可以通过调整电子束的加速电压和电子束的聚焦来实现不同的加工效果。
同时,电子束微细加工技术还具有可调的深度控制功能。
三、电子束微细加工技术在各个领域的应用1.集成电路在集成电路制造领域,电子束微细加工技术可以实现极小尺寸的电路设计。
利用电子束微细加工技术可以制造出亚微米级别的电路,这对于集成电路的制造具有重要的作用。
2.生物医学电子束微细加工技术在生物医学领域的应用主要集中在生物芯片制造方面。
利用电子束微细加工技术可以制造出超薄的微处理芯片,这些芯片可以被用于感应、检测和诊断。
3.光学器件利用电子束微细加工技术可以制造出高精度的光学器件,如光纤、光阻、光学芯片等等,这些光学器件可以被应用于通讯、光电子学、测量、材料加工等领域。
4.微纳机械电子束微细加工技术在微纳机械领域具有广泛的应用。
可以利用电子束微细加工技术制造出微米级别的光学器件、电子器件和机械器件等。
在微纳机械领域,电子束微细加工技术在制造微机械设备时具有独特的优势。
2011 年春季学期研究生课程考核(读书报告、研究报告)考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院学生所在学科:机械设计及理论学生姓名:杨嘉学号:10S008214学生类别:学术型考核结果阅卷人微细加工技术概述及其应用摘要微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。
本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。
关键词:微细加工;电火花;微铣削1微细加工技术简介及国内外研究成果1.1微细加工技术的概念微细加工原指加工尺度约在微米级范围的加工方法。
在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。
广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。
从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。
微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。
目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。
微机械加工应用趋势与前沿技术简述摘要:微机电系统(MEMS)是由电子和机械组成的集成化器件或系统,采用与集成电路兼容的大批量处理工艺制造,尺寸在微米到毫米之间。
尤其将计算、传感和执行融为一体,从而改变了感知和控制自然界的方式。
本文介绍了微机电系统近几年应用领域及前景展望,并简单阐述了关于微制造的几种前言加工技术,从而对MEMS系统有一个粗略的了解。
关键字:MEMS 应用领域前景前沿技术 LIGA技术前言微型机械加工或称微机电系统(MEMS),早在1959年就由着名的物理学家理查德·范蔓(Richard·Feynman)提出其概念,然而此后数十年间的发展并未受到过多的关注,直到近年来才逐渐发展成为一门交叉学科。
MEMS主要包括微型传感器、微型执行器以及相应地处理电路三部分。
作为输入信号的各种信号首先通过微传感器转换成电信号,经过信号处理以后,再通过微执行器对外部世界发生作用。
传感器可以把能量从一种形式转换成另一种形式,从而将现实世界的信号(热、化学、运动等)转换成系统可以处理的信号(如电信号)。
信号处理器则可以对信号进行转换、放大和计算等处理。
执行器根据信号处理电路发出的指令来完成人们所需要的操作。
MEMS的快速发展只不过是10多年的时间,却已在各个应用领域显示出强大的生命力,甚至单个领域的MEMS器件就已经形成了一个较大规模的产业。
面向21世纪,MEMS将逐步走向实用化,并被广泛应用于国防、航空、航天、通信、环保、生物工程、医疗、制造业、农业和家庭。
在某种意义上,可认为MEMS是“信息化带动工业化”的一个典范。
一、应用领域与前景展望作为信息获取关键的传感MEMS,已成功应用于汽车、电子等行业和军事领域;在令人瞩目的信息技术和生命技术的发展中,MEMS更将发挥不可估量的作用:光MEMS被认为是开启通信之门的钥匙;RF MEMS将成为移动通信的一项核心技术;高密度MEMS生物芯片将强有力地推动生命科学和生物技术的发展。
武汉工程职业技术学院毕业论文课题名称机加工细微加工技术概述及其应用学生姓名陈凯 .学号1104180317专业模具设计与制造班级 2011级模具三班指导教师秦丽萍年月日目录摘要 (3)引言 (4)第一章微细加工技术简介及国内外 (5)1.1 (5)1.2 (9)第二章微细加工技术应用实例 (11)2.1 (11)2.2 (13)总结 (15)参考文献 (16)3 微细加工技术概述及其应用摘要:微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。
本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。
关键词:微细加工;电火花;微铣削引言:随着科学技术的发展,近年来在IT 、医疗器械以及通讯领域,人们对微小型零件(如:微型传感器、微型加速度计、微透镜阵列等)的需求日益增加。
这种需求的增加促进了微细加工技术的发展。
在目前的多种微细加工技术中,微机电系统(MicroElectroMechanicalSystem ,MEMS)一直是主流技术之一。
由于MEMS 技术衍生于微电子技术,它的主要加工对象被限制在硅基材料上,并且工件的几何形状基本上是简单的二维形状,因而只有在大规模集成电路的批量制造等方面才是经济的。
微细切削加工技术,特别是微细铣削作为MEMS 技术的补充,由于其几乎不受加工对象材料和几何形状的限制而受到研究人员的重视,正在成为微细加工技术中的新生力量。
近年来,采用传统的机械加工方法而进行微细制造的研究越来越受到人们的重视,针对特征尺寸在410~10m 所谓中间尺度微小机械零件的微细切削制造成为一大研究热点,其原因是机加工具有几大优势:1加工精度高;2生产效率高、灵活;3能加工任意三维特征的零件;4能加工包括钢在内的多种材料;5 1微细加工技术简介及国内外研究成果1.1微细加工技术的概念微细加工原指加工尺度约在微米级范围的加工方法。
微细加工工艺技术微细加工工艺技术是一种应用于微电子、光学、纳米学等领域的高精度加工技术,该技术能够实现对微细结构的精密加工。
在微细加工工艺技术中,常常采用的加工方法有激光刻蚀、化学蚀刻、光刻以及微电子束等。
激光刻蚀是一种应用激光照射,通过激光束的高能量将材料表面局部蚀刻的加工方法。
与传统的机械刻蚀相比,激光刻蚀具有高精度、高效率的优点。
在激光刻蚀中,光束的聚焦度和光斑直径是影响加工精度的重要参数。
化学蚀刻是一种利用特定的化学反应,在材料表面选择性地产生化学蚀刻产物,并将其去除的加工方法。
化学蚀刻通常需要制备特定的蚀刻溶液,通过控制溶液的浓度和温度,来影响化学反应的速率和选择性。
化学蚀刻可以实现微细结构的高精度加工,并被广泛应用于光学元件和微流控芯片等领域。
光刻是一种基于光化学反应的加工方法,通过光阻的选择性暴露和去除,来形成所需的图案结构。
在光刻过程中,首先在材料表面涂敷一层光刻胶,然后利用光刻机的紫外光照射和显影等步骤,实现图案的转移。
光刻具有高精度、高分辨率和高重复性的优点,是微细加工中不可或缺的工艺之一。
微电子束也是一种实现微细结构加工的重要方法。
微电子束利用高能电子束在材料表面定向照射,经过准直、聚焦和偏转等步骤,将电子束的能量转化为对材料的加工作用。
通过控制电子束的参数,如能量、聚焦度和扫描速度等,可以实现对微细结构的精密加工。
微电子束在高精度加工领域具有很大的应用潜力,尤其在微电子器件、光电器件以及半导体器件等方面,具有广阔的发展前景。
总的来说,微细加工工艺技术是一种实现高精度加工的重要方法,包括激光刻蚀、化学蚀刻、光刻和微电子束等。
这些加工方法在微电子、光学、纳米学等领域发挥着重要作用,推动了相关技术的进步和应用的发展。
未来随着科学技术的不断进步,微细加工工艺技术将继续发展壮大,为人类社会带来更多的科技成果和应用产品。
微细加工技术的研究与应用随着科技的不断进步和工业的迅速发展,微细加工技术越来越受到人们的关注。
微细加工技术是指针对微细零件、组件和器件进行高精度加工、制造和装配的一种新型技术。
这种技术在汽车、电子、航空、医疗等领域有着广泛的应用前景。
一、微细加工技术的研究1.背景微细加工技术从20世纪90年代初期开始发展,主要是为满足电子器件和微机电系统(MEMS)制造的需要。
在此基础上,微细加工技术不断得到完善和升级,为其他领域的制造和加工提供了思路和方法。
2.研究内容微细加工技术的研究主要包括以下方面:(1)微细机械制造技术;(2)微细电子制造技术;(3)微细光学制造技术;(4)微细生物制造技术。
其中,微细机械制造技术是应用最为广泛的一项技术,主要针对微型零部件、机械组件和器件等进行加工和制造。
3.研究难点微细加工技术的研究面临着许多难点,其中最主要的难点是如何实现高精度加工。
微细零部件的尺寸通常都在数微米至数百微米之间,而传统加工技术所能达到的精度却远远不够。
因此,如何在微小尺度下进行高精度加工,是微细加工技术研究的核心问题。
二、微细加工技术的应用1.汽车制造领域汽车制造领域是微细加工技术应用的主要领域之一。
在汽车制造中,许多零部件的尺寸都很小,而且对加工精度要求很高。
例如,发动机的火花塞、气门、燃油喷嘴等部件;车身的紧固件、密封件和缝合件等,都需要采用微细加工技术进行加工和制造。
2.电子制造领域电子制造领域也是微细加工技术应用的重要领域之一。
在电子制造中,许多IC芯片、闪存和存储器等器件的结构都非常微小,需要采用微细加工技术进行精密加工和制造。
同时,电子制造领域还需要采用微细加工技术进行导电薄膜的制造、微型电极的加工等工作。
3.医疗领域医疗领域也是微细加工技术应用的一个新兴领域。
在医疗领域中,微细加工技术可以用于制造微型手术器械、医用传感器、微型分析芯片等器件,从而为医疗诊断和治疗提供了新的手段和方法。
微型结构零件的精细加工技术现代科技的急速发展推动着各种工业系统的进步与创新。
其中微型结构零件的加工技术则是一个成熟而重要的技术分支。
微型结构零件的加工是一门精细化的技术,需要高度的技术水平和创新能力。
今天我们将就微型结构零件的精细加工技术进行一番探讨。
一、微型结构零件的定义及应用领域微型结构零件是指尺寸在数微米至数十毫米之间、复杂程度高、几何形状丰富的零部件,其一般集成于微机电系统(MEMS)、微流体、微电子机械系统(NEMS)、集成光学系统、集成显微镜以及太赫兹系统等多个领域。
如MEMS是将微电子技术、机械工程技术、工艺技术、半导体技术和材料科学等多学科交叉的新兴技术领域,其在生命科学、医疗器械、工业机械、机器人、汽车、航空等领域中具有广泛应用前景。
相应的,微型组件在MEMS领域中迅速发展,其制造工艺也在不断改进。
二、微型结构零件加工的困难目前,微型结构零件的科学技术水平和制造工艺还处于探索和发展阶段,面临诸多挑战。
一方面,本身加工材料和结构参数的复杂度,一方面则是微型结构零件加工项目日益繁杂,多种重要的技术手段较为复杂,操作难度大,周期长,效果不尽人意。
整个过程中普遍存在的零件加工难度主要有以下几个方面:1.微型尺寸的制造精度要求很高由于零部件形状、大小、精度和表面结构等制造要求和实际应用的限制,微型结构零部件的制造难度较高。
2.缺乏优质辅助材料微型结构零件加工过程中不仅需要使用到稳定性高的机床和辅助设备,同时还需要使用到耐磨、耐高温、高强度等优质辅助材料,这样才能够在零件加工过程中保证零整件不出现误差和失真现象。
3.精细加工工程的全面规划微型结构零件加工流程的规划需要精心设计,严格实施,必须考虑到加工以及后续的一系列工序,包括缺陷检测、界面化处理、表面修整等。
三、微型结构零件加工的技术针对微型结构零件加工难题,近年来采用的微型加工技术不断发展进步。
常见的微小切削加工工艺技术有以下几种:1.喷射加工技术喷射加工技术是以高速流体为研磨剂进行微细加工,通常是将悬浮在液体介质中的磨料、气泡、固体颗粒等喷入加工区,对微型结构零件进行精细加工。
微细加工技术的发展与应用随着科技的不断发展,微细加工技术成为现代工业中不可或缺的一部分。
微细加工技术是指对微小物体进行加工的技术,通常用于制造那些需要高精度或者微小尺寸的零件、设备和器件。
微细加工技术的应用范围非常广泛,包括微型机器人、光学器件、医疗器械、生物传感器等领域。
本文将探讨微细加工技术的发展历程、应用和未来发展趋势。
一、微细加工技术的发展历程微细加工技术源远流长。
在过去的几百年间,人们使用了各种手工工具和机械设备进行微细加工。
例如,19世纪英国人约瑟夫·温斯洛在1822年发明了摆线拖动齿轮切削机,实现了金属齿轮的精细加工。
这一技术被广泛应用于英国的纺织工业,并为工业革命的发展做出了贡献。
20世纪初,随着电气工程和电子学的发展,半导体器件的出现推动了微细加工技术的发展。
1947年,贝尔实验室的威廉·肖克利发明了第一个晶体管,奠定了现代电子工业的基础。
从此以后,微细加工技术得到了巨大的发展,出现了各种各样的微细加工工具和设备。
例如,扫描电子显微镜可以对微小物体进行高分辨率成像和表征,电子束光刻机可以用来制造半导体芯片、具有纳米尺度精度的纳米定位台可以用来进行精细的纳米加工等等。
二、微细加工技术的应用微细加工技术已经广泛应用于多个领域。
以下是一些例子:1. 光学器件光学器件包括激光器、光开关、波导器、光电探测器等。
微细加工技术可以提供高精度和可重复加工,适用于制造这些器件的需求。
例如,电子束光刻机已经被广泛应用于制造半导体激光器和光子晶体器件。
2. 医学器械微细加工技术可以用于制造医学器械,例如微型手术器械和医用传感器。
这些器械需要高精度和微小尺寸,以减少对患者的创伤和疼痛。
微细加工技术可以提供这些要求。
3. 生物传感器生物传感器利用生物体内的化学反应或者生物特性来检测生物分子和细胞。
微细加工技术可以用于制造这些传感器。
例如,电子束光刻机可以用来制造生物芯片,这些芯片可以用于生命科学研究和医学诊断。
探究微细加工技术的发展应用微细加工技术是现代加工技术手段的新发展,是二十一世纪关键技术之一。
随着科学技术的发展,近年来在IT、医疗器械以及通讯领域,人们对微小型零件(如:微型传感器、微型加速度计、微透镜阵列等)的需求日益增加。
这种需求的增加促进了微细加工技术的发展。
在目前的多种微细加工技术中,微机电系统(MicroElectroMechanicalSystem,MEMS)一直是主流技术之一。
由于MEMS 技术衍生于微电子技术,它的主要加工对象被限制在硅基材料上,并且工件的几何形状基本上是简单的二维形状,因而只有在大规模集成电路的批量制造等方面才是经济的。
微细切削加工技术,特别是微细铣削作为MEMS技术的补充,由于其几乎不受加工对象材料和几何形状的限制而受到研究人员的重视,正在成为微细加工技术中的新生力量。
一、微细加工的含义微细加工原指加工尺度约在微米级范围的加工方法。
在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。
广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。
从基本加工类型看,微细加工可大致分为四类:分离加工--将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工--同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工--使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。
微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。
目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。
综述微细加工的主要技术和特点一、微细加工近几年展望21世纪,人类进入微观世界。
在原子分子尺度上,对物质进行操作和加工,无疑会展现出一种相当美好的前景,并引起各方面的广泛重视。
微细加工技术的产生和发展一方面是加工技术自身发展的必然,同时也是新兴的微型机械技术发展对加工技术需求的促进。
超精加工在20世纪的科技发展中做出了巨大的贡献。
东京工业大学的谷口纪男教授首先提出了纳米技术术语,明确提出以纳米精度为超精密加工的奋斗目标。
在超精密加工技术领域起步最早和技术领先的国家是美国,其次是日本和欧洲的一些国家。
美国超精密加工技术的发展得到了政府和军方的财政支持,近年,美国执行了"微米和纳米级技术"国家关键技术计划,国防部陆、海、空三军组成了特别委员会,统一协调研究工作。
美国至少有30多个厂家和研究单位研制和生产各种超精密加工机床,国家劳伦斯.利佛摩尔实验室、联合碳化物公司、摩尔公司、杜邦公司等在国际上均久负盛名。
美国最早研制了能加工硬脆材料的6轴数控超精密研磨抛光机;联合碳化物公司开发了直径为800mm的非球面光学零件的超精密加工机床;劳伦斯.利佛摩尔实验室还开发了能加工陶瓷、硬质合金、玻璃和塑料等难加工材料的超精密切削机床,在半导体工业、航空工业和医疗器械工业中投入使用;珀金-埃尔默等公司用超精密加工技术加工各种军用红外零部件。
日本对超精密技术的发展也十分重视,70年代初,日本成立了超精密加工技术委员会,制定了技术发展规划,成为此项技术发展速度最快的国家。
日本现有20多家超精密加工机床研制公司,重点开发民用产品所需的加工设备并力图使设备系列化,成批生产了多品种商品化的超精密加工机床。
在超精密切削技术发展比较成熟后,日本已将黑色金属、陶瓷和半导体功能材料的超精密加工技术作为重要的研究开发项目。
日本的研究创新意识强,不是单纯地模仿国外的做法,而是积极地利用外国技术并结合本国特点和生存环境,走出了一条自己的发展道路。
激光微细加工技术的研究与应用激光微细加工技术是一种应用非常广泛的前沿技术,能够在微纳尺度下对材料进行加工。
它具有高精度、高效率、高质量的特点,在现代工业中具有非常关键的应用价值。
本文将从激光微细加工技术的原理、发展历程以及应用领域等方面进行深入探究。
一、技术原理激光微细加工技术主要是通过激光在被加工物表面的作用下,使其产生化学反应、物理变化或消失等效应,实现对材料的加工。
其基本原理是通过激光束的聚焦,使光束与材料相互作用,产生较高的局部温度和压力,使物质发生蒸发、沉积、熔化、氧化等变化,从而实现对材料的加工。
二、技术发展历程激光微细加工技术的发展经历了几十年的漫长历程。
20世纪60年代,美国和苏联的科学家们开始在激光微细加工领域进行探索研究。
20世纪70年代,德国、日本、韩国等国家也开始了相关技术的研究。
80年代初,随着计算机技术和控制技术的快速发展,激光微细加工技术得到了迅速的发展。
90年代以来,随着激光技术和材料科学的不断进步,激光微细加工技术在制造业、材料科学、光学等领域得到了广泛应用。
三、技术应用领域激光微细加工技术具有非常广泛的应用领域,在现代工业、科技领域中得到了广泛的应用。
以下将从军事、航空航天、电子信息、生物医学等方面进行介绍。
1. 军事领域:激光微细加工技术在军事装备中得到了广泛应用,如激光导弹制导系统、光电防护系统、军事雷达成像系统等。
2. 航空航天领域:激光微细加工技术在航空航天领域中也得到了广泛应用,如航天器结构、焊接、修补、表面处理等方面。
3. 电子信息领域:激光微细加工技术在电子信息领域得到了广泛应用,如半导体制造、芯片刻蚀、电路打孔、塑胶雕刻等。
4. 生物医学领域:激光微细加工技术在生物医学领域中也得到了广泛应用,如激光治疗、眼科手术、组织切割、药物释放等方面。
四、技术瓶颈虽然激光微细加工技术得到了广泛的应用和发展,但是其仍然存在一些技术瓶颈,如:1. 能量损耗问题:光束在传输过程中会受到各种因素的影响,从而导致损耗。
微细加工技术在电子行业中的应用随着时代的进步和科技的发展,人们对电子设备的需求越来越高,使得电子行业得到了长足的发展。
而微细加工技术正是推动电子行业发展的重要力量之一。
什么是微细加工技术?微细加工技术是指通过各种生产加工技术和设备,对微小物体(如纳米级别的材料和器件)进行制造、加工、修补和检测的技术。
它的出现和发展可以追溯到上个世纪50年代初期,随着微电子学的兴起,这项技术也得到了快速的发展。
微细加工技术不仅能够制造出微型化的电子器件,而且可以使器件的尺寸更小、性能更强,从而提高其在各种应用场景中的竞争力。
现在,微细加工技术在电子行业中已经是不可或缺的一环。
1.晶圆加工晶圆加工是指将硅晶圆上的器件进行加工、制造和测试的过程。
在微细加工技术的帮助下,制造出来的晶圆制品可以更小、更精准,对于半导体行业来说能够使得生产成本更低、生产效率更高,并且器件的性能和可靠性更好。
2.光学元件制造现代的电子设备中很少能够不使用到光学元件,如LED、LCD以及激光器等。
微细加工技术可以制造出光学元件,使得这些设备的尺寸更小、成本更低,并且拥有更高的性能和效率。
3.微型电子元件制造微型电子元件是微细加工技术在电子行业中最常见的应用之一。
通过微细加工技术,可以制造出微型的内存条、存储器、微处理器等电子元件,这些微型设备在大量使用的情况下,具备更高的耐用性、性能优势和长期稳定性。
4.纳米技术纳米技术是一种微细加工技术的分支领域,它使得电子产品的尺寸达到了纳米级别。
对于纳米级别的制造、加工和检测,要求工艺控制能力越强、尺寸精度越高。
利用纳米技术,可以制造出更加精细的电子器件,具有优异的性能表现和更长久的耐久性。
微细加工技术在电子行业中的优势1.精度性高微细加工技术可以将设备的尺寸达到纳米级别,相较于常规生产设备,精度性大大提高。
2.高可靠性微细加工技术制造出来的设备具有更高的性能表现,同时也拥有更长久的耐久性,这使得它们在实际使用中具有更高的可靠性。
微细加工技术的应用和趋势
[摘要]先进制造工艺是先进制造技术的核心和基础,一个国家的制造工艺的水平的高低,在很大程度上决定了其制造业在国际市场的竞争实力。
本文主要介绍先进制造工艺中的微细加工技术在现在各个方面的应用及发展。
[关键词]微机械;微机械加工技术;超微机械加工;光刻加工
引言
随着微纳米技术的不断发展, 以本身形状尺寸微小或操作尺度极小为特征的微机械已成为人们在微观领域认识和改造客观世界的一种高新技术。
微机械由于具有能够在狭小空间内进行作业, 而又不扰乱工作环境和对象的特点, 在航空航天, 精密仪器, 生物医学等领域有着广阔的应用潜力, 且是实现纳米技术( Nanotechnology ) 的重要环节, 因而受到人们的高度重视,被列为21世纪关键技术之首。
1 微机械的特征
微机械在美国常称为微型机电系统( micro-electro-mechanicalsystem,MEMS) ; 在日本称作微机器( micro-machine) ; 而在欧洲则称作微系统( micro-system) 。
微机械按其尺寸特征可以分为1~10mm 的微小型机械, 1nm~1mm 的微机械, 以及1nm~1mm 的纳米机械。
而制造微机械常采用的微细加工又可以进一步分为微米级微细加工( micro-fabricat ion) , 亚微米级微细加工( sub-micro-fabrication) 和纳米级微细加工( nano-fabrication) 等。
概括起来, 微机械具有以下几个基本特点:
1.1 体积小、精度高、重量轻。
其体积可小至亚微米以下, 尺寸精度达纳米级, 重量可轻至纳克。
1.2 性能稳定、可靠性高。
由于微机械的体积甚小, 几乎不受热膨涨, 噪声和挠曲等因素影响, 具有较高的抗干扰性, 可在较差的环境下进行稳定的工作。
1.3 能耗低、灵敏性和工作效率高。
微机械所消耗的能量远小于传统机械的十分之一, 但却能
以十倍以上的速度来完成同样的工作, 如5mm×5mm×0.7mm 的微型泵的流速是比其体积大得多的小型泵的1000倍, 而且机电一体化的微机械不存在信号延迟问题, 可进行高速工作。
1.4 多功能和智能化。
微机械最终要达到集传感器、执行器和电子控制电路为一体的目标, 特别是应用智能材料和智能结构后, 更易于实现微机械的多功能化和智能化。
[1]
1.5 适于大批量生产、制造成本低廉。
微机械采用与半导体制造工艺类似的方法生产, 可以象超大规模集成电路芯片一样一次制成大量的完全相同的部件, 制造成本比之传统机械加工大大降低。
[2]
2 微细加工的工艺方法
2.1 超微机械加工
超微机械加工是指用精密金属切削和电火花、线切割等加工方法,制作毫米级尺寸以下的为机械零件,是一种三维实体加工技术,多是单件加工,单件装配,费用较高。
微细切削加工适合所有金属、塑料及工程陶瓷材料,主要切削方式有车削、铣削、钻削等。
2.2 光刻加工
光刻技术主要应用在微电子中。
它一般是对半导体进行加工,需要一个有部分透光部分不透光的掩模板,通过曝光、显影、刻蚀等技术获得和掩模板一样的图形。
先在处理过后的半导体上涂上光刻胶,然后盖上掩模板进行曝光;其中透光部分光刻胶的化学成分在曝光过程中发生了变化;之后进行显影,将发生化学变化的光刻胶腐蚀掉,裸露出半导体;之后对裸露出的半导体进行刻蚀,最后把光刻胶去掉就得到了想要的图形。
光刻技术在微电子中占有很大的比重,比如微电子技术的进步是通过线宽来评价的,而线宽的获得跟光刻技术有很大的关系。
3 微细加工技术的尖端应用
3.1 搬迁原子
1990年,美国圣何塞IBM阿尔马登研究所科学家用STM将镍表面吸附的氙原子逐一移动,最终以35个氙原子排成IBM三个字母。
每个字母高5nm,原子间的最短距离为1nm。
这一成果开创了人类单原子操纵研究的先河,表明人类不仅可以用SPM观察、测量试样表面上的原子、分子结构,而且可以根据人的意志随意加工制造出原子级的人工结构。
将原子、分子进行重新组装、排列成一定的形状,是一种典型的“从下至上”构筑物质结构的最终极形式。
1埃=0.1纳米。
[3]
3.2 微机器人
微机器人(Micro-Robot)是相对比较完备的微型电子机械系统(MEMs)的代表。
微机器人的应用主要集中在工业领域、医学领域及基础学科研究领域,在移动或处理微组织,区分细胞,DNA分析,运用STM或AFM操纵样品等各项研究方面,微机器人都发挥着重要作用。
在生物医疗方面,微机器人可辅助进行细胞区分等辅助诊断以及眼部、脑部微纫手术。
4 微细加工的重要地位和趋势
微细加工技术是精密加工技术的一个分支,面向微细加工的电加工技术,激光微孔加工、水射流微细微细加工技术是精密加工技术的一个分支,面向微细加工的电加工技术,激光微孔加工、水射流微细切割技术等等在发展国民经济,振兴我国国防事业等发面都有非常重要的意义,这一领域的发展对未来的国民经济、科学技术等将产生巨大影响,先进国家纷纷将之列为未来关键技术之一并扩大投资和加强基础研究与开发。
所以我们有理由有必要加快这一领域的发展和开发进程。
随着20世纪80年代后期微机械、微机电系统这一门新兴交叉学科的兴起,微细加工技术作为获得微机械、微机电系统的必要手段,得到了快速的发展。
微细加工技术起源于平面硅工艺,但随着半导体器件、集成电路、微型机械等技术的发展与需求,微细加工技术已经成为一门多学科交叉的制造系统工程和综合高新技术,广泛应用于医疗、生物工程、信息、航空航天、半导体工业、军事、汽车等领域,给国民经济、人民生活和国防、军事等带来了深远的影响,被列为21世纪关键技术之一。
现代制造技术的发展有两大趋势:一是向着自动化、柔性化、集成化、智能化等方向发展,另一个就是寻求固有制造技术的自身微细加工极限。
[4]
总结
未来微机械和微细加工技术的研究仍然要立足于微观理论基础的研究和微细加工技术的探讨开发上。
随着人们对微观世界的深入了解和掌握,微细加工技术手段必将发展向更高的层次,促进人类社会通往更高层次的文明时代。
参考文献
[1] 尚广庆,孙春华. 纳米切削加工模型的研究[M]. 北京:北京出版社,2007.27—30.
[2] 林滨,韩雪松. 于思远等. 天津大学学报[J]. 天津:天津出版社,2000.33(5):652—656.
[3] 傅惠南,李锻能. 王成勇. 纳米机械加工与材料表面性质研究[M]. 湖北:湖北出版社, 2003.22(3):210~212.
[4] 张云电.,黄文剑.摩擦副工作表面微坑超声加工方法的研究[M].北京:高等教育出版社, 2004(14).。