浙教版初中数学七年级上册4.3 代数式的值
- 格式:pdf
- 大小:993.05 KB
- 文档页数:5
4.3代数式的值一、选择题1.已知|x|=3,|y|=2,且xy>0,则x−y的值等于()A. 5或−5B. 1或−1C. 5或1D. −5或−12.若|a|=8,|b|=5,且ab<0,那么a−b的值为()A. 3或13B. 13或−13C. 8或−8D. −3或−133.已知m是√15的整数部分,n是√10的小数部分,则m2−n的值是()A. 6−√10B. 6C. 12−√10D. 134.已知|2m+n+1|+(3y+1)2=0,则3y+2m+n的值是()A. 1B. 0C. −2D. 25.已知代数式x−5y的值是100,则代数式−2x+10y+5的值是()A. 205B. −200C. −195D. 2006.已知a+b=12,则代数式2a+2b−3的值是()A. 2B. −2C. −4D. −3127.若a,b互为相反数,c,d互为倒数,则代数式(a+b−1)(cd+1)的值是()A. 1B. 0C. −1D. −28.已知a2+3a=1,则代数式2a2+6a−1的值为()A. 0B. 1C. 2D. 39.已知a+b=4,则代数式1+a2+b2的值为()A. 3B. 1C. 0D. −110.若x2−3x−5=0,则6x−2x2+5的值为()A. 0B. 5C. −5D. −10二、填空题11.如果m−n=3,那么2m−2n−3的值是______.12.在一次智力竞赛中,主持人问了这样的一道题目:“a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,请问:a、b、c三数之和为多少?”你能回答主持人的问题吗?其和应为______.13.若|x−5|+(y+1)2=0,则xy的值是_______14.有理数2,+7.5,−0.03,−300%,0,中,非负整数有a个,负数有b个,正分数有c个,则a−b+c=__________.三、解答题15.已知a,b互为相反数,m,n互为倒数,c的绝对值为2,求代数式a+b+mn−c的值.16.某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式分别表示去甲、乙两店购买所需的费用;(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)当需要购买40盒乒乓球时,你能给出一种更为省钱的方法吗?试写出你的购买方法和所需费用.17.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a−b+2c−d|的倒数.答案和解析1.【答案】B【解析】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=−3,y=−2.∴x−y=±1.故选:B.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.本题考查了代数式求值、绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.2.【答案】B【解析】【分析】本题主要考查的是绝对值,有理数的乘法,有理数的减法,代数式求值的有关知识,先根据ab<0可以得到a,b异号,然后求出a,b,再代入代数式求值即可.【解答】解:∵ab<0,∴a,b异号,∵|a|=8,|b|=5,∴a=8,b=−5或a=−8,b=5,∴a−b=8−(−5)=13或a−b=−8−5=−13.故选B.3.【答案】C【解析】略4.【答案】C【解析】【分析】本题主要考查了绝对值,完全平方的非负性,令2m+n+1=0,3y+1=0,运用整体代入可以求出2m+n=−1,3y=−1的值代入即可求出结果.【解答】解:∵|2m+n+1|+(3y+1)2=0∴2m+n+1=0,3y+1=0∴2m+n=−1,3y=−1∴3y+2m+n=−2.故选C.5.【答案】C【解析】【分析】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.原式前两项提取−2变形后,把已知x−5y=100代入计算即可求出值.【解答】解:∵x−5y=100,∴原式=−2(x−5y)+5=−200+5=−195故选C.6.【答案】B【解析】【分析】本题主要考查的是代数式求值,运用了整体代入法的有关知识,将给出的代数式进行变形,然后整体代入求值即可.【解答】解:∵a+b=12,∴原式=2(a+b)−3=2×12−3=1−3=−2,故选B.7.【答案】D【解析】【分析】本题主要考查的是代数式求值,相反数,倒数的有关知识,先利用相反数,倒数的定义得到a+b=0,cd=1,然后代入代数式求值即可.解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴原式=(−1)×(1+1)=−2,故选D.8.【答案】B【解析】【分析】此题主要考查了代数式求值,正确将原式变形是解题关键.直接利用已知将原式变形,然后整体代入计算即可求出答案.【解答】解:∵a2+3a=1,∴2a2+6a=2(a2+3a)=2∴2a2+6a−1=2−1=1.故选B.9.【答案】A【解析】解:当a+b=4时,原式=1+12(a+b)=1+12×4=1+2=3,故选:A.将a+b的值代入原式=1+12(a+b)计算可得.本题主要考查代数式求值,解题的关键是得出待求代数式与已知等式间的特点,利用整体代入的办法进行计算.10.【答案】C【解析】本题考查了代数式求值,整体代入法,关键是由x2−3x−5=0,得x2−3x=5把x2−3x看作一个整体,代入计算的值即可.【解答】解:6x−2x2+5,=−2x2+6x+5=−2(x2−3x)+5=−2×5+5=−5.故选C.11.【答案】3【解析】解:∵m−n=3,∴原式=2(m−n)−3=2×3−3=6−3=3.故答案为:3.原式前两项提取公因式变形后,把已知等式代入计算即可求出值.此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.【答案】2【解析】解:∵a是最小的正整数,b是最大的负整数的相反数,c是绝对值最小的有理数,∴a=1,b=1,c=0,∴a+b+c=1+1+0=2.故答案是2.先根据已知条件求出a、b、c的值,再代入代数式求值即可.解题的关键是先求出a、b、c的值,然后再求代数式的值.13.【答案】−514.【答案】2【解析】【分析】本题考查了有理数的分类,解题的关键是分类的标准要不重不漏的找到符合条件的a,b,c的值.根据有理数的分类标准把给出的非负整数有a个,负数有b个,正分数有c 个,,即可求出a−b+c的值.【解答】解:有理数2,+7.5,−0.03,−300%,0中,非负整数有3个,负数有2个,正分数有1个,则a−b+c=3−2+1=2.故答案为2.15.【答案】解:∵a,b互为相反数,m,n互为倒数,c的绝对值为2,∴a+b=0,mn=1,c=±2,当c=2时,a+b+mn−c=0+1−2=−1;当c=−2时,a+b+mn−c=0+1−(−2)=0+1+2=3;由上可得,代数式a+b+mn−c的值是−1或3.【解析】本题考查的是相反数定义,倒数定义和绝对值的性质以及代数式的值,根据a,b互为相反数,m,n互为倒数,c的绝对值为2,可以求得a+b,mn、c的值,从而可以求得所求式子的值.16.【答案】解:(1)甲店购买需付款48×5+(x−5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=40时,甲店需12×40+180=660元;乙店需10.8×40+216=648元;所以乙店购买合算;(3)先甲店购买5副球拍,送5盒乒乓球240元,另外35盒乒乓球再乙店购买需378元,共需618元.【解析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买即可.此题考查列代数式,理解两种方案的优惠方案,得出运算的方法是解决问题的关键.17.【答案】解:∵a是最小的正整数,∴a=1,∵b是最大的负整数,∴b=−1,∵c是绝对值最小的有理数,∴c=0,∵d是数轴上到原点距离为5的点表示的数,∴d=±5,∴|3a−b+2c−d|=|3+1+0−5|=1或|3a−b+2c−d|=|3+1+0+5|=9∴|3a−b+2c−d|的倒数为1或19【解析】本题主要考查了有理数的加减混合运算,有理数、绝对值,数轴及倒数,熟练掌握各自的定义是解决本题的关键.根据最小的正整数为1,最大的负整数为−1,绝对值最小的有理数为0,以及数轴上到原点距离的定义,确定出a,b,c,d的值,即可求出|3a−b+2c−d|的值,再求出其倒数即可.。
浙教版数学七年级上册4.3《代数式的值》(第1课时)教学设计一. 教材分析本节课的内容是浙教版数学七年级上册4.3《代数式的值》。
这部分内容是学生在掌握了有理数、整式、函数等基础知识后的进一步学习,是学生进一步学习代数式的基础。
本节课主要让学生了解代数式的概念,学会计算代数式的值,并能够运用代数式解决一些简单的问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数、整式、函数等知识有一定的了解。
但是,学生对代数式的概念可能还比较陌生,需要通过实例来理解和掌握。
学生在计算代数式的值时,可能会遇到一些困难,需要通过练习来提高。
三. 教学目标1.知识与技能:让学生了解代数式的概念,学会计算代数式的值,并能够运用代数式解决一些简单的问题。
2.过程与方法:通过实例的展示和练习,让学生掌握代数式的计算方法,提高学生的计算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:代数式的概念,计算代数式的值的方法。
2.难点:灵活运用代数式解决实际问题。
五. 教学方法本节课采用实例教学法、问题驱动法、小组合作法等教学方法。
通过实例的展示和问题的提出,引导学生思考和探索,激发学生的学习兴趣。
同时,通过小组合作,让学生互相交流和讨论,提高学生的合作能力。
六. 教学准备1.教师准备:准备好相关的教学材料,如PPT、例题、练习题等。
2.学生准备:预习相关的知识,了解代数式的概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如“小明的年龄比小红大3岁,小红今年12岁,请问小明今年几岁?”让学生思考和回答,引导学生了解代数式的概念。
2.呈现(10分钟)教师通过PPT展示代数式的定义和计算方法,让学生初步了解代数式的概念,并学会计算代数式的值。
3.操练(10分钟)教师给出一些代数式的计算题目,让学生独立完成,并互相交流和讨论。
教师在这个过程中给予学生指导和帮助,解答学生的问题。
七年级数学上册第4章代数式4.3代数式的值说课稿(新版浙教版)一. 教材分析《浙教版七年级数学上册》第4章介绍了代数式,而4.3节着重讲解了代数式的值。
这部分内容是学生在掌握了代数式的基本概念和运算法则后,进一步深化对代数式理解的重要环节。
通过本节课的学习,学生将能够求解各种代数式的值,从而为后续的方程和不等式学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对代数式有一定的认识。
但是,他们在处理复杂的代数式求值问题时,可能会感到困惑,特别是对于含有多个未知数的代数式。
因此,在教学过程中,我需要关注学生的认知水平,针对性地进行教学。
三. 说教学目标1.知识与技能目标:学生会求解简单代数式的值,并能运用所学知识解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流,培养观察、分析和解决问题的能力。
3.情感态度与价值观目标:学生体会数学与生活的联系,增强学习数学的兴趣和自信心。
四. 说教学重难点1.教学重点:求解代数式的值,熟练运用代数式的运算法则。
2.教学难点:对于含有多个未知数的代数式,如何正确求解其值。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和合作学习法。
2.教学手段:利用多媒体课件、黑板和教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引入代数式的值的概念。
2.自主学习:学生根据导学案,独立探索代数式的值求解方法。
3.合作交流:学生分组讨论,分享解题心得,互相答疑。
4.课堂讲解:教师针对学生遇到的问题,进行讲解和示范。
5.练习巩固:学生完成课后练习,巩固所学知识。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
7.课后作业:布置适量的课后作业,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
主要包括以下几个部分:1.代数式的值的概念;2.代数式的运算法则;3.求解代数式的值的步骤;4.实例分析。
《代数式的值》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在初中数学课程《代数式的值》第一课时所学的知识,通过练习让学生熟练掌握代数式的概念、性质和计算方法,提高学生的数学思维能力和解题能力。
二、作业内容本作业内容主要围绕代数式的概念、性质和计算方法展开,具体包括以下几个方面:1. 代数式的基本概念:通过练习题让学生熟悉代数式的定义、分类和表示方法,如单项式、多项式等。
2. 代数式的性质:通过例题和练习题让学生掌握代数式的基本性质,如加减乘除、因式分解等,并能熟练运用这些性质进行计算。
3. 代数式计算方法的训练:本部分是本课时作业的重点内容。
练习题目需设计一些基础的代数式运算题目,包括加减乘除运算、平方根运算等,以及一些涉及变量代换和运算的题目。
同时,为了加强学生对知识的理解和掌握,可设计一些综合性较强的题目,如含有多个未知数的代数式计算等。
4. 实际问题中的应用:通过一些实际问题的练习,让学生了解代数式在现实生活中的应用,例如求函数的值、计算物品价格等。
三、作业要求1. 学生需在完成作业前仔细阅读作业内容和要求,理解每道题目的含义和要求。
2. 学生在解题过程中应严格按照数学运算的规范进行,避免出现错误。
同时,要注重对题目中关键词的理解和把握。
3. 学生在解题过程中要独立思考,遇到问题时应先尝试自己解决,如无法解决可向老师或同学请教。
4. 学生在完成作业后应认真检查答案,确保答案的准确性和完整性。
同时,要注意答案的书写规范和整洁度。
四、作业评价本作业的评价标准主要包括以下几个方面:1. 正确性:答案的正确性是最重要的评价标准,学生应确保每道题目的答案都是正确的。
2. 规范性:学生在解题过程中应遵循数学运算的规范,避免出现错误。
3. 创新性:鼓励学生在解题过程中尝试不同的方法和思路,展示其创新能力和数学思维。
4. 整洁度:答案的书写应整洁、规范,避免出现涂改和乱写乱画的情况。
五、作业反馈教师应对学生的作业进行认真批改和评价,及时给予学生反馈和建议。
课题 代数式的值 班级 组名 姓名 学号 【课前自学】学习目标:1.理解代数式的值的概念.2.会求代数式的值.3.会用代数式解决简单实际问题. 通过求代数式的值渗透特殊与一般的辩证关系思想.学习重点:求代数式的值.学习难点: 代数式的值的概念.北京时间 莫斯科时间1、北京时间与莫斯科时间的时差为5时,若用x 表示莫斯科时间,那么同一时刻的北京时间是__________(用代数式表示)2、2001年7月13日,莫斯科时间17:08,国际奥委会主席萨马兰奇宣布,北京获得2023年第29届夏季奥运会的主办权,,能说出此时北京的具体时间吗?你是怎么知道的?3、填一填:右图是一个数值转换机,则图中的输出结果是________。
4、根据自己的理解,说说什么是代数式的值?用数值代替代数式里的字母,计算后所得的结果,叫做【课堂导学】二、创设情景,激发求知1、如图(见课本94页做一做图)表示同一时刻的英国伦敦(夏时制)时间和北京时间.(1) 你能根据右图知道北京与伦敦(夏时制)的时差吗?(2) 设伦敦(夏时制)时间为x ,怎样用关于伦敦(夏时制)时间x 的代数式表示同一时刻的北京时间?(3) 第30届夏季奥运会定于当地时间2012年7月27日20时12分在伦敦举行开幕式. 问开幕式开始时的北京时间是几时? 三、合作探究,生成新知 1、当n 分别取下列值时,求代数式2)1(-n n 的值。
(1) n =-1(2) n =4(3) n =2、当x 分别取下列值时,求代数式20(1+x %)的值. (1) x =40(2) x =25.四、实践体验,学会求知1、圆柱的体积等于底面积乘高。
如果用h 表示圆柱的高,r 表示底面半径,V 表示圆柱的体积。
(1)用字母h ,r ,V 写出圆柱的体积公式。
(2)求底面半径为50cm ,高为20cm 圆柱的体积。
2、当x =-2,y =31-时,求下列代数式的值.(1) 3y - x输出-3×66x ↓↓输入x(2) |3y +x |五、课堂小结,加深体验(1)求代数式的值的方法:先代入,后计算.运算时既要分清运算种类,又要注意运算顺序.(2)列代数式是从特殊到一般;求代数式的值是从一般到特殊,体现了特殊与一般的辩证关系 六、当堂检测,反馈落实1.当a=-2,b=-1时,1-|b-a|=_____2.代数式3x 2的值( ) A 、 大于3; B 、、 等于3; C 、 大于或等于3; D 、 小于33. 当x 分别取下列值时,求代数式4-3x 的值. (1) x =1(2) x =34(3)x =-65.4. 当a =3,b =-32时,求下列代数式的值.(1) 2ab(2) a 2+2ab +b2.5.一种蓝喉蜂鸟的心跳频率是鸟类中最快的,每分钟心跳的次数大约是1260次.写出这种蜂鸟n 分钟心跳的次数,并计算这种蜂鸟一天心跳的次数.6.若将一个棱长为10cm 的立方体的体积减少V (cm 3),而保持立方体形状不变,则棱长应减少多少厘米?若V =875cm 3,则棱长应减少多少厘米?。
4.3 代数式的值学习指要知识要点1.代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值2.利用代数式求值推断代数式所反映的规律3.解释代数式的值的实际意义重要提示1.求代数式的值是由一般的式子到特殊的数的问题,代数式里的字母取值要使代数式有意义如:代数式中要保证分母x-2≠0,即x不能取22.求代数式的值的步骤:(1)代人:代入时要注意:①如果代数式中省略乘号,代入后必须添上乘号.②如果字母给出的值是负数或分数,并作乘方或乘法运算,代入时都必须添上括号.③代人数值时,要“对号入座”,谨防混淆.④当题目按常规方法不能求解时,要充分利用“整体思想”将某一代数式作为一个整体,用“整体代入法”求解,解答此类问题的关键是确定合适的整体.(2)计算:计算时要注意运算顺序,同时考虑运用运算律简化运算.课后巩固之夯实基础一、选择题1.(2018·湖州长兴县期中)当x =-1时,代数式3x +1的值是( ) A .-1B .-2C .4D .-42.当x =-1时,下列代数式:①1-x ,②1-x 2,③-12x ,④1+x 3中,值为零的有( )A .1个B .2个C .3个D .4个3.(2018·杭州萧山区戴村片期中)当a =3,b =-1时,代数式0.5(a -2b)的值是( ) A .1B .0.5C .-2.5D .2.54.(2018·温州龙港镇期中)若2x -y =-3,则代数式1-4x +2y 的值等于( ) A .7B .-5C .5D .-45.若x =y =-1,a ,b 互为倒数,则代数式12(x +y)+3ab 的值是( )A .2B .3C .4D .3.56.下列代数式中,值一定为正数的是( ) A .(x +2)2 B .|x +1| C .(-x)2+2D .1-x 27.(2017·杭州大江东期中)如图K -23-1是一个数值运算程序,当输入x 的值为-2时,输出的结果为( )图K -23-1A .3B .8C .64D .638.图K-23-2中的图形都是由若干个灰色和白色的正方形按一定规律组成的,图①中有2个灰色正方形,图②中有5个灰色正方形,图③中有8个灰色正方形,图④中有11个灰色正方形……按此规律,图⑩中灰色正方形的个数是()图K-23-2A.32 B.29 C.28 D.26二、填空题9.当a=1,b=2时,代数式a2-ab的值是________.10.同一时刻北京的时间为7:00时,悉尼的时间是9:00.若北京时间用a表示,则悉尼时间为________,当北京时间为23:00时,悉尼时间为__________.11.(2017·湖州长兴县期末)已知实数x,y满足|x-4|+y+11=0,则代数式x-y 的值为________.12.(2018·绍兴嵊州期末)若a-b=2,则代数式5-2a+2b的值是________.13.某市出租车收费标准为起步价10元,3千米后每千米加收2元,那么乘坐出租车x(x>3)千米的收费y(元)的计算公式是y=__________,如果某人乘坐出租车5千米,那么应收费______元.14.(2018·杭州开发区期末)如图K-23-3是一种数值转换机的运算程序.若第一次输入的数为7,则第2018次输出的数是________;若第一次输入的数为x,使第2次输出的数也是x,则x=__________.图K-23-3三、解答题15.(2018·湖州长兴县期中)当a=2,b=-1时,求下列代数式的值:(1)2a+5b;(2)a2-2ab+b2.16.(2018·宁波余姚期末)已知2x-y=5,求-2(y-2x)2+3y-6x的值.17.若将一个棱长为8 cm的立方体的体积减小V cm3,而保持立方体形状不变,则棱长应减小多少厘米?若V=504,则棱长应减小多少厘米?18.(2018·衢州期中)“囧”(jiǒng)是一个风靡网络的流行词,像一个人脸郁闷的神情.如图K-23-4所示,一张边长为20 cm的正方形纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形的长和宽分别为x cm,y cm,剪去的两个小直角三角形的两直角边长也分别为x cm,y cm.(1)用含有x,y的代数式表示图中“囧”字图案(阴影部分)的面积;(2)当x=8,y=6时,求此时“囧”字图案(阴影部分)的面积.图K-23-419.(2018·湖州长兴县期中)某农户承包果树若干亩,收获水果总产量为20000千克,此水果可以在果园直接销售,也可以运去市场销售.已知在果园直接销售每千克售a元;在市场上每千克售b元,农户将水果运到市场销售平均每天售出1000千克,且在运到市场的过程中,需每天开支400元.(1)分别用含a,b的代数式表示两种方式销售水果的收入;(2)若a=4,b=4.5,且两种销售水果的方式都在规定的时间内售完全部水果,请你通过计算说明选择哪种销售方式较好.课后巩固之能力提升20.探索发现(2018·温州龙港镇期中)填写下表,观察下列两个代数式的值的变化情况:用代入检验的方法说明哪个代数式的值先超过100.21.新学期,两摞规格相同的数学课本整齐地叠放在课桌上,请根据图K-23-5(示意图)中所给出的数据信息,解答下列问题:(1)每本课本的厚度为________cm,课桌的高度为________cm;(2)若将x本同样规格的数学课本整齐地叠放在课桌上,则桌面上的课本距地面的高度为________cm(用含x的代数式表示);(3)桌面上有55本与(1)中规格相同的数学课本,它们整齐地叠放成一摞,若18名同学每人从中取走1本,则余下的数学课本距地面的高度是多少?图K-23-5详解详析1.[答案] B2.[答案] B3.[答案] D4.[答案] A5.[答案] A6.[答案] C7.[解析] D当x=-2时,输出(-2)2-1=3,再把x=3代入x2-1中,得x2-1=32-1=8,再把x=8代入x2-1中,得x2-1=82-1=63.∵63>50,∴输出的结果是63.故选D.8.[解析] B因为图①中有2个灰色正方形,2=3-1=3×1-1,图②中有5个灰色正方形,5=6-1=3×2-1,图③中有8个灰色正方形,8=9-1=3×3-1(3n -1)个灰色正方形,所以图⑩中灰色正方形的个数是3×10-1=29.故选B.9.[答案] -1[解析] a2-ab=12-1×2=-1.10.[答案] a+2次日1:00[解析] 悉尼与北京的时间差为2小时,所以当北京时间为a时,悉尼时间为a+2,当a=23时,a+2=25,即次日1:00.11.[答案] 15[解析] 因为|x-4|+y+11=0,所以x-4=0,y+11=0,所以x=4,y=-11,所以x-y=15.12.[答案] 113.[答案] 10+2(x -3) 14 14.[答案] 2 6或0或3 15.[答案] (1)-1 (2)9 16.[答案] -6517.解:棱长应减小⎝⎛⎭⎫8-383-V cm. 当V =504时, 棱长应减小8-383-504=6(cm).18.[解析] (1)直接利用正方形面积-2×三角形面积-长方形面积即可得出答案;(2)利用(1)中所求,将x ,y 的值代入,得出答案.解:(1)“囧”字图案阴影部分的面积=20×20-12xy×2-xy =(400-2xy)cm 2.(2)当x =8,y =6时,原式=400-2×8×6=304.故当x =8,y =6时,“囧”字图案(阴影部分)的面积为304 cm 2. 19.解:(1)在果园直接销售收入为20000a 元; 将这批水果运到市场上销售收入为(20000b -8000)元. (2)当a =4时,在果园直接销售收入为20000×4=80000(元);当b =4.5时,将这批水果运到市场上销售收入为20000×4.5-8000=82000(元). 因为82000>80000,所以选择运到市场上销售较好. [素养提升] 20.解:填表如下:因为当x =15时,12x 2=2252>100,6x -8=82,所以12x 2的值先超过100.21解:(1)每本课本的厚度为(88-86.5)÷(6-3)=0.5(cm); 课桌的高度为86.5-3×0.5=85(cm).故答案为0.5,85. (2)因为x 本课本的高度为0.5x cm ,课桌的高度为85 cm , 所以这些课本距地面的高度为(85+0.5x )cm. 故答案为(85+0.5x ).(3)当x =55-18=37时,85+0.5x =103.5. 故余下的数学课本距地面的高度为103.5 cm.。
浙教版七上数学《第4章代数式》微课教学知识点(文末下载)第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减知识点总结第四章代数式1.代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2.代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt;②数字与字母相乘时,数字应写在字母前面,如4a;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如五分之十二应写作二又五分之二;④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米3.代数式的系数:代数式中的数字中的数字因数叫做代数式的系数。
如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。
a3b 的系数是14.代数式的项:代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5.单项式:由数与字母的乘积组成的式子叫做单项式。
6.系数:单项式前面的数字因数叫做这个单项式的系数。
7.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。