VICKERS威格士pvh074柱塞泵型号介绍
- 格式:pdf
- 大小:180.89 KB
- 文档页数:5
vickers叶片泵技术参数Vickers叶片泵是一种常见的液压泵,主要用于工业领域的流体传输和控制。
本文将就Vickers叶片泵的技术参数进行详细介绍。
一、基本介绍Vickers叶片泵是由美国Vickers公司研发生产的一种液压泵,其结构简单,操作可靠,广泛应用于各种工业设备中。
该泵采用旋转叶片的工作原理,通过液体介质的流动来实现流压转换,从而提供所需的流量和压力。
二、技术参数1. 排量(Displacement)Vickers叶片泵的排量是指单位时间内泵所输送流体的体积大小,单位通常为毫升/转或立方英寸/转。
排量的大小决定了泵的流量输出能力,通常情况下,排量越大,流量输出越大。
2. 压力(Pressure)液压泵的压力是指在泵出口处产生的压力,单位通常为巴(bar)或磅/平方英寸(psi)。
Vickers叶片泵具有较高的最大工作压力,通常可达到200-300巴或3000-5000磅/平方英寸。
3. 转速(Speed)Vickers叶片泵的转速是指泵的输入轴转动一周所需的时间,单位通常为转/分钟。
转速是影响泵输出流量和压力的重要参数之一,通常根据实际应用需求进行选择。
4. 效率(Efficiency)Vickers叶片泵的效率是指泵的能量转换效率,反映了泵输送流体所消耗的能量与所提供的输出能量之间的比例关系。
泵的效率一般在60%至90%之间,高效率的泵能够减少能源的浪费。
5. 工作温度(Operating Temperature)Vickers叶片泵的工作温度是指泵能够正常工作的环境温度范围,高温或低温环境都可能对泵的正常运行产生影响。
通常情况下,Vickers叶片泵的工作温度范围在-20°C至+80°C之间。
6. 噪音(Noise)Vickers叶片泵的噪音是指泵在运转过程中产生的噪音水平,单位通常为分贝(dB)。
为了保证工作环境的舒适度和安全性,Vickers叶片泵通常被要求在设计上具有较低的噪音水平。
PVH Piston PumpsIncluding ControlsVickers ®Piston Pump sOverhaul ManualSection 1 – IntroductionA. Purpose of ManualThis manual describes basic operating characteristics and provides overhaul information for the VickersPVH 57/74/98/131 series piston pumps. The information contained herein pertains to the latest design series as shown in the model code.B. Related PublicationsInstallation dimensions for the PVH series pumps and controls are not included in this manual. Individual parts numbers for the basic pumps are also not included. Refer to the related publication list below for publications that include this type of information.PVH57Service drawing M–2206–SPVH74Service drawing M–2207–SPVH98Service drawing M–2208–SPVH131Service drawing M–2209–SPVH Series Application GB–C–2010C. Model Code DescriptionVariations within each basic model series are covered in the model code as shown on the next page. Service inquires should always include the complete unit model code number as stamped on the name plate, and the assembly number as stamped on the mounting flange.Model CodeN = ISO 3014/2- Short straight E32N keyed 1 =SAE ”C ”Straight(J744-32-1)keyed 2 =SAE “C ”G Splined 14 tooth(J744-32-4)12/24 D.P .3 =SAE “CC ” Splined 17 tooth (J744-38-4)12/24 D.P .12 = SAE “D ” Splined 13 tooth (J744-44-4) 8/16 D.P .13 = SAE “C Straight (J744-38-1) keyed 16 = SAE “D “ Straight(J744-44-1) keyedBlank = Non-thru-drive (single pump)A = Thru-drive pump with SAE“A ” 2-bolt rear flange mounting (SAE J744-82-2)B = Thru- drive pump with SAE “B ” 2- and 4-bolt rear flangemountings ♦(SAE J744-101-2/4)C = Thru-drive pump with SAE “C ” 2- and 4-bolt rear flange mountings ♦(SAE J744-127-2/4)S = Adjustable maximum volume stop (non-thru-drive andnon-torque-control pumps only)PVH *** QI * – * (*) * – ** * – 10 – C(M) ** (**) (**) – *0 – ***** = Customer desired torque limitersetting specified in ten bar (145 psi) increments, e.g.: 8 = 80 bar (1160 psi); 18 = 180 bar (2610 psi).The torque setting range is from 30–80% of the specified compensator setting.C = 70-250 bar (1015-3625 psi) (standard)CM = 40-130 bar ((580-1885 psi) (optional QI version)IC = Industrial controlUV = Unloading valve control for accumulator circuitsShaft seal, prime mover endS = Single, one-way (standard)D = Double, two-way (optional)Recommended on second pump of tandem assembly (PVH**/ PVH**)Maximum geometric displacement46810 57 = 57.4 cm 3/r (3.5 in 3/r) 74 = 73.7 cm 3/r (4.5 in 3/r) 98 = 98.3 cm 3/r (6.0 in 3/r)131 = 131.1 cm 3/r (8.0 in 3/r)711Mounting flange, prime mover endC = SAE “C ” 4–bolt type (SAE J744-127-4 )M = ISO 3019/2–125B4HW (Option for PVH57QI and PVH/74QI only)R = Right hand, clockwise (Standard on QI models)L = Left hand, counterclockwise (Optional on QI models)ConfigurationMain portsF = SAE 4-bolt flange pads (standard )M = SAE 4-bolt pads with metricmounting bolt threads (PVH57 & PVH74 only)Shaft-end type, at prime mover end9Pump design numberPressure compensatoradjustment rangeMobile pumpsIndustrial pumpsShaft rotation, viewed atprime mover end 5234567891112132PVH *** - C – * (*) * – ** * – 10 – C ** (**) (**) – *0 – ***1410Additional control functions13Blank = No additional controlsV = Load sensing, 20 bar differential pressure setting T = Torque limiterVT = Load sensing and torque limiterTorque limiter factory setting1415Control design number31 = C, CM, or C**V controls.13 = C**T controls 14 = C**VT controls 10 = UV and IC controls♦Built from pump with SAE “A ” rear pad to which suitable flange adapter is bolted. For best availability and flexibility,order PVH SAE “A ” thru-drive pump and SAE “B ” or “C ” adapter kit separately.10 (Subject to change. Installation dimensions unaltered for design numbers 10 to 19 inclusive. )245678910131415151225 = Normal factory setting of 250 bar for “C ” models.7 = Normal factory setting of 70 bar for “CM ” models.Pressure compensator factorysetting in tens of bar16Special features suffix027= Composite 2-bolt/4-bolt mounting conforming to SAE “C ” (except PVH131)031= Thru-drive SAE “A ” pad cover041= No case-to-inlet relief (for use with supercharged circuits)057= Shaft-up operation (vertical mount)Torque restrictions apply to #2 shaft inPVH74 and 98 thru-drive, and PVH131single and thru-drive, pumps. Vickers is not responsible for misapplied usage of these shafts. Please contact a Vickers representative for review of your application.G 111Piston pump, variabledisplacement11312163Industrial version16Section 2 – DescriptionA. Basic PumpFigure 1 shows the basic construction of the PVH series piston pump. Major parts include the drive shaft, housing,yoke, rotating group, valve plate, control piston, bias piston,valve block and compensator control. The PVH seriesreplaces the pintle bearing assembly with saddle bearings,which reduces weight and eliminates the roller bearings that added to maintenance time and overhaul costs.B. Pump ControlsTwo common pump control types are available. One type is the standard “C ” compensator control that limits pump outlet pressure to a desired level. The other type is the “CV ”pressure limiter/load sensing control. Now available is the “IC ” (Industrial Control) which can be used as a load sensing compensator, remote compensator control andelectrohydraulic control. These limit pump outlet pressure and also regulate pump displacement to match load requirements.Section 3 – Principles of OperationA. Pump OperationRotation of the pump drive shaft causes the cylinder block,shoe plate and pistons to rotate (See Figure 2). The piston shoes are held against the yoke face by the shoe plate. The angle of the yoke face creates a reciprocating motion to each piston within the cylinder block. Inlet and outlet ports connect to a kidney slotted wafer plate. As the pistons move out of the cylinder block, a vacuum is created and fluid is forced into the void by atmospheric pressure. The fluid moves with the cylinder block past the intake kidney slot.The motion of the piston reverses and fluid is pushed out of the cylinder block into the outlet port.WarningBefore breaking a circuit connection, make certain that power is off and system pressure has been released. Lower all vertical cylinders, dischargeaccumulators, and block any load whose movement could generate pressure. Plug all removed units and cap all lines to prevent the entry of dirt into the system.Figure 1. PVH Section ViewFigure 2. PVH Pump OperationYoke faceOutlet portInlet portDrive shaftInlet valve plate kidney slotInletValve blockBias pistonPistonB. Pump ControlsPressure Compensator Controls “C” & “CM”(Figure 3)The standard “C” and low pressure “CM” compensator controls are internally pilot operated, spring offset, 2-way valves. Their purpose is to limit system pressure to a desired level by varying pump displacement. These controls only provide the flow required to satisfy the load demand, while maintaining a constant preset pressure.During operation, load or system pressure is continually fed to the bias piston. The function of the bias piston is to maintain the yoke at a full pump displacement position. Load or system pressure is also fed to the compensator spool chamber within the control. Pressure within the compensator spool chamber acts upon the spring force of the compensator spring.When load or system pressure is below the pressure setting of the compensator spring, the compensator spool remains offset and the pump continues to operate at full displacement. When load or system pressure approaches the compensator pressure setting, the compensator spool will start to move and overcome the compensator spring force. Fluid will then meter into the control piston area. Since the control piston area is greater than that of the bias piston,the control piston pushes the yoke towards minimum pump displacement. The compensator control continues to meter fluid to the control piston, adjusting the pump displacement, and pumping only enough fluid to satisfy the load demand while holding the system at a constant pressure.When load or system pressure exceeds the compensator setting, the compensator spool shifts towards the spring chamber area. A maximum amount of fluid is then metered to the control piston area, causing the yoke to shift to minimum pump displacement.When system pressure decreases below the compensator pressure setting, the compensator spool returns to its original position and the yoke returns to maintain maximum pump displacement.The compensator is available in two pressure ranges. The “C” spring has an adjustment range of 70–250 bar(1015–3625 psi). The “CM” spring has an adjustment range of 40–130 bar (580–1885 psi).Figure 3. “C” & “CM” ControlsI DrPBody SpringTo tankPressure limiting spoolControl pistonYoke angleBias pistonPiston pumpLoad Sensing & Pressure Compensator Control C(M)*V (Figure 4)This pump will provide power matching of pump output to system load demand, maximizing efficiency and improving load metering characteristics of any directional control valve installed between the pump and the load.Load sensing ensures that the pump always provides only the amount of flow needed by the load. At the same time, the pump operating pressure adjusts to the actual load pressure plus a pressure differential required for the control action. Typically, the differential pressure is that between the pressure inlet and service port of a proportionally controlled directional valve, or a load sensing directional control valve. When the system is not demanding power, the load sense control can operate in an energy-saving stand-by mode. To achieve the low pressure, no flow, stand-by mode, the load sense signal line must be drained to the tank externally. The standard differential pressure setting for load sense is 20 bar (290 psi), but can be adjusted to between 17 and 30 bar (247 and 435 psi) on the pump.If the load pressure exceeds the system pressure setting,the pressure compensator de-strokes the pump. The load sensing line must be as short as possible and can also be used for remote control or unloading of the pump pressure.For remote control, it is recommended that you contact your Vickers representative for the correct configuration of the control.Figure 4: C(M)*V ControlInletLoad sense signal portOutletTo load1.7 bar (25 psi)Case drainPVH with UV Control for Accumulator Circuits (Figure 5)This pump control functions as a load- sensing pressure compensator that unloads the pump at a preset pressure and loads the pump after preset pressure drop.Figure 5: UV ControlOutlet1.7 bar (25 psi)•••••Pressure & Torque Limiter Control C**T (Figure 6)This pump senses pressure and flow and starts destroking at a predetermined input torque level. The rate of flowreduction is normally tailored to follow the maximum power capability curve of the prime mover. Input torque is limited while the pressure compensator limits the system pressure.When the input speed remains constant (i.e. industrialdrives), the torque limiter acts as an input power limiter. This allows a smaller electric motor to be used if maximum pressure and maximum flow are not required at the same time. At low load levels, the control permits high pump displacement and high load speeds. Under heavy loads,speed is reduced, preventing stalling of the prime mover. In the case of variable speed drives (I.C. engines), this function provides, in addition to pressure compensation or limiting, a torque limiting ability that can be adjusted to the torque/speed characteristics of the engine.The start of torque limiting (pump-destroking) is pressure dependent. The pressure is selectable (see model code) and is factory preset to between 30% and 80% of the maximum pressure control setting. The adjustment range for the “C ”compensator is 80 to 200 bar (1160 to 2900 psi) in 10 bar (145 psi) increments. There is no “CM ” spring option available with the torque limiting control.Figure 6: C**T ControlInletCase drainOutlet To load1.7 bar (25 psi)Torque Limiting Plus Load Sensing Control C**VT (Figure 7)This pump control option functions like a load sensingcontrol, but with additional torque limiting tailored to the size of the drive motor selected. The limiting function is the same as for a pressure compensator with torque limiting. The combination of the two controls provides the following benefits:1. The energy savings of a variable displacement load sensing control.2. The pump pressure follows the load pressure.3. The torque control allows smaller drive motors to be used.4. The pressure compensator de-strokes the pump as maximum pressure is reached.5. The pump pressure can also be remotely controlled using the load sense line. The C**VT control allows complete control of flow and pressure, either mechanically or electrically, if used with proportional valves.Figure 7: C**VT ControlCase drainInletLoad sense signal portTo loadOutlet1.7 bar (25 psi)Industrial Control (Figures 8 & 9)This pump control option is intended for use when multiple,remote, or electrically controlled compensating settings, with or without load sensing, are desired.Pressure compensation is obtained by removing an internal plug, keeping the load-sense signal port plugged, and internally applying pilot pressure to the spring chamber of the pilot-operated control spool. For pressure compensation with load sensing, the internal plug stays, the load-sense signal port is unplugged, and pilot pressure is externally applied.An external relief valve is used to set system pressure. The externally adjustable control-spool spring determines the differential pressure setting of the pump control. Pilot(spring chamber) pressure is separated from outlet pressure by an internal orifice. Outlet pressure shifts the spool when pressure drop across the orifice reaches the differential pressure setting, and the pump de-strokes.The relief valve can be mounted to an NFPA-D03/ISO 4401-03 pad on the pump control, or remotely located via tapping and blanking plates installed on the pad.The standard factory-set differential pressure setting of the pump control is 20 bar (290 psi) and is not specified in the pump model code. Any other ordered differential pressure,within the control ’s adjustable pressure range of 17–35 bar (247–508 psi), will be specified in the model code following the “IC ” control code; for example, “-IC30-” for a 30 bar setting.Application examples: Mounting Control TypeD EHSTElectrical control compensator D DG valve w/DGMC Double or triple compensator D C –175Remote control relief valve D CGE –02Electrical relief valveFigure 9: Industrial ControlCase drainInletOutlet To load1.7 bar (25 psi)Tank portPressure port ••••XLoad sense signal portInletLoad sense signal portOutlet To load1.7 bar (25 psi)X Tank portPressure port ••••C. Load Sensing/Pressure Limiting OperationAs one would expect from the title, this control is acombination of the features of both the pressure limiting and load sensing controls. Refer to Figure 10.The load sensing spool senses the pressure difference (pressure drop ∆P) between pump outlet and load pressure across a series flow control or system directional valve which is inherent in its operation. This differential pressure causes the load sensing spool to move against its spring to the closed –center position. If the differential pressure (pressure drop ∆P) increases (greater flow through the series valve), the load sensing spool moves to the right.Figure 10: Load Sensing Control SystemPressure SignalSpoolSensing Compensator AdjustmentPressure Limiting SpoolTo TankFlow Control or Dir. Valve Control Piston Piston PumpBias PistonThe load sensing portion of the control operates as a function of the pressure drop across the series valves(pressure drop ∆P), and is independent of system pressure.It establishes a constant flow characteristic from the pump based on the magnitude of the directional valve opening (operator controlled).If outlet pressure increases to the maximum pressure limit setting, the pressure limiting spool meters fluid to the control piston. The control piston moves the yoke to reduce flow. If outlet pressure continues to rise, the spool will continue to meter fluid to the control piston and the pump will stroke to zero flow at maximum pressure.Reduced horsepower standby featureWhen the system flow control valve or directional valve is closed completely, the circuit is placed in standby.NoteThis feature assumes the system flow controlvalve or directional valve provides decompressionof load sensing pressure in the standby, fullyclosed position. Pressure at point A (Figures 10 &11) must decay toward zero through the systemflow control or directional valve for standby tooccur. Decompression of the load sensingpressure allows the pump to stroke to zero flowand minimum pressure. The circuit functions in thefollowing manner.Assume the flow control or directional valve is closed and there is no bleed of point A (Figure 10) to tank. The fluid is trapped and the load sensing spool is held to the left by the spring. The system pressure rises until the pressure limiting spool takes over. The yoke then stokes to zero flow and holds pressure at the maximum limiter setting.If, in the closed condition, the flow control or system directional valve bleeds point A (Figures 10 & 11) to tank, the load sensing feedback pressure will decay. The load sensing spool will shift to the left. Fluid then meters through the pressure limiting spool and into the control piston. Outlet pressure decays through pump leakage following the decay of feedback pressure A (Figures 10 & 11) until minimum pressure drop is reached. The pump will operate in the standby mode (zero flow, minimum pressure) until the flow control or system directional valve demands flow from the pump. At this time, normal operation of the controlwill resume.D. Adjustment procedure:Load Sensing PressureLimiting ControlGeneralThis procedure contains information on the PVH pressure limiting and load sensing control. Test and adjustment procedures are provided for standard units.NotePressure gauges must be installed into the systembefore adjustment of the control can be performed.Complete field test adjustment procedures areincluded.Set upMake sure all machine controls are in the OFF or neutral position.Figure 11: Gauge Connection(A) Load pressureconnection(CT/CTS control) pressure gaugeConnect a 5000 psi pressure gauge at the outlet of the piston pump and on load sensing models, in the load sensing line.Check pump housing to verify that it is full of system fluid. Jog the engine to prime the pump, then exercise the controls to eliminate entrained air in the system.Pressure Limiter AdjustmentMove an appropriate cylinder on the machine until it bottoms out. From the center condition, crack the control valve lever toward the bottomed out position enough to allow pressure build up in the system. DO NOT exceed the maximum pressure limit noted in Table 1. If the maximum pressure limit does not correspond to Table 1, adjustment of the control is required.CautionDO NOT adjust control while machine is running. Adjust the pressure limit set screw (clockwise to increase, counterclockwise to decrease) until the pressure noted in Table 3 is obtained.PumpModelTable 1. Control Pressure SpecificationsMaximum PressureLimit–C18V–301802610–C19V–301902755–C20V–302002900–C25V–302503625bar psiLoad Sensing Valve AdjustmentWhile slowly moving an actuator on the machine, observe pump pressure and load pressure. The difference between pump pressure and load pressure is the load sense pressure drop. To increase the load sensing pressure drop (∆P), rotate load sensing adjusting screw clockwise. To decrease the setting, rotate the load sensing adjusting screw counterclockwise. The standard factory setting is 290 psi ∆. If this pressure drop is set too low, system instability can occur. Correct this by increasing pressure drop.E. Overhaul of PVH Controls Disassembly of C, CM Control (Refer to Figure 12)CautionDO NOT disassemble or remove control whileengine is running. Make sure power is OFF andhydraulic cylinders are lowered. Dischargeaccumulators and block any load whose movementcould generate pressure.NoteIn the following step if pump control is mounted atthe 12 o’clock position, complete draining of thepump will not be required. Some draining will occuruntil fluid level reaches drain port level of thecontrol.1.Remove drain plug (47, see Figure 29) from pump housing and drain fluid from pump. Remove all tubing connected to the control.2.Remove the control by loosening four screws (1b) that hold the control to the valve block. Remove o–rings and discard.3.Install the control into a vise with the jaws resting on the outside of body (13b).4.Remove nut (4b), with the associated o–ring (7b).Remove adjusting screw (5b), remove spring seat (6b),spring (8b) and spring guide (9b).5.Remove plug (10b) and o–ring (11b), remove spool(12b).Follow the same inspection, repair and replacementprocedure as outlined for the Industrial Control.AssemblyNoteObtain seal kit for the control (check servicedrawing for part number). Replace all seals andback up rings with new ones from the kit. Refer toFigure 12 during assembly. Special assemblyprocedures will be noted in the step–by–stepprocedure.NoteLubricate all parts with system fluid at assembly.O–rings and back up rings require a viscosityimprover to facilitate assembly.1.Assemble spool (12b) into valve body (13b) with roundedend of spool pointing toward adjustment plug end of valve.Assemble o–ring (11b) on plug (10b) thread plug (10b) into body (13b). Torque plug to 9.8–10.2 N.m. (7–7.5 lb.ft.).2.Install parts (9b, 8b, 6b, 5b) in the order shown inexploded view.3.Install plug (4b) and o–ring over spring seat (6b). Makesure adjusting screw (5b) is threaded through plug (4b).Make sure adjusting screw (5b) is lubricated. Thread on nut (3b).9b8b2b 7b6b5b4b12b11b10bFigure 12: C, CM Control Exploded ViewDisassembly of CV Control (Refer to Figure 13)CautionDO NOT disassemble or remove control whileengine is running. Make sure power is OFF andhydraulic cylinders are lowered. Dischargeaccumulators and block any load whose movementcould generate pressure.NoteIn the following step if pump control is mounted atthe 12 o’clock position, complete draining of thepump will not be required. Some draining will occuruntil fluid level reaches drain port level of thecontrol.1.Remove drain plug (47, see Figure 29) from pump housing and drain fluid from pump. Remove all tubing connected to the control.2.Remove the control by loosening four screws (1a) that hold the control to the valve block. Remove o–rings and discard.3.Install the control into a vise with the jaws resting on the outside of body (7a).4.Remove nuts (14a), then remove plugs (15a and 13a) with their associated o–rings (12a and 16a). Remove adjusting screws (11a), remove spring seats (10a), springs (9a and 18a) and spring guides (8a).5.Remove plugs (4a) and associated o–rings (3a), removeFollow the same inspection, repair and replacement procedure as outlined for the Industrial Control.AssemblyNoteObtain seal kit for the control (check servicedrawing for part number). Replace all seals andback up rings with new ones from the kit. Refer toFigure 13 during assembly. Special assemblyprocedures will be noted in the step–by–stepprocedure.Lubricate all parts with system fluid at assembly.O–rings and back up rings require a viscosityimprover to facilitate assembly.1.Assemble spools (2a and 5a) into valve body (7a) with rounded end of spool pointing toward adjustment plug end of valve. Pressure compensating spool (5a) has five grooves versus three on the load sensing spool (2a). Make sure to note this distinction for proper assembly. Assemble o–rings (3a) on plugs (4a) and on plugs (15a and 13a) then thread plugs (4a) into body (7a). Torque plugs to 9.8–10.2 N.m.(7–7.5 lb.ft.).2.Install parts (8a, 9a, 10a, 11a, 17a and 18a) in the order shown in exploded view.3.Install plugs (13a and 15a) with their o–rings over spring guides (10a). Make sure adjusting screws (11a) are threaded through plugs (13a and 15a). Make sure adjusting screws (11a) are lubricated. Thread on nuts (14a).8a9a10aFigure 13: CV Control Exploded ViewFigure 14: UV Unloading ControlUnloading ValveRefer to Figure 14.Refer to the overhaul procedure for the CV control. The MCD block and screw–in cartridge cannot be overhauled, replace if necessary.Disassembly of Industrial ControlRefer to Figure 15.CautionDO NOT disassemble or remove control whileengine is running. Make sure power is OFF andhydraulic cylinders are lowered. Dischargeaccumulators and block any load whose movementcould generate pressure.NoteIn the following step if pump control is mounted atthe 12 o’clock position, complete draining of thepump will not be required. Some draining will occuruntil fluid level reaches drain port level of thecontrol.1.Remove drain plug (47, see Figure 28) from pump housing and drain fluid from pump. Remove all tubing connected to the control.2.Remove the control by loosening four screws (19) that hold the control to the valve block. Remove o–rings and discard.3.Install the control into a vise with the jaws resting on the outside of body (17).4.Remove nut (1) and adjusting screw (2), then remove nut (3) and associated o–ring (4). Remove spring guides, pin (not on PVH131), and spring (parts 5, 6, & 7). Discardo–rings.5. Remove plugs (13 and14), remove and discard o–rings (12 and 15). Remove orifice plug (11) if necessary, and slide out spool (16).Inspection, Repair & ReplacementNoteAll parts must be thoroughly cleaned and kept cleanduring inspection and assembly. Clean all removedparts with a solvent that is compatible with systemfluid. Compressed air may be used in cleaning, butmust be filtered to remove water andcontamination. Clean compressed air is especiallyuseful in cleaning body passages.NoteReplace all parts that do not meet the followingspecifications:1.Inspect the threads and o–ring grooves and adjustment screw (2). If threads are worn, replace. If o–ring grooves have burrs, remove the burrs with an India stone.2.Inspect spring (7) for wear on the outside edge of the spring. Check spring ends for squareness. The spring ends must be parallel within (3_). If spring is bent or worn, replace the spring.3.Check spring guides (5) for burrs. Clean up with an India stone if burrs are present.4.Check spool (16) for erosion, burrs, and scratches. If the spool is eroded or scratched across a land, check body (17) for the same problem. If erosion is heavy in both parts, replace the valve. If the spool is scratched and the scratch cannot be removed by light polishing with 500 grit paper or crocus cloth, replace both the body and spool. Clean up burrs with an India stone.NoteReliable operation throughout the specifiedoperating range is assured only if genuine Vickersparts are used. Sophisticated design processes andmaterials are used in the manufacture of our parts.Substitutions may result in early failure.AssemblyNoteObtain seal kit for the control (check servicedrawing for part number). Replace all seals andback–up rings with new ones from the kit. Refer toFigure 15 during assembly. Special assemblyprocedures will be noted in the step–by–stepprocedure.Lubricate all parts with system fluid at assembly.O–rings and back–up rings require a viscosityimprover to facilitate assembly.1.Assemble spool (16) into valve body (17) with rounded end of spool pointing toward adjustment plug end of valve. Assemble O–rings (12 and 15) on plugs (13 and 14), (install orifice plug 11 if removed) then, thread plugs (13 and 14) into body (17). Torque plugs (13 and 14) to 9.8–10.2 N.m. (7–7.5 lb.ft.).2.Install spring guides (5), spring (7) and pin (6) into body (17). Install o–ring (4) over plug (3) and thread screw into body (17). Install adjusting screw (2) and nut (1).NoteReassemble the control to the pump and connectall tubing and applicable relief valves. Perform thefinal adjustment of control assembly.18。
vickers叶片泵技术参数摘要:一、概述二、vickers 叶片泵技术参数详细介绍1.叶片泵的类型2.叶片泵的工作原理3.叶片泵的性能特点4.叶片泵的应用领域三、vickers 叶片泵产品系列1.v 系列叶片泵2.v(q) 系列叶片泵3.柱塞泵四、vickers 叶片泵的优势与不足五、结论正文:一、概述vickers 是一家著名的液压设备制造商,旗下产品包括柱塞泵、叶片泵、电磁阀、油泵、变量泵、液压马达、方向阀、压力阀、流量阀、比例阀、定量泵和马达等。
其中,叶片泵作为vickers 的重要产品之一,以其出色的性能和广泛的应用领域而受到用户的青睐。
二、vickers 叶片泵技术参数详细介绍1.叶片泵的类型vickers 叶片泵主要分为v 系列和v(q) 系列。
其中,v 系列叶片泵包括v1、v2、v3、v4、v5、v6 等不同规格,适用于不同流量和压力的需求。
v(q) 系列叶片泵则是在v 系列的基础上进行了改进,具有更高的效率和更小的噪音。
2.叶片泵的工作原理vickers 叶片泵的工作原理是利用泵体内的旋转叶片将吸入的液体推送到出口,从而实现流体的输送。
叶片泵的结构简单,运行稳定可靠,能够在高温、高压等恶劣环境下正常工作。
3.叶片泵的性能特点vickers 叶片泵具有以下性能特点:(1)高效节能:叶片泵的效率较高,能够在较低的转速下输出较大的流量,降低了能源消耗。
(2)高可靠性:叶片泵的结构简单,运行稳定,故障率低,使用寿命长。
(3)适应性强:叶片泵能够适应不同介质、温度和压力的环境,具有较强的通用性。
(4)噪音低:v(q) 系列叶片泵在设计上优化了噪音控制,使得运行噪音更低。
4.叶片泵的应用领域vickers 叶片泵广泛应用于工程机械、数控机床、船舶、石油化工、航空航天等领域,为各种液压系统提供稳定的流量和压力支持。
三、vickers 叶片泵产品系列1.v 系列叶片泵v 系列叶片泵是vickers 的经典产品之一,具有较高的性能和稳定的运行。
耐腐蚀柱塞泵型号参数
耐腐蚀柱塞泵是一种特殊的泵,它可以在强腐蚀环境下正常工作,适用于输送各种酸、碱、盐等腐蚀性介质。
以下是耐腐蚀柱塞泵的型号参数:
1.型号:耐腐蚀柱塞泵的型号通常由字母和数字组成,字母代表泵的类型,
数字则表示泵的主要参数,如排量、压力等。
具体的型号和参数可以根据不同的生产厂家和型号而定。
2.排量:排量是耐腐蚀柱塞泵的主要参数之一,它表示泵每分钟可以输送多
少液体。
排量通常以立方厘米或毫升为单位,也可以根据具体需要定制。
3.压力:耐腐蚀柱塞泵的压力通常在0.1-1.6MPa之间,具体取决于泵的型
号和使用场合。
对于一些需要高压力的场合,可以选择高压型的耐腐蚀柱塞泵。
4.转速:耐腐蚀柱塞泵的转速可以根据不同的使用场合进行调整,一般在
50-1000r/min之间。
对于一些需要低速运行的场合,可以选择低速型的耐腐蚀柱塞泵。
5.电机功率:耐腐蚀柱塞泵的电机功率通常在0.55-55kW之间,具体取决于
泵的型号和使用场合。
对于一些需要大功率的场合,可以选择大功率型的耐腐蚀柱塞泵。
6.密封形式:耐腐蚀柱塞泵的密封形式有填料密封、机械密封和软填料密封
等,具体选择取决于泵的使用场合和介质性质。
7.材质:耐腐蚀柱塞泵的材质通常为不锈钢、合金钢或其他具有抗腐蚀性能
的材料,具体取决于泵的使用环境和介质性质。
总之,耐腐蚀柱塞泵的型号参数因不同生产厂家和型号而异,选择合适的耐腐蚀柱塞泵需要考虑多个因素,包括排量、压力、转速、电机功率、密封形式和材质等。
建议根据实际需要咨询专业的供应商或制造商。
威士柱塞泵PVM型号最高压力(bar) 排量(CM3/r)最高转速(rpm)备注PVM018 280 18.0 1800PVM020 280 21.1 1800PVM045 280 45.1 1800PVM057 280 50.0 1800PVM057 280 57.4 1800PVM074 280 73.7 1800PVM098 280 98.3 1800PVM131 280 131.1 1800•威格士柱塞泵PVM系列泵是开式回路,轴向柱塞设计。
提供许多种控制器,使泵具有和每一种用途匹配的能力。
•经过严格考验的旋转系允许泵的连续工作压力至280bar(4000 psi),间歇工作压力至320 bar(4600 psi),而且维护成本低。
每种机座也能够包括230bar(3300psi) 较大流量额定值的品种,提供额外的应用灵活性。
重型轴承和刚性驱动轴使泵的寿命达到30,000 小时(在65% 的额定压力),降低使用成本,延长使用寿命。
•威格士柱塞泵PVM系列泵的特点是带有钢背聚合物轴承的鞍形摇架,刚性摇架减小了挠度并且使轴承载荷均匀,延长了寿命。
单控制柱塞减小摇架的负载,结果是泵的尺寸减小,允许安装在更紧凑的位置。
•威格士柱塞泵PVM系列泵的工作噪声很低,安静程度超过了当今对工业条件的要求。
泵的特点是专门为降低流体噪声和结构噪声而设计的独特的3件套结构(法兰, 壳体和阀块),泵的另一个特点- 双金属配流盘- 改善了泵的加注特性,也降低了流体噪声并且延长了泵的寿命。
•可调整的最大排量挡块提供了调整系统流量的方法,压力表口可以监测进口和出口的工况,这些标准特征降低了系统的复杂性和成本。
•安装法兰有SAE 和ISO 配置,油口有SAE,ISO和BSPP 管螺纹和法兰品种,提供各种安装方式用在全球的机器设备上。
•侧油口或端油口品种有货,便于布管和把泵安装在设备需要的空间,有多个泄油口,允许多种安装方位,降低安装成本。
vickers威格士柱塞泵工作原理嘿,朋友们!今天咱来聊聊 vickers 威格士柱塞泵的工作原理。
这玩意儿啊,就像是一个大力士,在各种工业场合大显身手呢!你看啊,vickers 威格士柱塞泵就像是一个不知疲倦的搬运工。
它里面有好多柱塞,这些柱塞就像小胳膊似的,一伸一缩地工作着。
当泵开始运转时,这些小胳膊就开始有规律地动起来啦。
就好比我们人走路,一步一步地往前迈。
柱塞泵的柱塞也是这样,一下一下地运动,把液体从这边搬到那边。
想象一下,有个大水池,柱塞泵就负责把水从这个水池抽到另一个地方去。
这些柱塞可不是随便乱动的哦,它们的运动是非常有节奏的。
就像我们跳舞一样,有自己的舞步和节拍。
它们按照一定的顺序,有规律地伸缩,这样才能保证液体被稳稳地输送出去。
而且啊,vickers 威格士柱塞泵还特别厉害的一点是,它能产生很大的压力。
这压力就像是一股强大的力量,能推动液体去到很远很远的地方。
比如说,我们家里的水龙头,打开水就流出来了。
但要是想让水去到很高的楼层,或者很远的地方,那就需要很大的压力才行。
vickers 威格士柱塞泵就能提供这样的压力,让液体乖乖地按照我们的要求流动。
它的工作原理其实也不复杂,就是通过柱塞的往复运动,产生吸力和压力,从而实现液体的吸入和排出。
在很多工业领域,vickers 威格士柱塞泵都是不可或缺的。
比如在石油化工行业,它能把各种液体输送到需要的地方;在机械制造行业,它能为机器提供动力和润滑。
总之,vickers 威格士柱塞泵就像是一个默默无闻的英雄,在背后默默地为我们的工业生产贡献着力量。
虽然我们平时可能不太会注意到它,但它的作用可真是不可小觑啊!我觉得吧,vickers 威格士柱塞泵真的是个很神奇的东西。
它看似简单,但其工作原理却蕴含着无穷的智慧和力量。
它让我们的生活变得更加便捷和高效,也让我们的工业发展更加迅速和稳定。
所以啊,我们要好好珍惜和利用它,让它为我们创造更多的价值!。
PVH柱塞泵检修手册第1页检修手册柱塞泵PVH柱塞泵包括控制器1993年2月修订第2页第一部分引言A.手册的用途这本手册说明了针对威格士PVH 57/74/98/131系列柱塞泵的基本操作特性,并且提供了检修资料.本手册中包含的资料适合于型号编码中给出的最新设计系列.B.相关出版物这本手册里不包括PVH系列泵和控制器的安装尺寸,基本泵的各自件号也不包括.包括这类资料的出版物请参考下面列出的相关样本.PVH57 维修图M-2206-SPVH74 维修图M-2207-SPVH98 维修图M-2208-SPVH131 维修图M-2209-SPVH 系列用途GB-C-2010C.型号编码说明每一种基本型系列的变化都包含在型号编码中,参见下一页.服务查询应当包括铭牌上注明的整个装置的型号编码,和印在安装法兰上的装配号.第3页型号编码工业泵工程机械泵型号编码柱塞泵,变量最大几何排量工业品种安装法兰,原动机端“C”4-螺栓形式(SAE J744-127-4) M=ISO 3019/2-125B4HW(仅PVH57QI和PVH74QI选项)泵的设计号,对于设计号10至19,安装尺寸保持不变.)压力补偿器调整范围标准)CM=40-130 bar (580-1885 psi)(QI品种选项) IC=工业控制器UV=卸荷阀控制,用于蓄能器回路轴旋转,从原动机端看 右手,顺时针(QI 型号是标准) L-左手,逆时针(QI 型号是选项) 配置 =非通轴驱动(单泵) A=通轴驱动泵,带SAE “A ”2-螺栓后法兰安装(SAE J744-82-2) B=通轴驱动泵,带SAE “B ”2-螺栓和4-螺栓后法兰安装◆(SAE J744-101-2/4) C=通轴驱动泵,带SAE “C ”2-螺栓和4-螺栓后法兰安装◆(SAE J744-127-2/4) S=可调整的最大排量挡块(仅非通轴驱动和非扭矩控制的泵)主油口 螺栓法兰板(标准)M= SAE 4-螺栓法兰板带米制安装螺栓螺纹(仅PVH 57和1PVH 74)轴端形式,在原动机端短直轴平键 1=SAE “C ”(J744-32-1) 直轴平键2=SAE “C ”■(J744-32-4) 花键14齿12/24径节 3=SAE “CC ”(J744-38-4) 花键17齿12/24径节 12=SAE “D ”(J744-44-4) 花键13齿8/16径节 13=SAE “C ”(J744-38-1) 直轴平键 16=SAE “D ”(J744-44-1) 直轴平键轴封,原动机端 单,单道(标准)D=双,双道(选项)推荐用在双联泵的第二个泵(PVH**/PVH**)压力补偿器工厂设定值,以10 bar 为单位 标称工厂设定值,针对”C ”型号 7=70 bar 标称工厂设定值,针对”CM ”型号 附加控制器功能=无附加控制V=负载传感,20 bar 压差设定值T=扭矩限制器VT=负载传感和扭矩限制器 扭矩限制器工厂设定值用户要求的扭矩限制器设定值,规定以10 bar(145 psi)为增量单位,例如:8=80 bar (1160 psi );18=180 bar (2610 psi ). 扭矩设定值范围是规定的补偿器设定值的30-80%. 控制器设计号或C**V 控制器 13=C**T 控制器 14=C**VT 控制器 10=UV 和IC控制器 特殊特征后缀复合2-螺栓/4-螺栓安装,符合SAE ”C ” (PVH 131除外)031=通轴驱动SAE “A ”法兰盖041=没有壳体至进口的溢流阀(用于升压回路)057=轴伸朝上工作(垂直安装)◆用螺栓连接带SAE “A ”后法兰的泵至合适的法兰过渡板.为了更加方便和灵活,单独订购PVH SAE ”A ”通轴驱动泵和SAE “B ”或”C ”过渡板套件. ■扭矩限制适用于PVH 74和PVH 98通轴驱动泵和PVH 131单泵和通轴驱动泵中的#2轴,对于没有正确使用这些轴所造成的损失,威格士不负责任.请联系威格士代理人来审查您的用途.第4页第二部分 说明A.基本泵图1表示PVH 系列柱塞泵的基本结构,主要零件包括驱动轴,壳体,摇架,旋转组,配流盘,控制柱塞,偏置柱塞,阀块和补偿器控制.PVH 系列用鞍状轴承代替底枢轴承总长,减轻了重量,并且取消了增加维护时间和检修成本的滚柱轴承.B.泵控制器有2种常用的泵控制形式,1种形式是标准的”C ”补偿器控制,它限制泵的出口压力在所要求的值,另一种形式是”CV ”压力限制器/负载传感控制.现在有货的是”IC ”(工业控制器),它能够用来作为负载传感补偿器,远程补偿器控制和电液控制,它们限制泵的出口压力,并且也调整泵的排量来匹配负载的要求.第三部分工作原理A.泵工作泵驱动轴的旋转造成缸体,滑靴盘和柱塞旋转(见图2),柱塞滑靴通过滑靴盘靠紧摇架面,摇架面的角度造成缸体内每个柱塞的往复运动,进口和出口连接至带腰形槽的配流盘,当柱塞朝缸体外运动时,产生真空,大气压力迫使油液进入空隙,油液随着缸体运动通过进口腰形槽.柱塞反向运动时油液被推出缸体进入出口.警告在断开回路连接前,要切断动力和释放系统压力,下降所有垂直的缸,排放蓄能器,固定住其运动会产生压力的任何负载,封堵所有拆除的元件,并且盖住所有管路,防止赃物进入系统.驱动轴摇架控制柱塞进口柱塞偏置柱塞阀块图1.PVH剖视图出口配流盘腰形槽阀块配流盘柱塞滑靴盘摇架面出口进口驱动轴进口配流盘腰形槽缸体图2.PVH泵工作第5页工作原理B.泵控制器压力补偿控制器”C”和”CM”(图3)标准的”C”和低压”CM”补偿器控制器是内部先导控制,弹簧偏置的二通阀.它们的目的是通过改变泵的排量来限制系统压力在要求的值,这些控制器仅提供满足负载要求的流量,而保持恒定的预设定压力.工作期间,负载或系统压力连续供给偏置柱塞,偏置柱塞的功能是保持摇架在泵的全排量位置,负载或系统压力也提供给控制器内的补偿器阀芯腔,补偿器阀芯腔中的压力作用在补偿器弹簧的弹簧力上.当负载或系统压力低于补偿器弹簧的压力设定值时,补偿器弹簧保持偏置,而且泵在全排量下连续工作.当负载或系统压力接近补偿器压力设定值时,补偿器阀芯将开始运动,并且克服补偿器弹簧力,油液则将节流进入控制柱塞面积,因为控制柱塞面积比偏置柱塞面积要大,控制柱塞推动摇架朝向泵的最小排量,补偿器控制器连续节流至控制柱塞的油液,调整泵的排量,并且在保持系统处于恒定压力的情况下,仅泵送足够满足负载要求的油液.当负载或系统压力超过补偿器设定值时,补偿器阀芯朝着弹簧腔面积运动,最大量的油液则节流进入控制柱塞面积,造成摇架朝泵的最小排量运动.当系统压力降低到低于补偿器压力设定值时,补偿器阀芯返回到它的原始位置,而且摇架返回,来保持泵的最大排量.补偿器有2种压力范围,”C”弹簧的调整范围是70-250 bar(1015-3625 psi).”CM”弹簧的调整范围是40-130 bar(500-1885 psi).负载传感和压力补偿器控制C(M)*V(图4)这种泵将提供与系统负载要求相匹配的泵输出功率,达到最大效率和改善安装在泵和负载之间的任何方向控制阀的负载节流特性.负载传感保证泵始终仅提供负载需要的流量,同时泵的工作压力调整在实际负载压力加上控制动作要求的压差.通常,压差是在压力进口和比例控制的方向阀(或者负载传感方向控制阀)的工作口之间的.当系统不要求功率时,负载传感控制能够工作在节能的备用状态,为了实现低压,无流量,备用状态,负载传感信号管路必须外泄至油箱.针对负载传感的标准压差设定值是20 bar (290 psi),但是在泵上能够在17和30 bar (247和435 psi)之间调整.第6页工作原理如果负载压力超过系统压力设定值,压力补偿器使泵至零行程,负载传感管路必须尽可能的短,并且也能用于远程控制或者卸载泵的压力.针对远程控制,建议您就有关控制器的正确配置联系您的威格士代表.图4:C(M)*V控制带UV控制器的PVH,用于蓄能器回路(图5)这种泵的控制功能类似负载传感压力补偿器,它使泵在预设定压力下卸载,而且在低于预设定压力下使泵加载.图5: UV控制压力和扭矩限制器控制C**T(图6)这种泵传感压力和流量,并且在预先确定的输入扭矩值下开始至零行程.减小流量通常是为了满足原动机的最大功率曲线,当压力补偿器限制系统压力时,限制了输入扭矩.当输入转速保持恒定时(例如工业驱动),扭矩限制器作为输入功率限制器起作用,如果不是同时要求最大流量和最高压力,它允许使用较小的电机.在负载较小时,控制器允许较大的泵排量和较高的负载速度,在重载时,速度降低,防止原动机失速.在驱动转速可变(工业控制发动机)的情况下,这个功能除了提供压力补偿或限制外,还提供限制扭矩的功能,能够调整发动机的扭矩/转速特性.扭矩限制(泵-零行程)的开始是依靠压力,压力是可以选择的(见型号代码),并且由工厂预设定在30%和80%的最高压力控制设定值之间.对于”C”补偿器的调整范围是80至200 bar (1160至2900 psi),增量10 bar (145 psi).带有扭矩限制控制,没有”CM”弹簧选项的品种有货.图6:C**T控制扭矩限制加负载传感控制C**VT(图7)这种泵控制选项的功能像负载传感控制,但是带有附加的扭矩限制来适应所选的驱动电机的规格.限制功能与带扭矩限制的压力补偿器相同.2种控制的组合提供以下的好处:第7页工作原理1.变排量负载传感控制的节能.2.泵的压力按照负载压力.3.扭矩控制允许使用较小的驱动电机4.当达到泵的最高压力时,压力补偿器使泵至零行程.5.泵的压力也能使用负载传感管路进行远程控制.如果使用了比例阀(或者是机械式的或者是电气式的),C**VT控制允许流量和压力的完全控制.工业控制器(图8和9)这种泵控制选项用于当要求多路,远程或电气控制补偿设定值(带或不带负载传感)时.压力补偿的获得是通过拆下1个内部堵头,保持负载传感信号口封堵,并且内部提供控制压力给先导控制阀芯的弹簧腔.对于带负载传感的压力补偿,内部堵头保留,负载传感信号口不封堵,控制压力由外部提供.1台外部溢流阀用于设定系统压力.外部可调整的控制阀芯弹簧确定泵控制器的压差设定值.控制(弹簧腔)压力通过1个内部节流口与出口压力是分开的.当通过节流口的压降达到压差设定值时,出口压力移动阀芯,并且使泵至零行程.溢流阀能够安装在泵控制器的NFPA-D03/ISO 4401-03底板上,或者通过安装在底板上的分接板和盲板来远程固定.泵控制器的标准工厂设定压差值是20 bar (290 psi),并且在泵的型号编码中没有规定.订购任何其他的压差,只要在控制器的可调整压力17-35 bar(247-508 psi)范围内,将在型号编码的”IC”控制代号后进行规定,例如”-IC30-“是针对30 bar设定值.应用举例:第8页工作原理C.负载传感/压力限制工作如标题所述,这种控制器组合了压力限制和负载传感控制器的特点,参考图10.负载传感阀芯传感泵出口和跨越串联流量阀或系统方向阀(这是它的操作所固有的)产生的负载压力之间的压差(压降△P),这个压差造成负载传感阀芯移动克服它的弹簧至关闭中位位置.如果压差(压降△P)增大(更多的流量通过串联阀),负载传感阀芯向右移动,它打开了输出至控制柱塞,在控制柱塞处的出口压力使摇架向较小流量移动,而且压差再次造成负载传感阀芯移动至关闭中位位置.如果压差减小(较少的流量通过串联阀),负载传感阀芯向左移动,打开控制柱塞至油箱.偏置柱塞则使摇架向较大流量移动.当压差(压降△P)增至足够大去移动负载传感阀芯至关闭中位位置时,摇架运动将停止,而且流量将保持恒定.图10: 负载传感控制系统控制操作的负载传感部分作为跨越串联阀(压降△P)压降的一个功能,并且和系统压力无关.根据方向阀打开的大小(操作者控制),它建立了一个来自泵的恒定流量特性.如果出口压力升高到最高压力限制设定值,压力限制阀芯节流至控制柱塞的流量,控制柱塞移动摇架去减小流量.如果出口压力继续升高,阀芯将继续节流至控制柱塞的流量,而且泵将在最高压力下输出零流量.第9页工作原理减小功率,备用特征当系统流量控制阀或方向阀完全关闭时,回路处于备用.注这个特征表现为系统流量控制阀或方向阀在备用、全关位置时形成负载传感压力泄放,由于出现备用工况,在点A(图10和11)处的压力必须通过系统流量控制阀或方向阀降低至零.负载传感压力的泄放,允许泵的行程至零流量和最低压力,回路按照下面的方式运行.假定流量控制阀或方向阀关闭,而且点A(图10)至油箱没有泄漏,油液被截留,而且负载传感阀芯由弹簧保持向左.系统压力升高直至压力限制阀芯起作用.摇架则移动至零流量,并且保持压力在限制器的最高设定值.如果在关闭情况下,流量控制阀或系统方向阀放泄点A(图10和11)至油箱,负载传感反馈压力将降低,负载传感阀芯将向左运动,油液则节流通过压力限制阀芯而且进入控制柱塞. 出口压力通过泵的泄漏降低,跟随反馈压力A(图10和11)的降低直至达到最小压降.泵将工作在备用状态(零流量,最低压力)直至流量控制阀或系统方向阀要求来自泵的流量.此时,将恢复控制器的正常工作.D.调整程序:负载传感压力限制控制概要这个程序包括PVH压力限制和负载传感控制的资料,试验和调整程序是为标准装置提供的.注在控制器能够进行调整之前,必须在系统中安装压力表.包括完整的现场试验调整程序.起动确认所有的设备控制器都处于关或中位位置.图11: 压力表连接连接5000 psi压力表在负载传感型号柱塞泵的出口,在负载传感管路上.检查泵的壳体,确认充满系统油液.摇动发动机给泵灌注,然后使控制器动作来消除系统中混入的空气.压力限制器调整移动设备中的1个合适的液压缸,直至它到底.从中位状况,使控制阀手柄朝到底位置搬动,足以使系统中建立起压力.不要超过表1中给出的最高压力限制,如果最高压力限制和表1不符合,要求调整控制器.注意当设备在工作时不要调整控制器.调整压力限制设定螺钉(顺时针升高,逆时针降低),直至达到表3中给出的压力.表1.控制压力技术规格第10页负载传感阀调整慢慢移动设备中的执行器,观察泵的压力和负载压力.泵压力和负载压力之间的差是负载传感压降.顺时针旋转负载传感调整螺钉来增大负载传感压降(△P),逆时针旋转负载传感调整螺钉来减小设定值.标准工厂设定值是290 psi△.如果这个压降设定得太小,系统会出现不稳定,通过增大压降来进行纠正.E.PVH控制器的检修C,CM控制器的拆卸(参考图12)注意当发动机工作时不要拆卸或拆下控制器.确认动力关闭和液压缸都已经下降.排放蓄能器,固定住其运动会产生压力的任何负载.注在下面的步骤中,如果泵控制器安装在12点钟位置,不需要使泵完全排空.有些泄油将出现,直至液位达到控制器的泄油口液位.1.从泵壳体拆下泄油堵头(47,见图29),并且从泵里放油.拆下连接控制器的所有管路.2.松开固定控制器在阀块上的4个螺钉(1b),拆下控制器.拆下O-形圈,并且丢弃.3.把控制器安装在台钳上,用卡爪固定阀体(13b)的外侧.4.拆下螺母(4b),连同一起的O-形圈(7b).拆下调整螺钉(5b),拆下弹簧座(6b),弹簧(8b)和弹簧导座(9b).5.拆下堵头(10b)和O-形圈(11b),拆下阀芯(12b).执行针对工业控制器所提出的程序进行相同的检查,修理和更换.装配注拿到用于控制器的密封套件(检查图纸中的件号),用套件中的新元件更换所有的密封件和挡圈,装配时参考图12,要注意在装配步骤中的特殊程序.注用系统油液润滑所有装配的零件.O-形圈和挡圈要求用黏度改进剂便于装配.1.把阀芯(12b)装入阀体(13b),阀芯的圆形端朝向阀的调整堵头端.把O-形圈(11b)装在堵头(10b)上, 堵头(10b)拧入阀体(13b),拧紧扭矩9.8-10.2 N.m.(7-7.5 lb.ft.)2.按照部件分解图的次序,安装零件(9b,8b,6b,5b).3.安装堵头(4b)和O-形圈在弹簧座(6b)上,确认调整螺钉(5b)拧入堵头(4b).确认调整螺钉(5b)经过润滑,拧在螺母(3b)上.图12: C,CM控制器部件分解图第11页CV控制器的拆卸(参考图13)注意当发动机工作时不要拆卸或拆下控制器.确认动力关闭和液压缸都已经下降.排放蓄能器,固定住其运动会产生压力的任何负载.注在下面的步骤中,如果泵控制器安装在12点钟位置,不需要使泵完全排空.有些泄油将出现,直至液位达到控制器的泄油口液位.1.从泵壳体拆下泄油堵头(47,见图29),并且从泵里放油.拆下连接控制器的所有管路.2.松开固定控制器在阀块上的4个螺钉(1a),拆下控制器.拆下O-形圈,并且丢弃.3.把控制器安装在台钳上,用卡爪固定阀体(7a)的外侧.4.拆下螺母(14a),然后拆下堵头(15a和13a),连同一起的O-形圈(12a和16a).拆下调整螺钉(11a),拆下弹簧座(10a),弹簧(9a和18a)和弹簧导座(8a).5.拆下堵头(4a)和连同一起的O-形圈(3a),拆下阀芯(2a和5a).执行针对工业控制器所提出的程序进行相同的检查,修理和更换.装配注拿到用于控制器的密封套件(检查图纸中的件号),用套件中的新元件更换所有的密封件和挡圈,装配时参考图13,要注意在装配步骤中的特殊程序.注用系统油液润滑所有装配的零件.O-形圈和挡圈要求用黏度改进剂便于装配.1.把阀芯(2a和5a)装入阀体(7a),阀芯的圆形端朝向阀的调整堵头端.压力补偿阀芯(5a)有5个沟槽,而负载传感阀芯(2a)有3个沟槽.确认这一差别,以便正确装配.把O-形圈(3a)装在堵头(4a)和堵头(15a和13a)上, 然后堵头(4a)拧入阀体(7a),拧紧扭矩9.8-10.2 N.m.(7-7.5 lb.ft.).2.按照部件分解图的次序,安装零件(8a,9a,10a,11a,17a和18a).3.安装堵头(13a和15a)连同它们的O-形圈在弹簧导座(10a)上,确认调整螺钉(11a)拧入堵头(13a和15a).确认调整螺钉(11a) 经过润滑,拧在螺母(14a)上.图13: CV控制器部件分解图卸荷阀参考图14.参考用于CV控制器的检修程序.MCD块和螺纹插装阀不能检修,如果必要就更换.工业控制器的拆卸参考图15.注意当发动机工作时不要拆卸或拆下控制器.确认动力关闭和液压缸都已经下降.排放蓄能器,固定住其运动会产生压力的任何负载.注在下面的步骤中,如果泵控制器安装在12点钟位置,不需要使泵完全排空.有些泄油将出现,直至液位达到控制器的泄油口液位.1.从泵壳体拆下泄油堵头(47,见图28),并且从泵里放油.拆下连接控制器的所有管路.2.松开固定控制器在阀块上的4个螺钉(19),拆下控制器.拆下O-形圈,并且丢弃.3.把控制器安装在台钳上,用卡爪固定阀体(17)的外侧.4.拆下螺母(1)和调整螺钉(2),然后拆下螺母(3)和连同一起的O-形圈(4).拆下弹簧导座,销子(PVH 131没有)和弹簧(零件5,6和7),丢弃O-形圈.5.拆下堵头(13和14),拆下并且丢弃O-形圈(12和15),如果必要拆下节流堵(11),并且取出阀芯(16).检查,修理和更换注在检查和装配期间所有零件必须彻底清洗和保持清洁.使用和系统油液相容的溶剂清洗所有拆下的零件.可以使用压缩空气来清洁,但是必须有过滤器去除水和污染物.洁净的压缩空气在清洁阀体通道中特别有效.第13页注更换所有不满足下列技术规格的所有零件:1.检查螺纹,O-形圈沟槽和调整螺钉(2).如果螺纹损坏,更换.如果O-形圈沟槽有毛刺,用印度石打磨掉毛刺.2.检查弹簧(7),是否弹簧的外边有磨损,检查弹簧端面的垂直.弹簧两端必须平行(在3º以内),如果弹簧弯了或磨损了,更换弹簧.3.检查弹簧导座有无毛刺,如果有毛刺,用印度石打磨掉毛刺.4.检查阀芯(16)是否有腐蚀,毛刺和划伤,如果有贯穿台肩的腐蚀或划伤,检查阀体(17)是否有相同问题.如果2个零件上的腐蚀都严重,换阀.如果阀芯划伤,而且划伤痕不能用500#抛光砂纸或细砂布去除,更换阀体和阀芯.用印度石打磨掉毛刺.注只有使用了原装的威格士零件,才能保证在规定的使用范围内始终可靠工作.我们的零件在制造中采用了先进的制造工艺和材料,代用品会造成早期失效.装配注拿到用于控制器的密封套件(检查图纸中的件号),用套件中的新元件更换所有的密封件和挡圈,装配时参考图15,要注意在装配步骤中的特殊程序.用系统油液润滑所有装配的零件.O-形圈和挡圈要求用黏度改进剂便于装配.1.把阀芯(16)装入阀体(17),阀芯的圆形端朝向阀的调整堵头端.把O-形圈(12和15)装在堵头(13和14)上, (如果拆卸了节流堵头11,就安装上)然后把堵头(13和14)拧入阀体(17),拧紧扭矩9.8-10.2 N.m.(7-7.5 lb.ft.).2.把弹簧导座(5),弹簧(7)和销钉(6) 装入阀体(17). 把O-形圈(4)装在堵头(3)上,堵头拧入阀体(17),安装调整螺钉(2)和螺母(1).注把控制器重新安装到泵上,并且连接好所有的管路和使用的溢流阀.进行控制器装配的最后调整.图15: 工业控制器部件分解图第14页CV控制器的拆卸参考图16.注意当发动机工作时不要拆卸或拆下控制器.确认动力关闭和液压缸都已经下降.排放蓄能器,固定住其运动会产生压力的任何负载.注在下面的步骤中,如果泵控制器安装在12点钟位置,不需要使泵完全排空.有些泄油将出现,直至液位达到控制器的泄油口液位.1.从泵壳体拆下泄油堵头,并且从泵里放油.拆下连接控制器的所有管路.2.松开固定控制器在阀块上的4个螺钉(1d),拆下控制器.拆下O-形圈,并且丢弃.3.把控制器安装在台钳上,用卡爪固定阀体(4d)的外侧.注不要从端盖上拆下调整螺钉(7d)和堵头(6d),除非发现了问题.4.从阀体部件(4d)上拆下螺钉(8d)和端盖(9d).在拆卸时不要来回转动端盖(9d).5.如果弹簧导座(10d)还在端盖(9d)上,从端盖上拉出弹簧导座.从弹簧导座上拆下密封件(11d 和12d),从盖板上拆下密封件(14d和15d).丢弃密封件.6.在工作台上轻敲端盖(9d),拆下销钉(13d).如果销钉拆不下来,就拆下调整螺钉(7d),然后用细的黄铜杆从端盖上敲下销钉.插入1/8”黄铜杆通过调整螺钉的螺纹孔(7d).7.从阀体部件(4d)上拆下弹簧(16d)和弹簧座(17d).8.按照下面的步骤拆卸扭矩限制部件:a.从阀体部件(4d)上拆下2个螺钉(18d)和盖板(19d).b.拆下堵头(20d),并且从堵头的末端取下销子(21d).(注:用黄铜杆轻敲阀芯端部,把销钉取出阀体.)拆下密封件(22d至25d)并且丢弃.执行针对工业控制器所提出的程序进行相同的检查,修理和更换.装配注拿到用于控制器的密封套件(检查图纸中的件号),用套件中的新元件更换所有的密封件和挡圈,装配时参考图16,要注意在装配步骤中的特殊程序.注用系统油液润滑所有装配的零件.O-形圈和挡圈要求用黏度改进剂便于装配.1.把端盖(9d)放在台钳中,O-形圈沟槽朝上,调整螺钉(7d)孔朝向安装人员.2.把O-形圈(14d)和挡圈(15d)装在端盖(9d)的O-形圈沟槽中3.把O-形圈(12d)和挡圈(11d)装在堵头(10d)上,并且润滑密封件.4.把销钉(13d)插入端盖(9d).确认堵头完全进入它的孔内,它可能搁置在端盖的突出部分.5.把弹簧导座(10d)的末端放入端盖,并且顶到销钉.6.把弹簧(16d)装入弹簧导座(10d)的末端,并且把弹簧座(17d)放在弹簧的顶部.7.拿起阀体(4d),并且使它的底面接口朝上.朝端盖末端的开口推阀芯去接合弹簧座(17d),缓慢滑动阀体(4d)经过堵头和弹簧零件,并且向上靠紧端盖.手动拧紧安装4个螺钉,然后试验阀芯是否和弹簧导座正确接合.用黄铜杆移动阀芯克服弹簧,弹簧必须反弹回来,或者弹簧座是处于不正确的位置.当弹簧座和弹簧到位时,把阀体置于水平位置,并且拧紧螺钉至扭矩14.7-16 N.m (11-12 lb.ft.).8.如果拆卸了调整螺钉(7d),把调整螺钉(7d)拧入端盖(9d)直至它与端盖齐平.安装端盖堵头(6d).9.安装堵头(20d)上的O-形圈(23d和25d)和挡圈(24d和22d),挡圈要放在朝向堵头(20d)的末端.第15页10.用凡士林润滑销钉(21d),并且插入扭矩限制堵头(20d).用黏度改进剂润滑密封件,并且把扭矩限制堵头插入阀体部件(4d).确认销钉没有掉出扭矩限制堵头.(装配期间,堵头必须保持在水平位置.)11.安装堵头前面的盖板(19d),并且拧螺钉(18d)通过盖板进入阀体部件(4d).注: 盖板中的孔是偏心的.盖板从中心孔的最宽部分将处于朝向阀体部件(4d)的安装面. 拧紧螺钉至扭矩30-38 N.m (22-28 lb.ft.).12.安装阀体部件(4d)上的O-形圈(5d),把端盖置于阀体部件(4d)上,并且插入螺钉(1d)通过端盖进入阀体部件(4d).把控制器置于泵阀体的位置,把螺钉(1d)拧入泵中,扭矩达21-27 N.m (15-20 lb.ft.).确认端盖O-形圈密封件处于与阀体开口一致.。