北师大版四年级数学下册知识点总结-第五单元 认识方程
- 格式:pdf
- 大小:58.16 KB
- 文档页数:2
程字母按顺序写。
“比……多”易错点:只有乘号可以省略,其他符号不能省略。
提醒:如果相乘的都是字母,则按照字母顺序表的顺序排列。
长方形周长公式:C=2(a+b)长方形面积公式:S=ab正方形周长公式:C=4a正方形面积公式:S=a2易错点:误把a2写成2a。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:a(bc)=(ab)c乘法分配律: (a±b)c=ac±bc减法的运算性质: a-b-c=a-(b+c)除法的运算性质: a÷b÷c=a÷(bc)等量关系就是算式的左右相等。
路程÷速度=时间路程÷时间=速度总价÷单价=数量总价÷数量=单价①速度×时间=路程如已知皮划艇500米最好的成绩是1.65分,求平均速度。
等量关系:速度×1.65=500②单价×数量=总价如李乐买了6支铅笔花了18元,求铅笔的单价。
等量关系:铅笔的单价×6=18③工作效率×工作时间=工作总量④增长后的量=原量×(1+增长率)3.常用的计算公式中的等量关系:①正方形周长=边长×4如已知正方形的周长是36米,求边长。
等量关系:边长×4=36②正方形面积=边长×边长如已知正方形的边长是8厘米,求正方形的面积。
等量关系:边长×边长=面积③长方形周长=(长+宽)×2如已知长方形的长是8厘米,周长是28厘米,求宽。
等量关系:(8+宽)×2=28④长方形面积=长×宽如已知长方形的长是7厘米,面积是28厘米,求宽。
等量关系:7×宽=28三、认识方程1.方程的含义:含有未知数的等式叫方程。
2.方程必须具备的条件:①必须是等式;②必须含有未知数。
如是方程的在后面的括号里面画“ ”,不是的画“✕”。
四年级数学·下新课标[北师]第5单元认识方程《认识方程》是《数学课程标准》数与代数中“式与方程”部分的内容,是在学生学习了一定的算术知识,已经初步接触了一点代数知识的基础上进行学习的。
对于小学生来说,现在由具体的、确定的数过渡到用字母表示抽象的、可变的数,是认识上的一次飞跃。
这部分内容是学生从算术学习转向代数学习的重要转折点,是学生第一次认识方程,也是学生由算术思维迈向代数思维的新起点,更是初中代数学习的重要基础。
无论是用字母表示数,还是寻找数量间的等量关系,对于小学生而言都是很抽象的。
因此,《认识方程》的教学内容在数学知识体系中占有重要的地位和作用。
本单元主要是学习用字母表示数、认识方程、等式性质和解方程的方法,初步学会用方程解决简单的实际问题。
如果说根据等量关系列方程,是把现实问题抽象为数学问题(数学模型),是把生活世界引向符号世界,那么等式性质则是符号世界里的一种重要的数学模式。
数学模式与数学模型的不同之处,就在于它关心的是数学的内部世界,是解决一类数学问题的重要方法。
也可以说,等式的性质是解决方程问题的重要方法。
通过方程和解方程的学习,要初步实现掌握与算术方法截然不同的代数方法解决简单问题并发展代数思维的目标。
1.结合具体情境,学会用字母表示数与数量关系,发展抽象概括能力。
2.结合具体情境,体会等量关系,能用方程表示简单情境中的等量关系,了解方程的作用。
3.了解等式的性质,能用等式的性质解简单的方程。
4.会用方程解决简单的实际问题,进一步理解等量关系。
1.倡导“教师为主导,学生为主体”的教学理念,注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学情境中自主探究,小组合作交流,激发学生的学习积极性和主动性。
2.既重视知识本身的建构,又重视课堂结构的建构,充分体现学生从“问题情境—建立数学模型—解释、应用与拓展”的意义上建构的学习过程。
增强学生学习知识的自信心,让学生用眼观察、动脑思考、动手演算、动口表达,真正理解和掌握方程最基本的知识,变特殊为一般,变具体为抽象。
第五单元《认识方程》复习整理及练习班级姓名知识梳理1、用字母表示数(1)含有字母的式子既可以表示数,也可以表示数量间的关系。
(2)用字母表示数、表示运算定律、表示有关公式。
2、用字母表示有关图形的计算公式:①长方形周长公式:C=2(a+b)。
②长方形面积公式:S=ab。
③正方形周长公式:C=4a。
④正方形面积公式:S=( )3、用字母表示运算定律:如果用a、b、c分别表示三个数,那么①加法交换律a+b=b+a ②加法结合律(a+b)+c=a+(b+c)③乘法交换律a×b=b×a ④乘法结合律(a×b)×c=a×(b×c)⑤乘法分配律(a±b)×c=a×c±b×c⑥减法的运算性质a-b-c=a-(b+c)⑦除法的运算性质a÷b÷c=a÷(b×c)4、在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“•”表示或省略不写,数字都写在字母前面。
数字1与字母相乘时,1省略不写,字母按顺序写。
如:a×b=ab、5×a=5a、1×a=a、a×a=( )◇5方程:含有未知数的等式叫方程。
6、方程与等式的联系区别:方程一定是等式,但等式不一定是方程。
◇7列出的方程要满足的条件:①未知数写在等号的左边;②方程无单位;③等号左右两边是相等的量;④未知数不能单独放在等号的一边◇8解方程(1)等式的性质(一):等式两边都加上(或减去)同一个数,等式仍然成立。
(2)等式的性质(二):等式两边都乘同一个数(或都除以同一个不为0的数),等式仍成立。
解方程步骤:(1)先写“解:”;(2)等号对齐;(3)运用等式性质或者加减乘除各部分间的关系(“直接想”)解方程;(4)代入检验解方程的书写格式:解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母要放在等号的左侧。
教案标题:北师大版四年级数学下册第五单元《认识方程》复习课教案教学目标:1. 让学生通过复习,巩固对方程的认识和理解。
2. 培养学生运用方程解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
教学重点:1. 方程的定义和性质。
2. 解方程的方法和步骤。
教学难点:1. 方程的应用问题。
2. 解方程的方法和步骤。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾方程的定义和性质。
2. 提问:什么是方程?方程有什么特点?二、复习方程的基本概念(10分钟)1. 通过课件或黑板,展示方程的例子,引导学生观察和分析。
2. 引导学生总结方程的定义和性质。
3. 解答学生的疑问。
三、解方程的方法和步骤(15分钟)1. 通过课件或黑板,展示解方程的例子,引导学生观察和分析。
2. 引导学生总结解方程的方法和步骤。
3. 解答学生的疑问。
四、练习题(15分钟)1. 发给学生练习题,让学生独立完成。
2. 引导学生互相检查答案,讨论解题方法。
五、小组讨论(15分钟)1. 将学生分成小组,每个小组讨论一道应用题。
2. 每个小组派代表分享解题思路和答案。
六、总结和反思(5分钟)1. 引导学生总结本节课的学习内容和解题方法。
2. 鼓励学生提出疑问,解答学生的疑问。
教学延伸:1. 布置作业,让学生巩固本节课的学习内容。
2. 鼓励学生运用方程解决实际问题。
注意事项:1. 在教学过程中,要注重学生的参与和互动,鼓励学生积极思考和提问。
2. 在解答学生的疑问时,要耐心细致,引导学生理解问题的本质和解题的方法。
3. 在小组讨论时,要注重培养学生的团队合作能力和沟通能力。
教学评价:1. 通过课堂观察,评价学生对方程的认识和理解。
2. 通过练习题和小组讨论,评价学生运用方程解决问题的能力。
3. 通过学生的提问和讨论,评价学生的逻辑思维能力和团队合作能力。
重点关注的细节:解方程的方法和步骤补充和说明:解方程是本节课的重点内容,学生需要掌握解方程的方法和步骤。
尊敬的评委、老师们:大家好!我今天要说的是北师大版四年级数学下册的第五单元——《方程》。
这个单元的主题是让学生初步认识方程,学会用方程表示简单的数量关系,理解等式的性质,并能够解简单的方程。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教学过程和教学反思几个方面来进行说课。
一、教材分析《方程》是北师大版小学数学四年级下册第五单元的内容。
在这个单元中,学生将第一次接触方程,这也是他们从算术思维向代数思维过渡的新起点。
用字母表示数和寻找数量间的等量关系对于小学生来说都是很抽象的。
同时,这个单元的内容又是后面学习代数相关知识的基础,因此这部分的教学至关重要。
二、学情分析在进入这个单元的学习之前,学生已经学习了用字母表示数的方法,对含有字母的式子有一定的理解。
然而,对于方程这一概念,他们还是相对陌生的。
因此,在教学过程中,我们需要结合具体情境,让学生在实际问题中感受方程的作用,理解方程的含义。
三、教学目标1. 结合具体情境,学会用字母表示数与数量关系,发展抽象概括能力。
2. 结合具体情境,体会等量关系,能用方程表示简单情境中的等量关系,了解方程的作用。
3. 了解等式的性质,能用等式的性质解简单的方程。
4. 学会用方程解决简单的实际问题,进一步理解等量关系。
四、教学重难点1. 结合具体情境,学会用字母表示数。
2. 理解等式性质,会用等式解简单的方程。
3. 学会用方程解决简单的实际问题,进一步理解等量关系。
五、教学过程1. 导入:通过一个具体情境,如青蛙儿歌,让学生初步感受方程的作用。
2. 新课导入:介绍方程的概念,让学生了解方程的含义。
3. 案例分析:通过摆小棒等情境,引导学生用字母表示数,体会方程的抽象概括能力。
4. 等式性质的学习:利用天平游戏,帮助学生理解等式的性质。
5. 解方程:引导学生学习解方程的方法,会用等式解简单的方程。
6. 应用拓展:让学生运用所学知识解决简单的实际问题,进一步理解等量关系。
第五单元认识方程1、用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。
2、用字母表示有关图形的计算公式:①长方形周长公式:C=2(a+b)。
②长方形面积公式:S=ab。
③正方形周长公式:C=4a。
④正方形面积公式:S=a2。
4、在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“?”表示或省略不写,数字一般都写在字母前面。
数字1与字母相乘时,1省略不写,字母按顺序写。
如:a×b=ab、5×a=5a、1×a=a、a×a=a25、区别a的平方和2乘a的区别:a2=a×a,2a=a+a=2×a。
6、方程的意义与等式性质①方程的含义:含有未知数的等式叫方程。
②方程与等式的联系区别:方程是等式,但等式却不都是方程。
③等式性质一:等式两边都加上(或减去)同一个数,等式仍然成立。
④等式性质二:等式两边都乘一个数(或除以一个不为0的数),等式仍然成立。
⑤解方程的书写格式:解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母一般都要放在等号的左侧。
⑥使方程左右两边相等的未知数的值叫作方程的解。
求方程的解的过程叫作解方程。
⑦能运用减法、除法各部分间的关系,求未知数是减数、除数的方程。
⑧看图列方程的关键是看懂图意,从中找出等量关系,然后再根据等量关系列出方程。
在列方程时,把未知数尽量放在等式左边。
⑨用方程解决实际问题(解应用题),首先要用字母表示未知数,然后根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程)再解出来,最后检验,写出答语。
7、图形中的规律①摆n个三角形需要2n+1根小棒。
②摆n个正方形需要3n+1根小棒。
【专题讲义】北师大版小学四年级数学下册第五单元认识方程知识点、经典例题与单元检测精讲(学生版)【知识点归纳总结】1. 用字母表示数字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.比如:t可以表示时间.用字母表示数的意义:有助于概念的本质特征,能使数量的关系变得更加简明,更具有普遍意义.使思维过程简化,易于形成概念系统.注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写;或用“•”(点)表示.2.字母和数字相乘时,省略乘号,并把数字放到字母前;“1”与任何字母相乘时,“1”省略不写.3.出现除式时,用分数表示.4.结果含加减运算的,单位前加“()”.页15.系数是带分数时,带分数要化成假分数.例如:乘法分配律:(a+b)×c=a×c+b×c乘法结合律:(a×b)×c=a×(b×c)乘法交换律:a×b=b×a.【经典例题】例:甲数为x,乙数是甲数的3倍多6,求乙数的算式是()A、x÷3+6B、(x+6)÷3C、(x-6)÷3D、3x+62. 含字母式子的求值在数学中,我们常常用字母来表示一个数,然后通过四则运算求解出那个字母所表示的数.通常我们所谓的求解x的方程也是含字母式子的求值.如x的4倍与5的和,用式子表示是4x+5.若加个条件说和为9,即可求出x=1.【经典例题】例1:当a=5、b=4时,ab+3的值是()A、5+4+3=12B、54+3=57C、5×4+3=23例2:4x+8错写成4(x+8)结果比原来()A、多4B、少4C、多24D、少63. 等式的意义页2含有等号的式子叫做等式.等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,等式的值不变.等式的基本性质:性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立.若a=b,那么a+c=b+c 性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立.若a=b,那么有a•c=b •c,或a÷c=b÷c (c≠0)性质3:等式具有传递性.若a1=a2,a2=a3,a3=a4,…am=an,那么a1=a2=a3=a4=…=an等式的意义:等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,去分母等.运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义.【经典例题】例1:500+△=600+□,比较△和□大小,()正确.A、△>□B、△=□C、△<□例2:等式两边同时乘或除以一个相同的数,所得的结果仍是一个等式..(判断对错)4.方程的意义页3含有未知数的等式叫方程.方程是等式,又含有未知数,两者缺一不可.方程和算术式不同:算术式是一个式子,它由运算符号和已知数组成,它表示未知数.方程是一个等式,在方程里,未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立.方程的意义:数学中的方程让很多问题变得简单易懂,因为对于很多数之间的关系,如果直接求需要复杂的逻辑推理关系,而用代数和方程就很容易求解,从而降低难度.【经典例题】例:一个数的7倍比35多14,设这个数为x,列方程是()A、7x+35=14B、7x-35=14C、35-7x=145.方程与等式的关系1.方程:含有未知数的等式,即:方程中必须含有未知;方程式是等式,但等式不一定是方程.2.方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号“=”.3.方程不用按逆向思维思考,可直接列出等式并含有未知数.页4例:方程一定是等式,但等式不一定是方程..(判断对错)6.方程需要满足的条件方程必须满足两个条件(缺一不可):1、含有未知数;2、是等式.【经典例题】例1:下面的式子中,()是方程.A、45÷9=5B、y+8C、x+8<15D、4y=2例2:x=2是方程..(判断对错)7.数与形结合的规律在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.页5例:用小棒照下面的规律搭正方形,搭一个用4根,搭2个用7根…,搭10个要用31根小棒,搭n个要用根小棒.【同步测试】一.选择题(共8小题)1.下列算式中,只有()是方程.A.4a+8 B.6b﹣9>12 C.3﹣x+5 D.a÷2=42.如果a=2a,那么a=()A.0 B.2 C.43.a与b的差的10倍用式子表示是()A.10a﹣b B.a﹣10b C.10(a﹣b)4.当a=9时,a2=()A.18 B.81 C.无法确定5.下面哪幅图可用于表示方程和等式的关系?()页6A.B.C.6.下面说法正确的是()A.方程5x+5=5的解是5 B.5x+5<5是方程C.等式一定是方程D.方程一定是等式7.()两边加上或减去同一个数,左右两边仍然相等.A.算式B.式子C.等式8.像如图这样摆下去,摆n个正方形需要()根小棒.A.4n B.3n C.4n﹣1 D.3n+1二.填空题(共8小题)9.在等式的两边同时乘或除以同一个不等于0的数,所得结果仍然是等式.这是.页710.果园里有桃树A棵,梨树的棵树比桃树的5倍多16棵.果园里有梨树棵.11.一本故事书有a 页,小欢每天看10页,看了b天,还没看的页数用式子表示为,如果这本书有108页,小欢看了8天,还剩页没有看.12.当b=9时,b2=,3b=.13.当a=8,b=7,c=10时,2ab+3c的值是,c×a﹣4b的值是.14.在①x+8,②2+3=5,③x÷6=4,④y﹣9>12.⑤7x+8=50中,等式有方程有.(填序号)15.请写出一个方程式.16.如图,用同样大小的黑色棋子按照所示的方式摆图案,按照这样的规律摆下去,第二十一个图案需要棋子枚.三.判断题(共5小题)17.7a+7b=7ab.(判断对错)18.当a=32时,的倒数是.(判断对错)页819.3x﹣12=0是方程.(判断对错)20.等式一定是方程,方程不一定是等式..(判断对错)21.如图,第五个点阵中点的个数是17个.(判断对错)页9四.计算题(共1小题)22.求下列各式子的值.当x=5时.5x+1860﹣4x.页10五.应用题(共5小题)23.修一段公路,已经修了12天,每天修a米,还剩300米没有修.(1)请用含有字母的式子表示这段公路的长度.(2)如果a=150,求这段公路长多少?24.利民蔬菜公司用来a车蔬菜,每车装5吨,供应给菜场45吨.(1)用含有字母的式子表示剩下的吨数.(2)当a=14时,求剩下多少吨蔬菜.页1125.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人.26.甲乙两个工程队分别从两端同时开凿一条隧道.甲队每天凿a米,乙队每天凿b米,120天后凿完.(1)这条隧道长多少米?(2)当a=11米,b=9米时,这条隧道多少米?页1227.小明用面积为1cm2的正方形卡纸拼摆图形.(1)像这样拼下去,第(5)个图形要用多少张小正方形卡纸?(2)如果要在第n个图形的外围用铁丝镶上一圈边框,至少需要多少厘米铁丝?页13【专题讲义】北师大版小学四年级数学下册第五单元认识方程知识点、经典例题与单元检测精讲(解析版)一.选择题(共8小题)1.【分析】根据方程的意义,含有未知数的等式叫做方程;以此解答即可.【解答】解:A:含有未知数,不是等式,所以不是方程;B:含有未知数,但不是等式,所以不是方程;C:含有未知数,但不是等式,所以不是方程;D:是含有未知数的等式,所以是方程.所以是方程的是D.故选:D.【点评】此题主要考查方程的意义,具备两个条件,一含有未知数,二必须是等式;据此判断选择.页142.【分析】根据0的特性,可知如果a=2a,那么a一定等于0;也可以把每一个选项中的数值代入a=2a,等式如果成立,那么此数就是a的数值,等式如果不成立,那么此数就不是a的数值,然后再选择.【解答】解:A、当a=0时,a=2a=0;B、当a=2时,2×2=4,2≠4;C、当a=4时,2×4=8,2≠8;故选:A.【点评】此题考查含字母的式子求值,解决关键是掌握0在乘法中的特性:0和任何数相乘都得0.3.【分析】先求出a与b的差再乘10即可.【解答】解:(a﹣b)×10=10(a﹣b)所以,与b的差的10倍用式子表示是10(a﹣b).故选:C.【点评】此题先求a与b的差的10倍,表示a与b的倍的差,注意一定要理解题意.页154.【分析】根据乘方的意义,a2=a×a,把a用9代替,计算即可,再根据计算结果进行选择.【解答】解:把a=9代入a2a2=a×a=9×9=81故选:B.【点评】解答此题的关键是乘方的意义.5.【分析】等式是指用“=”号连接的式子;而方程是指含有未知数的等式.所以等式的范围大,而方程的范围小,它们之间是包含关系.【解答】解:等式是指用“=”号连接的式子;而方程是指含有未知数的等式.方程和等式的关系可以用下图来表示:.故选:B.【点评】此题考查方程与等式的关系:所有的方程都是等式,但等式不一定是方程.页166.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行判断.【解答】解:A、方程5x+5=5的解是x=0,原题说法错误.B、5x+5<5虽然含有未知数,但它是不等式,也不是方程,说法错误.C、等式一定是方程,说法错误.D、方程一定是等式,说法正确.故选:D.【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.7.【分析】等式的性质:在等式的两边都加上(或减去)一个相同的数,等式依然成立;据此进行判断.【解答】解:在等式的两边加上或减去同一个数,左右两边仍然相等.故选:C.【点评】此题考查等式的性质:在等式的两边同时都加上(或减去)一个相同的数;两边同时都乘上(或除以)一个相同的数(0除外),等式依然成立.要注意:必须是同一个数才行.8.【分析】根据图示可知:摆1个正方形需要小棒:4根;摆2个正方形需要小棒:4+3=7(根);摆3个正方形需要小棒:4+3+3=10(根);……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根.据此解答.页17【解答】解:摆1个正方形需要小棒:4根摆2个正方形需要小棒:4+3=7(根)摆3个正方形需要小棒:4+3+3=10(根)……摆n个正方形需要小棒:4+3(n﹣1)=(3n+1)根答:摆n个正方形需要(3n+1)根小棒.故选:D.【点评】本题主要考查数与形结合的规律,关键根据图形发现规律,并运用规律做题.页18二.填空题(共8小题)9.【分析】等式的性质是指在等式的两边同时加、减同一个数,或同时乘、除以同一个不等于0的数,所得结果仍然是等式.【解答】解:在等式的两边同时乘或除以同一个不等于0的数,所得结果仍然是等式,这是等式的基本性质.故答案为:等式的基本性质.【点评】此题考查学生对等式的基本性质的理解,要注意:同时乘或除以同一个数时,必须是0除外.10.【分析】用A表示桃树的棵数,先根据求一个数的几倍,用乘法求出桃树的5倍的棵数A×4,进而用桃树的棵数5倍加上16棵,就是梨树的棵数,即可得解.【解答】解:A×5+16=5A+16(棵)答:梨树有(5A+16)棵.故答案为:(5A+16).【点评】解答此题的关键:根据求一个数的几倍,用乘法;求比一个数多用加法.页1911.【分析】(1)根据乘法的意义用每天看的页数乘看的天数计算出已经看的页数,用这本书的总页数减去已经看的页数即可计算出还没有看的页数;(2)将a=108和b=8的数值代入(1)算式解答.【解答】解:(1)没有看的页数:a﹣10×b=a﹣10b(页)答:还有(a﹣10b)页没看.(2)将a=108和b=8的数值代入代入(a﹣10b),108﹣10×8=108﹣80=28(页)答:还剩有28页没看.故答案为:(a﹣10b),28.【点评】解题关键是找出数量关系,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.页2012.【分析】根据乘法的意义,b2=b×b,把数代入计算即可;把b=9代入:3b=3×9=27.【解答】解:9×9=813×9=27答:当b=9时,b2=81,3b=27.故答案为:81;27.【点评】本题主要考查含有字母的式子求解,关键把字母代表的数字代入计算.页2113.【分析】把a、b、c的值代入代数式进行计算即可得解.【解答】解:当a=8,b=7,c=10时2ab+3c=2×8×7+3×10=112+30=142当a=8,b=7,c=10时c×a﹣4b=10×8﹣4×7=80﹣28=52答:2ab+3c的值是142,c×a﹣4b的值是52.故答案为:142,52.【点评】本题考查了代数式求值,比较简单,熟练掌握有理数的加减运算时解题的关键.页2214.【分析】等式是指用“=”连接的式子,方程是指含有未知数的等式;据此进行分类.【解答】解:等式有:②2+3=5,③x÷6=4,⑤7x+8=50;方程有:③x÷6=4,⑤7x+8=50;故答案为:②③⑤;③⑤.【点评】此题考查等式和方程的辨识,熟记定义,才能快速辨识.15.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行解答.【解答】解:方程是指含有未知数的等式,如5x﹣27=72.故答案为:5x﹣27=72.【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.页2316.【分析】根据图示,发现这组图形的规律:图案1黑色棋子的枚数:5枚;图案2黑色棋子枚数:5+3=8(枚);图案3黑色棋子枚数:5+3+3=11(枚);……图案n黑色棋子的枚数:5+3(n﹣1)=(3n+2)枚.据此解题.【解答】解:图案1黑色棋子的枚数:5枚图案2黑色棋子枚数:5+3=8(枚)图案3黑色棋子枚数:5+3+3=11(枚)……图案n黑色棋子的枚数:5+3(n﹣1)=(3n+2)枚……第21个图形的黑色棋子的枚数:3×21+2=63+2=65(枚)答:第二十一个图案需要棋子65枚.故答案为:65.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现这组图形的规律,并运用规律做题.页24三.判断题(共5小题)17.【分析】根据乘法分配律即可求解.【解答】解:7a+7b=7(a+b)故题干的计算错误.故答案为:×.【点评】考查了用字母表示数,关键是熟练掌握乘法分配律.18.【分析】根据倒数的意义,a=32时,=4,4的倒数是.据此判断.【解答】解:=41÷4=答:当a=32时,的倒数是.原说法正确.故答案为:√.【点评】本题主要考查含有字母的式子求值,关键利用倒数的意义做题.页2519.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行判断.【解答】解:3x﹣12=0,既含有未知数又是等式,具备了方程的条件,因此是方程;原题说法正确.故答案为:√.【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.20.【分析】方程是指含有未知数的等式.所以等式包含方程,方程只是等式的一部分,据此解答即可.【解答】解:方程一定是等式,等式不一定是方程,而本题说等式一定是方程,方程不一定是等式,是错误的,故答案为:×.【点评】此题考查方程与等式的关系:所有的方程都是等式,但等式不一定是方程.页2621.【分析】根据图示,发现这组图形的规律:第一个点阵中点的个数:1个;第二个点阵中点的个数:1+4=5(个);第三个点阵中点的个数:1+4+4=9(个);……第n个点阵中点的个数:1+4(n﹣1)=(4n+3)(个).据此判断即可.【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n+3)(个)……第五个点阵中点的个数:4×5+3=20+3=23(个)答:第五个点阵中点的个数是23个.所以原说法错误.故答案为:×.【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.页2722.【分析】把x=5代入要求的式子计算即可.【解答】解:当x=5时,5x+18=5×5+18=25+18=43;60﹣4x=60﹣4×5=60﹣20=40.【点评】本题考查了含字母式子求值,关键是把字母的值代入计算.页2823.【分析】首先用每天修的米数乘以修的天数,求出已经修了多少页;然后加上还剩下的300米,就是这段公路的长度;然后再把a=150代入含有字母的式子求出结果即可.【解答】解:(1)a×12+300=12a+300(米)答:示这段公路长(12a+300)米.(2)当a=150时;12a+300=12×150+300=1800+300=2100(米)答:如果a=150,这段公路长2100米.【点评】此题主要考查了用字母表示数的方法,以及代入法求含有字母的式子的值的应用.页2924.【分析】(1)用每车的质量乘辆数求出求出总吨数,再减去45吨就是剩下的吨数.(2)当a=14时,把它代入问题(1)的式子求出求剩下多少吨蔬菜即可.【解答】解:(1)用含有字母的式子表示剩下的吨数是:(5a﹣45)吨.(2)当a=14时,5a﹣45=5×14﹣45=25(吨)答:剩下25吨蔬菜.【点评】在数学中,我们常常用字母来表示一个数,然后通过四则运算求解出那个字母所表示的数.含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值.页3025.【分析】由一张桌子坐6人,两张桌子坐10人,三张桌子坐14人,可以发现每多一张桌子多4个人,由此用字母表示这一规律,然后代值计算.【解答】解:1张桌子可坐2×1+4=6人,2张桌子拼在一起可坐2×4+2=10人,3张桌子拼在一起可坐4×3+2=14人,…所以五张桌子坐4×5+2=22人,…那么n张桌子坐(4n+2)人.当共有50人时,4n+2=504n=48n=12答:这样共12张桌子拼起来可以坐50人.【点评】此题考查图形的变化规律,找出规律,利用规律解决问题.26.【分析】(1)根据“工作量=工作效率×工作时间”,分别求出甲、乙的工作量,把二者相加即可,或用甲、乙的工作效率之和乘工作时间.页31(2)把a=11米,b=9米时代入上面求出的含有字母a、b的表示这条隧道长度的式子计算即可.【解答】解:(1)a×120+b×120=120(a+b)(米)答:这条隧道长120(a+b)米.(2)当a=11米,b=9米时120(a+b)=120×(11+9)=120×20=2400(米)答:这条隧道2400米.【点评】此题是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;使学生在理解含有字母式子的具体意义的基础上,会根据字母的取值,求含有字母式子的值.页3227.【分析】(1)像这样拼下去,所用小正方形卡纸的张数是8、10、12……8=6+2×1、10=6+2×2、12=6+2×3……第5个图用的张数是6+2×5,第n个用的张数是6+2n.(2)面积为1cm2的正方形边长为1cm.在第n个图形的外围用铁丝镶上一圈边框,也就求第n个图形的周长.像这样拼下去,各图形的周长分别是12、14、18……12=10+2×1、14=10+2×2、16=10+2×3……第n个图形的周长是10+2n.【解答】解:(1)由分析可知,第(5)个图形要用多少张小正方形卡纸是:6+2×5=6+10=16(张)答:第(5)个图形要用16张小正方形卡纸.(2)由分析可知,第n个图形的周长是10+2n因此,如果要在第n个图形的外围用铁丝镶上一圈边框,至少需要(10+2n)厘米铁丝答:至少需要(10+2n)厘米铁丝.【点评】解答此题的关键是根据这些图形找出图形的序数与所用小正方形卡纸的张数、拼成图形的周长之间的关系,这也是本题的难点.页33页34。
第五单元认识方程
1、用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。
2、用字母表示有关图形的计算公式:
①长方形周长公式:C=2(a+b)。
②长方形面积公式:S=ab。
③正方形周长公式:C=4a。
④正方形面积公式:S=a2。
4、在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“?”表示或省略不写,数字一般都写在字母前面。
数字1与字母相乘时,1省略不写,字母按顺序写。
如:a×b=ab、5×a=5a、1×a=a、a×a=a2
5、区别a的平方和2乘a的区别:a2=a×a,2a=a+a=2×a。
6、方程的意义与等式性质
①方程的含义:含有未知数的等式叫方程。
②方程与等式的联系区别:方程是等式,但等式却不都是方程。
③等式性质一:等式两边都加上(或减去)同一个数,等式仍然成立。
④等式性质二:等式两边都乘一个数(或除以一个不为0的数),等式仍然成立。
⑤解方程的书写格式:解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母一般都要放在等号的左侧。
⑥使方程左右两边相等的未知数的值叫作方程的解。
求方程的解的过程叫作解方程。
⑦能运用减法、除法各部分间的关系,求未知数是减数、除数的方程。
⑧看图列方程的关键是看懂图意,从中找出等量关系,然后再根据等量关系列出方程。
在列方程时,把未知数尽量放在等式左边。
⑨用方程解决实际问题(解应用题),首先要用字母表示未知数,然后根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程)再解出来,最后检验,写出答语。
7、图形中的规律
①摆n个三角形需要2n+1根小棒。
②摆n个正方形需要3n+1根小棒。