聚类分析Q型,R型聚类算法
- 格式:doc
- 大小:93.00 KB
- 文档页数:12
R型聚类法
R型聚类法(也称为随机聚类法或随机分组法)是一种无监督学习方法,用于将数据样本分组成不同的簇或类别,使得同一簇内的样本相似度高,而不同簇之间的相似度较低。
R型聚类法的基本思想是随机地将数据样本分配到不同的簇中,然后根据簇内样本的相似度来调整簇的划分,直到满足一定的停止准则为止。
具体来说,R型聚类法包括以下步骤:
1. 随机分配:将数据样本随机分配到不同的簇中,每个簇包含一定数量的样本。
2. 计算相似度:计算每个簇内样本之间的相似度,可以使用各种距离度量方法,如欧几里得距离、曼哈顿距离等。
3. 重新分组:根据簇内样本的相似度,将相似度较高的样本分配到同一簇中,同时将相似度较低的样本分配到不同的簇中。
4. 重复步骤2和3,直到满足一定的停止准则,如簇内样本的相似度达到一定的阈值,或者达到最大迭代次数等。
5. 输出结果:将最终的簇分配结果输出,每个簇包含一组相似度较高的样本。
R型聚类法的优点是简单易实现,不需要事先对数据进行特征选择或降维等处理,同时也可以发现样本之间的非线
性关系。
但是,R型聚类法也存在一些缺点,如对初始分组的依赖性较强,可能会陷入局部最优解,同时对于大规模数据聚类的效率较低。
r型聚类算法r型聚类算法聚类算法是一种常用的数据挖掘技术,通过对数据进行分组,使得同一组内的数据相似度较高,而不同组之间的数据相似度较低。
其中,r型聚类算法是一种基于密度的聚类算法,能够有效地识别出复杂的聚类结构。
一、引言在数据挖掘和机器学习领域,聚类是一项重要任务。
聚类算法的目标是将数据集划分成不同的组,使得同一组内的数据具有较高的相似度,而不同组之间的数据具有较低的相似度。
r型聚类算法是一种热门的聚类算法,具有高效、准确的特点,被广泛应用于各种领域。
二、r型聚类算法原理r型聚类算法基于密度的概念,通过计算数据点周围的点的密度来确定聚类结构。
其核心思想是找到具有高密度的局部区域,这些区域被认为是聚类的中心。
1. 密度定义r型聚类算法中,密度被定义为某个点周围半径为r的圆内包含的点的个数。
密度越大,表示该点周围的数据点越密集。
2. 核心对象核心对象是指在半径为r的圆内包含的点的个数大于等于某个阈值MinPts的点。
核心对象是聚类算法的关键。
3. 直接密度可达(Directly Density Reachable)在r型聚类算法中,直接密度可达是指对于两个点p和q来说,如果q在p的r-领域内,并且p是一个核心对象,那么就称q是直接密度可达于p的。
这个关系是聚类的基础。
4. 密度可达(Density Reachable)对于两个点p和q来说,如果存在一条点的序列p1,p2,...,pn,使得p1=p,pn=q,并且pi+1是pi的直接密度可达点,那么就称q是密度可达于p的。
5. 密度相连(Density Connected)如果存在一个点o,使得点p和q对于o来说是密度可达的,那么称p和q是密度相连的。
密度相连是一种传递关系,能够将具有相似密度的点连接在一起。
三、算法步骤r型聚类算法的具体步骤如下:1. 初始化:设置半径r和最小密度阈值MinPts。
2. 寻找核心对象:遍历数据集中的每一个点,计算其半径为r的圆内包含的点的个数,如果大于等于MinPts,则将其标记为核心对象。
聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。
系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。
根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。
系统聚类分析法基本步骤如下(许志友,1988)。
(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。
设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。
1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。
1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。
有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。
2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。
第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
聚类分析定义及分析⽅法聚类分析聚类分析(Cluster Analysis)是根据事物本⾝的特性研究个体分类的⽅法。
聚类分析的原则是同⼀类中的个体有较⼤的相似性,不同类的个体差异很⼤。
根据分类对象不同分为样品聚类和变量聚类。
样品聚类在统计学中⼜称为Q型聚类。
⽤SPSS的术语来说就是对事件(cases)进⾏聚类,或是说对观测量进⾏聚类。
是根据被观测的对象的各种特征,即反映被观测对象的特征的各变量值进⾏分类。
变量聚类在统计学中有称为R型聚类。
反映事物特点的变量有很多,我们往往根据所研究的问题选择部分变量对事物的某⼀⽅⾯进⾏研究。
SPSS中进⾏聚类和判别分析的统计过程是由菜单Analyze---Classify导出的选择Classify 可以显⽰三个过程命令:1 K-Means Cluster进⾏快速聚类过程。
2 Hierarchical Cluster进⾏样本聚类和变量聚类过程。
3 Discriminant进⾏判别分析过程。
通常情况下在聚类进⾏之前 Proximitice 过程先根据反映各类特性的变量对原始数据进⾏预处理,即利⽤标准化⽅法对原始数据进⾏⼀次转换。
并进⾏相似性测度或距离测度。
然后 Cluster 过程根据转换后的数据进⾏聚类分析。
在SPSS for Windows 中分层聚类各⽅法都包含了 Proximitice 过程对数据的处理和Cluster 过程。
对数据的分析给出的统计量可以帮助⽤户确定最好的分类结果。
1.1 主要功能聚类的⽅法有多种,最常⽤的是分层聚类法。
根据聚类过程不同⼜分为凝聚法和分解法。
分解法:聚类开始把所有个体(观测量或变量)都视为属于⼀⼤类,然后根据距离和相似性逐层分解,直到参与聚类的每个个体⾃成⼀类为⽌。
凝聚法:聚类开始把参与聚类的每个个体(观测量或变量)视为⼀类,根据两类之间的距离或相似性逐步合并直到合并为⼀个⼤类为⽌。
⽆论哪种⽅法,其聚类原则都是近似的聚为⼀类,即距离最近或最相似的聚为⼀类。
聚类分析聚类分析:聚类分析是通过数据建模简化数据的一种方法。
“物以类聚,人以群分”正是对聚类分析最好的诠释。
一、聚类分析可以分为:对样本进行聚类分析(Q型聚类),此类聚类的代表是K-means聚类方法;对变量(标题)进行聚类分析(R型聚类),此类聚类的代表是分层聚类。
常见为样本聚类,比如有500个人,这500个人可以聚成几个类别。
下面具体阐述对样本进行聚类分析的方法说明(分层聚类将在之后的文章中介绍):聚类分析(Q型聚类)用于将样本进行分类处理,通常是以定量数据作为分类标准。
如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类分析”功能,其会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。
二、Q型聚类分析的优点:1、可以综合利用多个变量的信息对样本进行分类;2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果;3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。
三、分析思路以下分析思路为对样本进行聚类分析(1)指标归类当研究人员并不完全确定题项应该分为多少个变量,或者研究人员对变量与题项的对应关系并没有充分把握时,可以使用探索性因子分析将各量表题项提取为多个因子(变量),利用提取得到的因子进行后续的聚类分析。
特别提示:分析角度上,通过探索性因子分析,将各量表题项提取为多个因子,提取出的因子可以在后续进行聚类分析。
比如:可先讲20个题做因子分析,并且得到因子得分。
将因子得分在进一步进行聚类分析。
最终聚类得到几个类别群体。
再去对比几个类别群体的差异等。
(2)聚类分析第一步:进行聚类分析设置如果使用探索性因子分析出来的因子进行聚类分析,当提取出五个因子时,应该首先计算此五个因子对应题项的平均分,分别使用平均得分代表此五个因子(比如因子1对应三个题项,则计算此三个题项的平均值去代表因子1),利用计算完成平均得分后得到的因子进行聚类分析。
第二步:结合不同聚类类别人群特征进行类别命名聚类分析完成后,每个类别的样本应该如何称呼,或者每个类别样本的名字是什么,软件并不能进行判断。
聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21)思想很简单,想象成⼀颗倒⽴的树,叶节点为样本本⾝,根据样本之间的距离(相似系数),将最近的两样本合并到⼀个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最⼩的合为新的根节点。
以此类推对于样本X=(x1,x2,,,x m ),共n 个样品,m 个特征,我们可以考虑两种情形聚类R 型聚类:m 个特征之间的聚类,可以理解为⼀种降维。
Q 型聚类:n 个样品之间的聚类,这就是⼀般意义上机器学习中的系统聚类(⽂中的下标i 、j 在R 型、Q 型中的含义不⼀样,聪明的读者⾃⾏分辨)相似系数:R 型(真正意义上的相似系数)(r )r ij =∑X i −¯X i X j −¯X j ∑X i −¯X i 2∑X j −¯X j 2可以看到r ij 越⼤标明两特征相似程度越⾼Q 型(真正意义上的样品距离)(d )闵可夫斯基(Minkowski )距离:px −µi pMinkowski 距离没有考虑变量之间的相关关系。
引进马⽒距离:d ij =X ′S −1X其中X=(X_{i1}-X_{j1} \right , X_{i2}-X_{j2} \right, X_{im}-X_{jm})(不明原因的公式不正确显⽰)类间相似系数:最⼤相似系数法r=Max(r)D=Min(d)|()()|√()()√||最⼩相似系数法r=Min(r)D=Max(d)可以看出,就是⼈为规定了,当某两个指标或样品合并后,新的样本(或指标)与上⼀节点样品(或指标)的距离(或相似系数)的选取现举实例说明测量了300名成年⼥⼦⾝⾼(X1)、下肢长(X2)、腰围(X3)、胸围(X4)得到相似系数矩阵可以看到X1,X2的相似系数最⼤,所以将X1,X2合并为G5X3变为G3,X4变为G4G3与G4的相似系数不变,为0.73G5与G3、G5与G4的类间相似系数采⽤最⼤相似系数法G5与G3的类间相似系数r = Max r即r53=Max(r13,r23)=Max(0.09,0.05)=0.09r54=Max(r14,r24)=Max(0.23,0.17)=0.23所以有根据上述步骤,直到所有的类都归为⼀类。