高等数第9章 线性方程组
- 格式:ppt
- 大小:1.17 MB
- 文档页数:38
高等代数方法总结一、前言高等代数是数学中的重要分支,它涉及到很多重要的概念和理论。
在学习高等代数时,我们需要掌握一些基本的方法和技巧,以便更好地理解和应用这些概念和理论。
本文将总结一些常见的高等代数方法,帮助读者更好地学习和应用高等代数知识。
二、线性方程组的求解线性方程组是高等代数中最基础的问题之一。
在实际应用中,线性方程组经常出现,并且求解线性方程组是很多问题的关键步骤。
下面介绍几种常见的线性方程组求解方法。
1. 高斯消元法高斯消元法是求解线性方程组最常用的方法之一。
它通过矩阵变换将原始矩阵转化为一个上三角矩阵或者行简化阶梯形矩阵,从而得到线性方程组的解。
具体步骤如下:(1)将系数矩阵增广为一个增广矩阵;(2)从第一行开始,找到第一个非零元素所在列,并将该列所有元素除以该元素;(3)将第一行乘以一个系数,使得该行第一个非零元素下面的元素都为零;(4)重复步骤(2)和(3),直到将矩阵转化为上三角矩阵或者行简化阶梯形矩阵;(5)从最后一行开始,依次求解每个未知量。
2. 矩阵求逆法如果一个方阵的行列式不等于零,则该方阵可以求逆。
对于一个n×n 的方阵A,如果它的行列式不等于零,则存在一个n×n的方阵B,使得AB=BA=I。
具体步骤如下:(1)构造增广矩阵[A|I];(2)通过初等变换将[A|I]变成[I|B],其中B即为A的逆矩阵。
3. 克拉默法则克拉默法则是一种基于行列式的线性方程组求解方法。
对于一个n元线性方程组,如果它的系数矩阵A可逆,则其唯一解可以表示为:xi=det(Ai)/det(A),i=1,2,...,n,其中Ai是将系数矩阵A中第i列替换为常数向量b后得到的新矩阵。
三、特征值和特征向量特征值和特征向量是高等代数中的重要概念,它们在很多领域中都有广泛的应用。
下面介绍几种常见的特征值和特征向量求解方法。
1. 特征方程法对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=kx,其中k为一个常数,则称k为矩阵A的特征值,x为矩阵A对应于特征值k 的特征向量。
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ijy x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()(ΛΛi j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a aa a a a a a ΛM O MM ΛΛ212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。
这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。
希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。
大一高等数学的教材目录第一章:函数与极限1.1 函数的定义与性质1.2 函数的极限与连续性1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则第二章:导数与微分2.1 导数的定义与性质2.2 基本初等函数的导数2.3 反函数与参数方程的导数2.4 高阶导数与函数的近似2.5 微分的定义与应用第三章:积分与反常积分3.1 不定积分与换元积分法3.2 定积分与牛顿-莱布尼兹公式3.3 反常积分的概念与性质3.4 反常积分的审敛法3.5 广义积分与无穷级数第四章:多元函数与偏导数4.1 多元函数的概念与性质4.2 偏导数的定义与计算4.3 隐函数与复合函数的偏导数4.4 方向导数与梯度4.5 多元函数的极值与条件极值第五章:重积分与曲线积分5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线积分的定义与计算第六章:无穷级数与级数展开6.1 收敛级数与无穷级数的运算6.2 正项级数的审敛法6.3 幂级数与泰勒级数6.4 函数展开与近似计算6.5 傅里叶级数与傅里叶变换第七章:常微分方程7.1 常微分方程的基本概念7.2 可分离变量方程与一阶线性方程7.3 二阶线性常系数齐次方程7.4 二阶线性常系数非齐次方程7.5 线性方程组与常微分方程应用第八章:概率论与数理统计8.1 随机事件与概率8.2 条件概率与事件独立性8.3 随机变量与概率分布8.4 多维随机变量与联合分布8.5 统计量与抽样分布第九章:常用数学方法和定理9.1 矩阵与线性方程组9.2 特征值与特征向量9.3 数学归纳法及其应用9.4 极值、最值与不等式9.5 极限的定义与性质第十章:复变函数10.1 复数与复数函数10.2 复变函数的导数与解析函数10.3 共轭函数与全纯函数10.4 积分与柯西公式10.5 函数级数与留数定理总结:本教材涵盖了大一高等数学的核心内容,从函数与极限起步,通过导数与微分、积分与反常积分、多元函数与偏导数、重积分与曲线积分等章节的学习,引导学生掌握数学分析的基本方法和思维,为日后的数学学习打下坚实基础。