TD-LTE无线网络规划软件和原理介绍
- 格式:doc
- 大小:4.25 MB
- 文档页数:23
TD-LTE无线网络规划软件ANPOP介绍刘娜;李楠【摘要】本文首先介绍了LTE无线网络规划软件ANPOP的架构及主要模块,然后又对几个主要模块的功能及特点作了详细介绍,还分析了规划软件的未来演进方向.【期刊名称】《电信工程技术与标准化》【年(卷),期】2010(023)009【总页数】4页(P38-41)【关键词】LTE;ANPOP;网络规划;软件【作者】刘娜;李楠【作者单位】中国移动通信集团设计院有限公司,北京,100080;中国移动通信集团设计院有限公司,北京,100080【正文语种】中文【中图分类】TN921 引言移动通信技术发展日新月异,随着LTE标准的不断完善和成熟,LTE的推出也被各大运营商提上日程。
为更好地支撑中国移动TD-LTE试商用网络建设,中国移动集团设计院研究所推出一款专门针对LTE无线网络规划的规划工具ANPOP (Advanced Network Planning& Optimizing Platform),如图1所示。
该软件于2009年11月启动开发,V0.0.1版于2010年7月正式发布。
本文将介绍该软规划工具的技术特点及功能。
图1 ANPOP软件启动屏闪2 软件特点ANPOP无线网络规划软件是中国移动集团设计院继TD-SCDMA网络规划软件APOX之后独立研发的又一款大型工具软件,具备完整的LTE网络规划功能,同时支持TDD和FDD两种制式。
ANPOP继承了APOX的标准Windows中文界面和风格,易于上手,使用方便;软件安装卸载简单便捷;工程管理方便,便于不同使用者之间的串行操作;算法完全按照3GPP LTE R8版本进行设计,工程计算快速准确;软件的开发注重与工程实际的结合,凝聚了大量规划及外场测试经验;软件中的各类参数设定更是依据于外场测试的第一手数据,从而使得软件既适应新技术要求又能够与工程实际实现完美的结合;软件支持丰富的网络规划评估结果展示,能自动生成符合业界统计习惯的多种图层、报表及文档,方便规划仿真人员使用。
TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。
然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。
本文将对TD-LTE网络的优化进行进行阐述。
【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。
而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。
但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。
本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。
一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。
另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。
目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。
图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。
在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。
TD—L TE网络TA和TA list规划及优化指导原则一、TA及TA list规划原则1、TA及TA list概念跟踪区(Tracking Area)是LTE系统为UE的位置管理设立的概念。
TA功能与3G系统的位置区(LA)和路由区(RA)类似。
通过TA信息核心网络能够获知处于空闲态的UE的位置,并且在有数据业务需求时,对UE进行寻呼。
一个TA可包含一个或多个小区,而一个小区只能归属于一个TA.TA用TA码(TAC)标识,TAC在小区的系统消息(SIB1)中广播。
LTE系统引入了TA list的概念,一个TA list包含1~16个TA。
MME可以为每一个UE分配一个TA list,并发送给UE保存。
UE在该TA list内移动时不需要执行TAlist 更新;当UE进入不在其所注册的TA list中的新TA区域时,需要执行TAlist更新,此时MME为UE重新分配一组TA形成新的TAlist。
在有业务需求时,网络会在TA list所包含的所有小区内向UE发送寻呼消息.因此在LTE系统中,寻呼和位置更新都是基于TA list进行的。
TA list的引入可以避免在TA边界处由于乒乓效应导致的频繁TA更新。
2、TA规划原则TA作为TA list下的基本组成单元,其规划直接影响到TA list规划质量,需要作如下要求:(1)TA面积不宜过大TA面积过大则TA list包含的TA数目将受到限制,降低了基于用户的TA list 规划的灵活性,TA list引入的目的不能达到;(2)TA面积不宜过小TA面积过小则TA list包含的TA数目就会过多,MME维护开销及位置更新的开销就会增加;(3)应设置在低话务区域TA的边界决定了TA list的边界。
为减小位置更新的频率,TA边界不应设在高话务量区域及高速移动等区域,并应尽量设在天然屏障位置(如山川、河流等)。
在市区和城郊交界区域,一般将TA区的边界放在外围一线的基站处,而不是放在话务密集的城郊结合部,避免结合部用户频繁位置更新。
TD-LTE无线网络规划原理1 概述无线网络规划的意义是在满足客户需求的基础上,使无线网络部署精细化,以最小化建网成本,并为客户提供一个优质的无线网络或解决方案。
首先,必须要充分理解和深入挖掘用户的真实需求。
用户的需求一般包括频率、带宽、速率、覆盖、容量等方面。
其次,必须要精细化无线网络部署。
再次,必须要最小化建网成本。
最后,必须要尽最大努力为客户提供一个优质的无线网络或解决方案。
2 规划原理TD-LTE无线网络规划的流程如下图所示:2.1传播模型(1)自由空间传播模型模型公式:()32.4520*lg()20*lg()PL dB f d =++式中,系统频率f 的单位为MHz ,距离d 的单位为km 。
(2) Okumura-Hata 模型 适用范围:频率:150~1500MHz 发射机高度:30~200m 接收机高度:1~10m发射机和接收机之间的距离:1~35km模型公式:()69.5526.16*lg()13.82*lg()()[44.9 6.55*lg()]*lg()b m b PL dB f h a h h d γ=+--+-式中,22[1.1*lg()0.7]*[1.56*lg()0.8]()8.29*[lg(1.54*)] 1.12003.2*[lg(11.75*)] 4.971500m m m m f h f a h h MHz f MHzh MHz f MHz ---⎧⎪=-≤≤⎨⎪-≤≤⎩中小城市大城市 150大城市 400430.81201(0.14 1.87*10* 1.07*10*)*[lg(/20)]20b d km f h d d kmγ--≤⎧=⎨+++>⎩密集城区校正因子:3dB 一般城区校正因子:0dB郊区校正因子:22*[lg(/28)] 5.4f --农村校正因子:22[lg(/28)] 2.39*[lg()]9.17*lg()23.17f f f --+- 开阔地校正因子:24.78*[lg()]18.33*lg()40.94f f -+- 准开阔地校正因子:24.78*[lg()]18.33*lg()35.48f f -+- (3) Cost-231 Hata 模型 适用范围:频率:1500~2000MHz 发射机高度:30~200m 接收机高度:1~10m发射机和接收机之间的距离:1~100km模型公式:()46.333.9*lg()13.82*lg()()[44.9 6.55*lg()]*lg()b m b PL dB f h a h h d γ=+--+-式中,22[1.1*lg()0.7]*[1.56*lg()0.8]()8.29*[lg(1.54*)] 1.12003.2*[lg(11.75*)] 4.971500m m m m f h f a h h MHz f MHzh MHz f MHz ---⎧⎪=-≤≤⎨⎪-≤≤⎩中小城市大城市 150大城市 400430.81201(0.14 1.87*10* 1.07*10*)*[lg(/20)]20b d km f h d d kmγ--≤⎧=⎨+++>⎩密集城区校正因子:3dB 一般城区校正因子:0dB郊区校正因子:22*[lg(/28)] 5.4f --农村校正因子:22[lg(/28)] 2.39*[lg()]9.17*lg()23.17f f f --+- 开阔地校正因子:24.78*[lg()]18.33*lg()40.94f f -+- 准开阔地校正因子:24.78*[lg()]18.33*lg()35.48f f -+-(4) SPM 模型 适用范围:频率:150~3500MHz模型公式:()17.444.9*lg() 5.83*lg() 6.55lg()*lg()0*m b b PL dB d h DiffractionLoss h d h ClutterOffset =+++-++其中:DiffractionLoss 表示阻隔路径上的衍射造成的损耗(dB)。
TD-LTE无线网络规划原理1 概述无线网络规划的意义是在满足客户需求的基础上,使无线网络部署精细化,以最小化建网成本,并为客户提供一个优质的无线网络或解决方案。
首先,必须要充分理解和深入挖掘用户的真实需求。
用户的需求一般包括频率、带宽、速率、覆盖、容量等方面。
其次,必须要精细化无线网络部署。
再次,必须要最小化建网成本。
最后,必须要尽最大努力为客户提供一个优质的无线网络或解决方案。
2 规划原理TD-LTE无线网络规划的流程如下图所示:2.1传播模型(1)自由空间传播模型模型公式:()32.4520*lg()20*lg()PL dB f d =++式中,系统频率f 的单位为MHz ,距离d 的单位为km 。
(2) Okumura-Hata 模型 适用范围:频率:150~1500MHz 发射机高度:30~200m 接收机高度:1~10m发射机和接收机之间的距离:1~35km模型公式:()69.5526.16*lg()13.82*lg()()[44.9 6.55*lg()]*lg()b m b PL dB f h a h h d γ=+--+-式中,22[1.1*lg()0.7]*[1.56*lg()0.8]()8.29*[lg(1.54*)] 1.12003.2*[lg(11.75*)] 4.971500m m m m f h f a h h MHz f MHzh MHz f MHz ---⎧⎪=-≤≤⎨⎪-≤≤⎩中小城市大城市 150大城市 400430.81201(0.14 1.87*10* 1.07*10*)*[lg(/20)]20b d km f h d d kmγ--≤⎧=⎨+++>⎩密集城区校正因子:3dB 一般城区校正因子:0dB郊区校正因子:22*[lg(/28)] 5.4f --农村校正因子:22[lg(/28)] 2.39*[lg()]9.17*lg()23.17f f f --+- 开阔地校正因子:24.78*[lg()]18.33*lg()40.94f f -+- 准开阔地校正因子:24.78*[lg()]18.33*lg()35.48f f -+- (3) Cost-231 Hata 模型 适用范围:频率:1500~2000MHz 发射机高度:30~200m 接收机高度:1~10m发射机和接收机之间的距离:1~100km模型公式:()46.333.9*lg()13.82*lg()()[44.9 6.55*lg()]*lg()b m b PL dB f h a h h d γ=+--+-式中,22[1.1*lg()0.7]*[1.56*lg()0.8]()8.29*[lg(1.54*)] 1.12003.2*[lg(11.75*)] 4.971500m m m m f h f a h h MHz f MHzh MHz f MHz ---⎧⎪=-≤≤⎨⎪-≤≤⎩中小城市大城市 150大城市 400430.81201(0.14 1.87*10* 1.07*10*)*[lg(/20)]20b d km f h d d kmγ--≤⎧=⎨+++>⎩密集城区校正因子:3dB 一般城区校正因子:0dB郊区校正因子:22*[lg(/28)] 5.4f --农村校正因子:22[lg(/28)] 2.39*[lg()]9.17*lg()23.17f f f --+- 开阔地校正因子:24.78*[lg()]18.33*lg()40.94f f -+- 准开阔地校正因子:24.78*[lg()]18.33*lg()35.48f f -+-(4) SPM 模型 适用范围:频率:150~3500MHz模型公式:()17.444.9*lg() 5.83*lg() 6.55lg()*lg()0*m b b PL dB d h DiffractionLoss h d h ClutterOffset =+++-++其中:DiffractionLoss 表示阻隔路径上的衍射造成的损耗(dB)。
ClutterOffset 表示地形损耗(dB )。
2.2链路预算(1) 等效全向辐射功率基站等效全向辐射功率(dBm) = 基站最大发射功率(dBm) + 10lg(业务带宽/系统带宽)(dB)+ 天线增益(dBi) – 馈线损耗(dB)终端等效全向辐射功率(dBm) = 终端最大发射功率(dBm) + 终端天线增益(dBi)– 人体损耗(dB)(2) 接收机灵敏度接收机灵敏度(dBm) = 热噪声密度(dBm/Hz) + 10lg(业务带宽) + 热噪声系数(dB)+ 解调门限(dB)(3) 期望接收电平期望接收电平(dBm) = 接收机灵敏度(dBm) – 天线增益(dBi) + 干扰余量(dB)+ 阴影衰落余量(dB) + 快衰落余量(dB) + 穿透损耗(dB)(4) 最大允许路径损耗最大允许路径损耗(dB) = 等效全向辐射功率(dBm) – 期望接收电平(dBm)(5)干扰余量干扰余量的实质就是为了保证一定的覆盖,需要预留一定的余量,用于克服系统中由于负载增加的原因所产生的对用户干扰的增加所造成的负面影响。
干扰余量的具体取值通过系统仿真确定。
(6)解调门限解调门限反映的是一定信道和MCS条件下设备要求的最低SINR,解调门限通过链路仿真确定。
(7)穿透损耗建筑物的穿透损耗(BPL,Building Penetration Loss)与具体的建筑物类型、电波入射角度等因素有关。
在链路预算中假设穿透损耗服从对数正态分布,用穿透损耗均值及标准差描述。
通过测量,2.6GHz频段穿透损耗在不同介质时的参考值如下表所示:表 2.2-1 2.6GHz频段穿透损耗参考值(8)快衰落余量快衰落余量主要反映移动速度的影响。
(9)阴影衰落余量阴影衰落余量服从对数正态分布,可由阴影衰落标准差和边缘覆盖概率(或区域覆盖概率)计算得到,通常阴影衰落标准差(dB)取值如下:常用的阴影衰落标准差、边缘覆盖概率、阴影衰落余量、区域覆盖概率的对应关系如下:2.3邻区规划LTE系统中的邻区规划与以往GSM、TD-SCDMA类似,都是根据小区之间的距离和位置关系构建干扰矩阵,然后根据干扰情况决定邻区的优先级。
2.4 PCI规划LTE系统中共有504个PCI(物理层小区ID),这些PCI被分成168个小区ID组,每组中包含3个不同的ID。
每个PCI可由公式(1)(2)3*CellID ID IDN N N=+表示,其中,CellIDN表示PCI,取值范围是0~503;(1)IDN表示小区ID组,取值范围是0~167;(2)IDN表示小区组内ID,取值范围是0~2。
PCI的配置决定了小区参考信号的位置,以及同步信号伪随机序列、扰码等的生成。
合理的PCI配置可以降低小区间的干扰,提升系统性能,因此,PCI需要进行规划。
PCI规划的基本思想是利用邻区关系和邻区优先级,为相邻小区按照规划原则配置最佳PCI,最大限度降低小区间干扰。
PCI规划原则:相邻小区无冲突、无混淆,其中,无冲突指相邻小区不能使用相同的PCI、无混淆指小区的所有邻区不能使用相同的PCI;相邻小区模3结果不同;(可选)共站邻区模3结果不同,非共站邻区模6不同。
(可选)2.5 PRACH规划随机接入是UE与eNode B之间建立无线链路的必经过程。
只有在随机接入过程完成之后,eNode B与UE才能进行数据传输。
随机接入过程应用于初始接入、切换、上行失步、辅助定位等场景。
随机接入过程分竞争随机接入和非竞争随机接入两种,竞争随机接入是由UE自主发起的,应用于初始接入、切换、上行失步等场景;非竞争随机接入则是由eNode B 指示UE发起的,应用于切换、上行失步、辅助定位等场景。
随机接入信号由循环前缀(CP)、前导序列(Preamble)、保护间隔(GT)构成。
小区中心UE1小区边缘UE2图2.5-1 PRACH信道构成表2.5-1 Preamble格式注:307200*Ts = 10msLTE系统中与PRACH相关的配置参数主要包括:PRACH配置索引、零相关配置、根序列索引、是否为高速移动状态、频率偏移。
PRACH配置索引的取值范围为0~63,决定了PRACH占用的时、频域位置。
零相关配置的取值范围为0~15,分普通状态和高速状态场景,决定Preamble序列的循环移位长度,可对抗多径衰落,影响小区覆盖。
是否为高速移动状态决定零相关配置的取值。
频率偏移取值范围0~94,影响PRACH的频域位置。
PRACH配置原则:相邻小区PRACH配置索引和根序列索引尽量错开,零相关配置可以相同。
2.6覆盖规划覆盖规划主要用于估算广播信道的覆盖能力,以下主要就参考信号接收功率(RSRP)、载波信号接收强度(RSSI)、参考信号接收质量(RSRQ)、参考信号信干噪比(RS-SINR)的计算方法进行介绍。
RSRP(dBm)= RSRE发射功率(dBm)+ 发射天线增益(dBi)–馈线损耗(dB)–传播损耗(dB)+ 接收天线增益(dBi)–衰落余量(dB)RSSI(dBm)= RB发射功率(dBm)+ 10*log(业务带宽(RB))RSRQ(dB)= RSRP(dBm)+ 10*log(业务带宽(RB))- RSSI(dBm)RS-SINR(dB)= RSRP(dBm)- 干扰功率(dBm)- 噪声功率(dBm)注:RSRP指单个RSRE的平均接收功率;RSSI指业务占用RB数上的接收功率;RSRQ指业务占用RB数上RS接收功率与总接收功率之比;RS-SINR指RS的平均信干噪比。
2.7容量规划容量规划主要用于估算小区接入成功率、小区吞吐量、边缘用户速率、平均用户速率、上行干扰功率等指标。
容量规划中关键算法包括调度算法、资源分配算法、功控算法、干扰协调算法、MIMO建模、业务建模等,以下主要就以上算法的基本原理进行介绍。
蒙特卡罗算法的基本思想是借用统计学的原理,利用多次抓拍的统计结果形成概率意义上的统计结果。
由上可知,蒙特卡罗仿真算法要求抓拍次数要足够多。
但是,考虑到仿真时间受限的因素,仿真时抓拍次数又不能太多。
因此,蒙特卡罗仿真算法抓拍次数应当折中考虑。
调度算法包含轮询算法、正比公平算法、最大C/I算法,规划中调度算法只决定用户的接入先后顺序,与实际设备实现中的调度算法有区别。
此外,考虑到LTE系统业务建模的特殊性,规划中还采用了剩余资源分配算法,该算法包含平均分配、按需求分配、按C/I分配算法。
资源分配算法应用于LTE下行链路。
资源分配算法根据用户的信道状况(SINR值、移动速度等)来决定采用的MCS和MIMO方式,进而科由业务速率确定占用资源。