第二章 图论模型
- 格式:ppt
- 大小:7.79 MB
- 文档页数:91
图论模型此模型解决的是垃圾清运路线的最佳方案。
1、收集路线方案:用中国邮递员问题解决达到最佳经济效益和环保效果的垃圾清运路线问题是在车辆限载约束条件下的最优路径选择的问题,同时本项目涉及到深圳市南山区38个垃圾中转站,而每个中转站所覆盖的收集区域的选取需要满足最大覆盖域(即总体能够消耗最少资源来覆盖整片区域),收集区域的划分又要同时考虑实地情况(地形、路线、用地性质、人流量、垃圾量等)。
1.1模型建立:为简化问题讨论,在转运站覆盖区域的划分的问题上,需要运用“最大覆盖”及“模糊划分”的思想,具体划分出每个转运站所对应 的片区的近似最优划分。
将问题简化后,所要求解的问题就是每个垃圾中转站所对应的每个小分区的街道所构成的收集网络的垃圾收运车辆优化路线的问题,也就是要求每一条街道至少有一辆垃圾收运车经过并且车辆重复走过的街道的总长度最小化的问题。
对于这个问题,我们采用图论模型,将每个小分区的街道及收集点简化成网络图(也叫赋权图)。
对于网络图中的圈用圈点来表示,计算各个圈点的垃圾量(也即围成圈的街道上的垃圾量的和),将相邻(有公共顶点)的圈点用线连接起来,这就构成了圈点图。
遵循以垃圾中转站为圆心沿径向发散求最小生成树的原则将圈点图中相邻的圈点组块,使得每块的垃圾量近似于垃圾收运车载限,对应于圈点分块,网络图分开成了各个子网络图,对于每一个子网络图即可利用欧拉回路求得其最小路径线路。
现在给出最短欧拉回路求解举例:图代表的是其中一个收集子网络图,其中直线表示车辆需要经过的街道,线上的数字表示该街道的长度,该子网络图各条街道的垃圾量之和近似于收集车辆的载限。
现要求的是车辆经过每一条街道至少一次的最短回路,现在对这个问题分步求解:第一步:找出图中的奇点,如图中橙色小圆点所在处为奇点。
第二步:将各对奇点沿街道连接起来,使得连接奇点的所有街道总长度最小。
如下图绿色线条:第三步:得出经过每条街道至少一次的最短路径长度为所有街道的总长加上连接奇点的街道的长度。
图论模型图论是运筹学的一个经典和重要分支,专门研究图与网络模型的特点、性质以及求解方法。
许多优化问题,可以利用图与网络的固有特性而形成的特定方法来解决,比用数学规划等其他模型来求解往往要简单且有效得多。
图论起源于1736年欧拉对柯尼斯堡七桥问题的抽象和论证。
1936年,匈牙利数学家柯尼希(D. Kӧnig )出版的第一部图论专著《有限图与无限图理论》,树立了图论发展的第一座里程碑。
近几十年来,计算机科学和技术的飞速发展,大大地促进了图论研究和应用,其理论和方法已经渗透到物理、化学、计算机科学、通信科学、建筑学、生物遗传学、心理学、经济学、社会学各个学科中。
9.1 图的基础理论9.1.1 图的基本概念所谓图,概括地讲就是由一些点和这些点之间的连线组成的。
定义为(,)G V E =,V 是顶点的非空有限集合,称为顶点集。
E 是边的集合,称为边集。
边一般用(,)i j v v 表示,其中,i j v v 属于顶点集V 。
以下用V 表示图(,)G V E =中顶点的个数,E 表示边的条数。
如图9.1是几个图的示例,其中图9.1 (a)共有3个顶点、2条边,将其表示为(,)G V E =,123{,,}V v v v =,1213{(,),(,)}E v v v v =.23v 45v 34(a)(c)图9.1 图的示意图1.无向图和有向图如果图的边是没有方向的,则称此图为无向图(简称为图),无向图的边称为无向边(简称边)。
如图9.1 (a)和(b)都是无向图。
连接两顶点i v 和j v 的无向边记为(,)i j v v 或(,)j i v v 。
如果图的边是有方向(带箭头)的,则称此图为有向图,有向图的边称为弧(或有向边),如图9.1 (c)是一个有向图。
连接两顶点i v 和j v 的弧记为,i j v v 〈〉,其中i v 称为起点,j v 称为终点。
显然此时弧,i j v v 〈〉与弧,j i v v 〈〉是不同的两条有向边。
图论模型简介一、图及其矩阵表示1、起源:哥尼斯堡七桥问题:欧拉为了解决这个问题,建立数学模型:陆地——点,桥——边,得到一个有四个“点”,七条“边”的“图”。
问题转化为能否从任一点出发一笔画出七条边再回到起点。
欧拉考察了一般一笔画的结构特点,给出了一笔画判定法则:图是连通的,且每个顶点都与偶数条边相关联(这种图称为欧拉图)。
由此可以得出结论:七桥问题无解。
2、基本概念:图(graph):由顶点和边(又称线,边的两端必须是顶点)组成的一个结构。
邻接:一条边的两个端点称是邻接的;关联:边与其两端的顶点称是关联的。
无向图(graph):边无方向的图;有向图(digraph):边有方向的图。
路(path):由相邻边组成的序列,其中中间顶点互不相同。
圈(cycle):首、尾顶点相同的路,即闭路。
连通图(connected graph):图中任意两顶点间都存在路的图。
树(tree):无圈连通图完全图(complete graph):任意两个顶点之间都有边相连的无向图,记为K n。
竞赛图(tournament):由完全图给每条边定向而得到的有向图。
二部图(bipartite graph):图的顶点分成两部分,只有不同部分顶点之间才有边相连。
图G的子图H(subgraph):H是一个图,H的顶点(边)是图G的顶点(边)。
网络(Network):边上赋了权的有向图。
3、图的矩阵表示无向图 有向图01000101100101101100010⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡011101000001001000001104、著名的图论问题例1 最短路问题(shortest path problem)出租车司机要从城市甲地到乙地,在纵横交错的路中如何选择一条最短的路线?例2 最小生成树问题(minimum-weight spanning tree problem)为了给小山村的居民送电,每户立了一根电杆,怎样连接可使连线最短?例3 中国邮递员问题(chinese postman problem)一名邮递员负责投递某个街区的邮件。
Graphical Model1.1 贝叶斯网络联合概率可以写成:()()()()P a,b,c =P c|a,b P b|a P a(0.1)那么用图形就可以表示成图 0-1所示,这是一个有向图,指向的箭头代表着条件概率。
图 0-1 表示(0.1)式的有向图图论模型表示概率的普通形式为(0.2)式。
其中k pa 为k x 的父节点1(x)(|)Kk k k p p x pa ==∏(0.2)这一类图称为有向无环图(Directed Acyclic Graphs ,简称DAG )。
1.1.1 线性回归的图论模型线性回归的概率模型中的随机变量为参数W 以及观察数据12={t ,t t }T N t ,。
另外模型还包含了输入数据12{,,}T M x x x x =,噪声方差2σ以及W 的高斯概率先验中的超参数α(precision ),这些都只是模型的参数而非随机变量。
随机变量W 和t 的联合概率分布为1(,)()(|)Nn n p p p t ==∏W t W W(0.3)其图论模型对应为:图 0-2其中重复的n t 用如图的方框表示。
另外,我们可以将模型的参数加进来:221(,|,,)(|)(|,,)Nn n n p p p t x ασασ==∏W t x W W(0.4)得到的模型为图 0-3,其中n t 是被观察得到的节点,我们给它染上颜色并称之为observed variables 。
W 是未被观察到的,称之为隐藏变量(hidden variables )。
图 0-3在通常情况下,我们的最终目的是当给定一个新的输入ˆx,以及在给定一组观察数据的时候得到ˆt 的概率。
首先有联合概率: 2221ˆˆˆˆ(,,|,,,)(|)(|,,)(|,,)Nn n n p tx p p t x p t x ασασσ=⎡⎤=⋅⎢⎥⎣⎦∏W t x W W W (0.5)用图论模型表示为:图 0-4要得到在输入ˆx以及已有模型下ˆt 的概率,将(0.5)式的W 积分出来即可:22ˆˆˆˆ(|,,,)(,,|,,,)p tx p t x d ασασ∝⎰x W t x W (0.6)1.2 条件独立多变量概率分布的一个重要概念就是条件独立(conditional independence )。