图论模型
- 格式:ppt
- 大小:1.27 MB
- 文档页数:42
图论模型图论是运筹学的一个经典和重要分支,专门研究图与网络模型的特点、性质以及求解方法。
许多优化问题,可以利用图与网络的固有特性而形成的特定方法来解决,比用数学规划等其他模型来求解往往要简单且有效得多。
图论起源于1736年欧拉对柯尼斯堡七桥问题的抽象和论证。
1936年,匈牙利数学家柯尼希(D. Kӧnig )出版的第一部图论专著《有限图与无限图理论》,树立了图论发展的第一座里程碑。
近几十年来,计算机科学和技术的飞速发展,大大地促进了图论研究和应用,其理论和方法已经渗透到物理、化学、计算机科学、通信科学、建筑学、生物遗传学、心理学、经济学、社会学各个学科中。
9.1 图的基础理论9.1.1 图的基本概念所谓图,概括地讲就是由一些点和这些点之间的连线组成的。
定义为(,)G V E =,V 是顶点的非空有限集合,称为顶点集。
E 是边的集合,称为边集。
边一般用(,)i j v v 表示,其中,i j v v 属于顶点集V 。
以下用V 表示图(,)G V E =中顶点的个数,E 表示边的条数。
如图9.1是几个图的示例,其中图9.1 (a)共有3个顶点、2条边,将其表示为(,)G V E =,123{,,}V v v v =,1213{(,),(,)}E v v v v =.23v 45v 34(a)(c)图9.1 图的示意图1.无向图和有向图如果图的边是没有方向的,则称此图为无向图(简称为图),无向图的边称为无向边(简称边)。
如图9.1 (a)和(b)都是无向图。
连接两顶点i v 和j v 的无向边记为(,)i j v v 或(,)j i v v 。
如果图的边是有方向(带箭头)的,则称此图为有向图,有向图的边称为弧(或有向边),如图9.1 (c)是一个有向图。
连接两顶点i v 和j v 的弧记为,i j v v 〈〉,其中i v 称为起点,j v 称为终点。
显然此时弧,i j v v 〈〉与弧,j i v v 〈〉是不同的两条有向边。
目录五、图论模型1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法2.弗洛伊德(Floyd)算法六、分类模型1.逻辑回归2.Fisher线性判别分析五、图论模型图论模型主要解决最短路径问题,根据图的不同,对应采用迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法、弗洛伊德算法(Floyd)。
Matlab代码:% Matlab中的图节点要从1开始编号s = [9 9 1 1 2 2 2 7 7 6 6 5 5 4];t = [1 7 7 2 8 3 5 8 6 8 5 3 4 3];w = [4 8 3 8 2 7 4 1 6 6 2 14 10 9];G =graph(s,t,w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set ( gca, 'XTick', [], 'YTick', [] );%% Matlab作无向图% (1)无权重(每条边的权重默认为1)% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并生成一个图% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组% 注意:编号从1开始连续编号s1 = [1,2,3,4];t1 = [2,3,1,1];G1 = graph(s1, t1);plot(G1)% 注意字符串元胞数组是用大括号包起来s2 = {'学校','电影院','网吧','酒店'};t2 = {'电影院','酒店','酒店','KTV'};G2 = graph(s2, t2);% 设置线的宽度plot(G2, 'line width', 2) % 画图后不显示坐标set( gca, 'XTick', [], 'YTick', [] ); % (2)有权重% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图s = [1,2,3,4];t = [2,3,1,1];w = [3,8,9,2];G = graph(s, t, w); plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] ); %% Matlab作有向图% 无权图 digraph(s,t)s = [1,2,3,4, 1];t = [2,3,1,1,4];G = digraph(s, t);plot(G)set( gca, 'XTick', [], 'YTi ck', [] ); % 有权图 digraph(s,t,w)s = [1,2,3,4];t = [2,3,1,1];w = [3,8, 9,2];G = digraph(s, t, w);plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) set( gca, 'XTick', [], 'YTick', [] );1.迪杰斯特拉(Dijkstra)算法、贝尔曼-福特(Bellman-Ford)算法迪杰斯特拉算法是基于贪婪算法的思想,从起点出发逐步找到通向终点的最短距离。
各种图论模型及其解答摘要:本文用另一种思路重新组织《图论及其应用》相关知识。
首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。
符号约定:Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。
一、引言图论是研究点、线间关系的一门学科,属于应用数学的一部分。
现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。
点表示事物,连线表示事物间的联系。
整个求解过程如下:原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。
存在以下两种情况:①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。
综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。
例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友A:问题转化为任何一个图一定存在两个顶点的度相等二、图论模型接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。
2.1 偶图模型凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。
作图时,将两类事物分成两行或者两列。
这类模型通常被包含在后续的模型中,但因许多现实问题可抽象成该模型,所以单列出来讨论。
Graphical Model1.1 贝叶斯网络联合概率可以写成:()()()()P a,b,c =P c|a,b P b|a P a(0.1)那么用图形就可以表示成图 0-1所示,这是一个有向图,指向的箭头代表着条件概率。
图 0-1 表示(0.1)式的有向图图论模型表示概率的普通形式为(0.2)式。
其中k pa 为k x 的父节点1(x)(|)Kk k k p p x pa ==∏(0.2)这一类图称为有向无环图(Directed Acyclic Graphs ,简称DAG )。
1.1.1 线性回归的图论模型线性回归的概率模型中的随机变量为参数W 以及观察数据12={t ,t t }T N t ,。
另外模型还包含了输入数据12{,,}T M x x x x =,噪声方差2σ以及W 的高斯概率先验中的超参数α(precision ),这些都只是模型的参数而非随机变量。
随机变量W 和t 的联合概率分布为1(,)()(|)Nn n p p p t ==∏W t W W(0.3)其图论模型对应为:图 0-2其中重复的n t 用如图的方框表示。
另外,我们可以将模型的参数加进来:221(,|,,)(|)(|,,)Nn n n p p p t x ασασ==∏W t x W W(0.4)得到的模型为图 0-3,其中n t 是被观察得到的节点,我们给它染上颜色并称之为observed variables 。
W 是未被观察到的,称之为隐藏变量(hidden variables )。
图 0-3在通常情况下,我们的最终目的是当给定一个新的输入ˆx,以及在给定一组观察数据的时候得到ˆt 的概率。
首先有联合概率: 2221ˆˆˆˆ(,,|,,,)(|)(|,,)(|,,)Nn n n p tx p p t x p t x ασασσ=⎡⎤=⋅⎢⎥⎣⎦∏W t x W W W (0.5)用图论模型表示为:图 0-4要得到在输入ˆx以及已有模型下ˆt 的概率,将(0.5)式的W 积分出来即可:22ˆˆˆˆ(|,,,)(,,|,,,)p tx p t x d ασασ∝⎰x W t x W (0.6)1.2 条件独立多变量概率分布的一个重要概念就是条件独立(conditional independence )。
组合优化问题的图论模型及算法研究组合优化问题是一类重要的数学问题,涉及到计算机科学、运筹学、统计学、图论等多个领域。
组合优化问题的特点是问题规模大、时间复杂度高,因此寻求高效的算法成为解决该类问题的重要手段。
本文将围绕组合优化问题的图论模型及算法展开探讨。
一、组合优化问题的图论模型图论是组合优化问题建模的重要工具。
组合优化问题一般可以转化为图论问题。
例如,求解一个集合覆盖问题可以转化为一个有向图中的最小路径问题,求解一个最大流问题可以转化为一个有向图中的最大路径问题。
以下将介绍两类常见的组合优化问题及其图论模型。
1.最小割问题最小割问题是求解图中分割成两部分的最小权和的边集的问题。
在图论中,最小割问题可以转化为最大流问题。
首先,将图中的每个点分为两类,一个为源点集合,一个为汇点集合,如下图所示:[图1]接下来,我们需要找出源点集合和汇点集合之间的最小割,也就是最小的边权和。
最小割算法的思路是不断增加割集合的边权,直到源点和汇点间的割为最小。
2.旅行商问题旅行商问题是指在一个完全图中,求解一条经过所有节点的路径,使得路径长度最小。
使用图论模型求解旅行商问题可以将其转化为一个精确覆盖问题。
即对于所有的点和边,选中一些点和边,满足以下条件:1.每个点必须且只能被选择一次。
2.每条边恰好连接两个选中的点。
3.选择的点和边的数量最小。
如下图所示:[图2]二、组合优化问题的算法研究1.贪心算法贪心算法是一种常见的组合优化问题求解方法。
贪心算法通过局部最优做法来构建最终解,通常得到的并不是最优解,但是可以得到较优近似解。
贪心算法具有高效性、易于理解等优点,但是由于贪心算法是自顶向下构造解决方案的,所以它并不能消除由于先前选择的决策引起的后果,因此在某些场景下,贪心算法并不是最优解或者无法得到较优近似解。
2.综合性算法综合性算法包括回溯法、分支定界法、车型搜索等,这类算法通过对解空间的搜索,不断剪枝和回溯,得出合适的解决方案。