微粒说的产生和发展
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
物理学史上的重要争议有哪些物理学作为一门探索自然规律的科学,其发展历程并非一帆风顺,充满了各种争议。
这些争议不仅推动了物理学的进步,也促使人们对自然界的认识不断深化。
其中一个著名的争议是关于光的本质。
在 17 世纪,牛顿提出了光的微粒说,认为光是由微小的粒子组成的。
而同一时期,惠更斯则主张光的波动说,认为光是一种波动现象。
微粒说能够很好地解释光的直线传播和反射现象,但对于光的折射和干涉等现象却难以解释。
波动说则能够解释光的折射和干涉,但在解释光的直线传播时存在困难。
这两种学说争论了很长时间,直到 19 世纪,随着电磁学的发展,麦克斯韦证明了光是一种电磁波,波动说才占据了主导地位。
然而,20 世纪初,爱因斯坦提出了光子的概念,成功解释了光电效应,又让人们认识到光具有粒子性和波动性的双重性质,即光的波粒二象性。
另一个重要的争议是关于热的本质。
在 18 世纪,有两种主要的观点:热质说和热动说。
热质说认为热是一种没有质量的流体,称为热质,可以从高温物体流向低温物体。
而热动说则认为热是物体内部分子无规则运动的表现。
在很长一段时间里,热质说占据了主导地位,因为它能够解释很多热现象,比如热传导和热容量。
但是,随着对热现象的深入研究,尤其是焦耳通过实验证明了热和功之间的等价关系,热动说逐渐被人们接受。
这一争议的解决,不仅让人们对热的本质有了更深刻的认识,也为热力学的发展奠定了基础。
相对论的提出也引发了巨大的争议。
在 19 世纪末,牛顿力学在解释宏观物体的运动时非常成功,被广泛认为是物理学的基石。
然而,爱因斯坦在 1905 年提出了狭义相对论,挑战了传统的时空观念。
狭义相对论指出,时间和空间不是绝对的,而是相对的,取决于观察者的运动状态。
这一理论与人们的日常经验和直觉相违背,因此在一开始遭到了很多质疑和反对。
后来,爱因斯坦又在 1915 年提出了广义相对论,进一步阐述了引力的本质是时空的弯曲。
广义相对论的预言,如光线在引力场中的弯曲和水星近日点的进动,在后来的观测中得到了证实,逐渐被科学界所接受。
课题:光的微粒说和波动说一、教学目标:1、要求知道牛顿和惠更斯关于光的本性的不同说法。
2、要求知道并能理解微粒说和波动说在解释光的直进、反射、折射的成功和困难。
二、教学内容及过程:前面一章已学过几何光学知识,以光线概念为基础,讨论了光的传播规律,对光的一些性质有了初步了解。
如:1、光在均匀介质中是沿直线传播的;2、光照射到两种介质的界面处会发生反射和折射;3、光的传播速度很大,在真空中为最大,c=3.0×108m/s。
4、光具有能量。
但对于光的本性还没有深一步的探讨。
几千年来,人们为了解释这些现象,对于光的本质是什么,经过粒子说和波动说的变替发展,逐渐认识光的本性——波粒二象性,这是本章学习的重要内容。
这节课我们先来回顾对光的本性认识的曲折历程;然后学习光的干涉、衍射等,证明光具有波动性的实验和现象,进而从理论上认识光的波动性。
引导学生阅读课文“光的微粒说和波动说”。
阅读后小结如下:(1)17世纪同时出现了两种学说——牛顿的微粒说和惠更斯的波动说;(2)两种学说对光的现象的解释各有成功和不足之处;(3)19世纪初从实验中观察到了光的干涉、衍射现象,证明了光具有波动性;(4) 19世纪末发现了光电效应,证实了光具有粒子性。
所以光既具有波动性又具有粒子性。
本章就从这两方面来认识光的本性。
(一)人类对光的本性的认识历史1、光的微粒说:光是沿直线传播的粒子流,人的视觉就是光粒子进入人的眼睛引起的,这是以光的直线传播为基础的模型。
光的微粒说能成功地解释:光的直线传播,光的反射现象以及光的色散现象。
但它不能解释光在两种介质的界面上会同时发生反射和折射;更不能解释几束光线交叉相遇后彼此会毫无妨碍地继续向前传播。
2、光的波动说:光是某种振动以波的形式向外传播:这是荷兰物理学家惠更斯提出的。
(因17世纪,发现光在传播时会偏离直线)波动说能成功地解释:光同时发生反射和折射,几束光相遇互不相干等现象。
但由于当时对光的“波长很短很短”这一点还不清楚,因此对光照射的物体后面会留下清晰的影子还解释不了。
爱因斯坦的光子论及其意义一、爱因斯坦光子论的提出背景在光学的发展史上,曾有过“微粒说”和“波动说”相争的局面,其中微粒说以牛顿和爱因斯坦为代表,波动说则以麦克斯韦和惠更斯.杨.菲涅耳为代表。
微粒说认为光的本质是微粒,即现在所称的“光子”;波动说认为光是由一种叫“以太”的介质快速振动所产生的。
微粒说的出现早于波动说,最早由牛顿在十八世纪初期提出。
他认为光是由发光体发出的微粒所构成的。
牛顿通过实验,不仅发现光经过棱镜出现牛顿环、色散、衍射现象以及经过晶体变成双折射等现象,而且还发现具有直线传播的特点,并认为粒子从光源往外飞,通过均匀物质形成等直线运动。
牛顿的微粒说可以完整地解释了光的反射定律,但是在解释光的折射定律时,却遇到了难题。
微粒说只能解释一些特殊的折射现象,对于一般情况下的折射却无法解释。
包括牛顿发现的牛顿环也无法得到合理的解释。
与此同时,光的波动说对微粒说造成了冲击,由最初的以太波动理论发展到后来的电磁波动理论。
然而不管是哪种光学理论,似乎都存在一些漏洞。
正当“微粒说”和“波动说”难分秋色之时,爱因斯坦在20世纪初基于普朗克的量子理论,发表了论文《关于光的产生和转化的一个启发性观点》,提出了光量子假说(也就是光子论),此理论完全没有考虑以太的存在,并合理有效地解释了光电效应的四大规律,具有划时代的意义。
二、爱因斯坦光子论的内容20世纪初爱因斯坦在德国物理报刊上发表了论文《关于光的产生和转化的一个启发性观点》,此论文阐述了光量子假说。
在论文的开头,爱因斯坦就认为电磁波理论虽然能解释某些光的现象,但是并不能解释全部现象,其理论仍存在诸多矛盾。
爱因斯坦认为光不仅在发射和吸收中存在不连续的现象,而且在空间的传播过程中也不连续,这些不连续的能量子被他称作“光量子”。
为了证明光量子假说,爱因斯坦采用统计学的方法进行了推导。
常温条件下,当体积为V0的n 个气体分子被限定在一定体积范围中,引起熵S的有限可逆变化如下:在以上光量子假说的基础上,爱因斯坦进一步明确:光的产生和转换规律似乎也能按照以上方式建立,光也是由以上假设的能量子所组成的。
在1704年出版的《光学》一书中,牛顿认为光是从发光体发出的而且以一定速度向空间直线传播的微粒。
这种看法被称为微粒说。
牛顿用弹性小球撞击平面时发生反弹现象的类比,来解释光的反射现象,当光从空气进入透明介质时,由于介质对光微粒的吸引,使它们的速度发生变化,即造成光的折射。
按这种解释,应该假设介质中的光速大于真空中的光速。
当时,人们不能用实验方法测出光速,又因牛顿的威望,这种学说在18世纪取得了统治地位;荷兰物理学家惠更斯在1678年写成的《光论》一书中,从光与声的某些相似性出发,认为光是在"以太"介质中传播的球面纵波。
"以太"是一种假想的弹性介质,充满整个宇宙空间,这就是惠更斯的波动说。
这种学说认为光是某种振动,以波的形式在"以太"介质中的传播。
按此学说解释光的折射时要假设介质中的光速小于真空中的光速。
惠更斯成功地推导出了光的反射和折射定律。
但是,"以太"这种连续弹性介质,难以想象,给波动说本身造成了不可克服的困难。
直到19世纪初,人们发现了光的干涉、衍射,从而波动说得到很大发展。
19世纪未,又发现了波动说不能解释的新现象--光电效应,证实了光的确又具有粒子性。
人们终于认识到了光的本性--光具有波粒二象性。
物理学史上的重要问题有哪些物理学作为一门研究自然界基本规律的科学,其发展历程中充满了众多引人深思的重要问题。
这些问题不仅推动了物理学的进步,也深刻地改变了人类对世界的认识。
首先,“光的本质是什么”这一问题在物理学史上占据着重要地位。
从古希腊时期,人们就开始对光产生好奇和思考。
牛顿认为光是由微小的粒子组成,这种观点被称为“微粒说”。
而惠更斯则提出光是以波的形式传播的“波动说”。
这两种学说在很长一段时间内争论不休。
直到后来,爱因斯坦的光电效应理论表明,光既有粒子性又有波动性,即光具有“波粒二象性”,才为这个问题提供了更全面和深入的解释。
“热的本质是什么”也是一个关键问题。
早期,人们对热的理解非常有限。
直到热力学的发展,尤其是焦耳的实验工作,揭示了热是能量的一种形式,能量守恒定律(热力学第一定律)的建立,使得人们对热现象有了更为准确和深刻的认识。
“物质的结构是怎样的”同样是物理学一直探索的核心问题之一。
从古希腊的原子论到现代的粒子物理学,科学家们不断深入研究物质的构成。
汤姆逊发现了电子,卢瑟福提出了原子的核式结构模型,随后量子力学的发展又进一步揭示了微观粒子的行为和特性。
如今,通过大型强子对撞机等实验设备,科学家们仍在不断探索物质的最基本构成。
“万有引力定律的本质是什么”是另一个具有深远意义的问题。
牛顿提出的万有引力定律成功地解释了天体的运动,但直到爱因斯坦的广义相对论,人们才对引力有了更本质的理解。
广义相对论认为,引力是由于物质和能量弯曲时空而产生的几何效应。
“电磁现象的统一理论”也是物理学史上的重大成就。
麦克斯韦方程组成功地将电学和磁学统一起来,预言了电磁波的存在,为现代通信技术的发展奠定了基础。
“相对论与量子力学的统一”是当今物理学尚未完全解决的难题。
相对论主要适用于宏观高速的物体,而量子力学则在微观领域发挥着重要作用。
如何将这两个理论统一起来,形成一个更完整、更普适的理论,是当代物理学家们努力的方向。
光的认识历程一、古代对光的初步认识在古代,人们就已经开始对光有了一些初步的观察和认识。
例如,古希腊学者欧几里得在他的著作光学中,对光的直线传播进行了研究,他通过小孔成像等现象发现光线似乎是沿着直线传播的。
这一发现是早期对光的特性最基本的认识,它为后来光的理论发展奠定了基础。
古代的人们还发现了光的反射现象,比如平静的水面可以反射出周围的景物。
这种反射现象在日常生活中很常见,例如人们在河边可以看到自己的倒影。
这让古代人开始意识到光在遇到物体表面时会改变传播方向。
二、中世纪光学的发展进入中世纪,阿拉伯的科学家们在光学研究方面取得了一定的进展。
伊本·海赛姆(Al - Hazen)是其中的杰出代表。
他写了一本名为光学之书的著作,在书中他对光的反射和折射进行了深入的研究。
他通过实验发现,当光线从一种介质进入另一种介质时,会发生折射现象,并且他尝试测量了不同介质中光线折射的角度关系。
伊本·海赛姆的研究成果对后来欧洲光学的发展产生了重要的影响,为光学从古代的定性研究向定量研究转变提供了重要的参考。
三、近代光学的突破1. 牛顿的微粒说到了近代,艾萨克·牛顿提出了光的微粒说。
牛顿认为光是由微小的粒子组成的,这些粒子以直线运动的方式传播。
他的这一理论可以很好地解释光的直线传播和反射现象。
例如,光的直线传播就像粒子在均匀介质中沿着直线前进一样,而反射现象则可以理解为粒子撞击到光滑表面后反弹回来。
牛顿的微粒说在当时得到了很多科学家的支持,因为它符合当时人们对物质结构的理解,并且能够解释一些常见的光现象。
2. 惠更斯的波动说与牛顿的微粒说相对的是惠更斯提出的波动说。
惠更斯认为光是一种波,他通过研究光的干涉和衍射现象来支持自己的理论。
例如,当两束光相遇时,如果是波的话就会产生干涉现象,就像水波相遇时会出现叠加或者抵消的情况一样。
光的衍射现象也可以用波动说来解释,光在通过小孔或者障碍物的边缘时会发生弯曲,这类似于水波绕过障碍物继续传播的现象。
微粒说的产生和发展
1.根深蒂固的微粒说
17世纪的科学巨匠牛顿,也是光学大师,关于光的本性,牛顿是这样认为的:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒说.牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象.由于微粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承认和支持.但是,微粒说并不是“万能”的,比如,它无法解释为什么几束在空间交叉的光线能彼此互不干扰地独立前时,为什么光线并不是永远走直线,而是可以绕过障碍物的边缘拐弯传播等现象.为了解释这些现象,和牛顿同时代的荷兰物理学家惠更斯,提出了与微粒说相对立的波动说.惠更斯认为光是一种机械波,由发光物体振动引起,依靠一种特殊的叫做“以太”的弹性媒质来传播的现象.波动说不但解释了几束光线在空间相遇不发生干扰而独立传播,而且解释了光的反射和折射现象,不过在解释折射现象时,惠更斯假设光在水中的速度小于在空气中的速度,这与牛顿的解释正好相反.谁是谁非,拉开了近代科学史上关于光究竟是粒子还是波动的激烈论争的序幕.尽管波动说可以解释不少光学现象,但由于它很不完善,解释不了人们最熟悉的光的直进和颜色的起源等问题,所以没有得到广泛的支持.再加上当时受实验条件的限制,还无法测出水中的光速,便无法判断牛顿和惠更斯关于折射现象的假设谁对谁错.尤其是牛顿在学术界久负盛名,他的拥护者对波动说横加指责,全盘否定,终于把波动说压了下去,致使它在很长时间内几乎销声匿迹.而微粒说盛极一时,居然在光学界称雄整个18世纪.
2.英姿焕发的波动说
进入19世纪以后,曾被微粒说压得奄奄一息的波动说重新活跃起来.一个个崭新的实验事实,使波动说雄姿英发,应付自如,进入了一个“英雄时期”.第一位向微粒说发起冲击的是牛顿的同胞托马斯•杨.1801年,年轻的托马斯•杨一针见血地说:“尽管我仰慕牛顿的大名,但我并不因此非得认为他是百无一失的.我遗憾地看到,他也会弄错,而他的权威也许有时阻碍了科学的进步.”托马斯•杨为了证明光是一种波,他在暗室中做了一个举世闻名的光的干涉实验.我们知道,干涉现象是波动的一个特性,托马斯•杨的成功,证明了光确实是一种波,它只有用波动说才能解释,微粒说对此一筹莫展.给微粒说以沉重打击的第二个实验是光的衍射实验.衍射现象也是波的基本特性之一,这是一种波在传播过程中可以绕过障碍物,或穿过小孔、狭缝而不沿直线传播的现象.法国物理学家菲涅尔设计了一个实验,成功地演示了明暗相间的衍射图样,在微粒说看来,光的衍射现象则是不可理解的.给微粒说以致命打击的是对光速值的精确测定.牛顿和惠更斯在解释光的折射现象时,对于水中光速的假设是截然相反的,谁是谁非,难以证实.到了19世纪中叶,法国物理学家菲索和付科,分别采用高速旋转的齿轮和镜子,先后精确地测出光在水中的传播速度只有空气中速度的四分之三.又一次证明了波动说的正确性.经过反复较量,波动说终于压过了微粒说,取得了稳固的地位.到19世纪60年代,麦克斯韦总结了电磁现象的基本规律,建立了光的电磁理论.到80年代,赫兹通过实验证实了电磁波的存在,并证明电磁波确实同光一样,能够产生反射、折射、干涉、衍射和偏振等现象.利用光的电磁说,对于以前发现的各种光学现象,都可以做出圆满的解释.这一切使波动说锦上添花,使它在同微粒说的论战中,取得了无可争辩的胜利.
3.以太学说的落空
正当波动说欢庆胜利的时候,意外的事情发生了,以太存在的否定和光电效应的发现,这些新的实验事实又一次要置波动说于死地.波动说认为,光是依靠充满于整个空间的连续介质——以太做弹性机械振动传播的.为了验证以太的存在,1887年,美国物理学家迈克尔逊和莫雷使用当时最精密的仪器,设计了一个精巧的实验.结果证明,地球周围根本不存在什么机械以太.没有以太,光波和电磁波是怎样传播的呢?面对这一波动说难以克服的困难,微粒说跃跃欲试.
4.重整旗鼓的微粒说
光电效应的发现,使微粒说再次“复辟登基”.所谓光电效应,就是指金属在光的照射下,从金属表面释放出电子的现象,所释放的电子叫做光电子.大量的实验证明,光电效应的发生,只跟入射光的频率有关,只要入射光的频率足够高,不管它强度多弱,一旦照射到金属上,立刻就有光电子飞出.而从波动说的观点看,光电效应是绝对无法理解的.因此,波动说完全陷入了困境.至此,光的微粒说又昂首挺胸.活跃在科学的舞台上.
编辑本段微粒说和波动说的完美结合
微粒说和波动说的完美结合爱因斯坦运用光量子说——全新意义上的微粒说,把光电效应解释得一清二楚.但是,爱因斯坦并没有抛弃波动说,而是把二者巧妙地结合在一起,并辨证地指出:“光——同时又是波,又是粒子,是连续的,又是不连续的.自然界喜欢矛盾……”,这一思想充分体现在他的光量子理论的两个基本方程E=hν和p=(h/λ)中,把粒子和波紧密地联系在一起.。