第2讲 抽样分布与参数估计
- 格式:ppt
- 大小:8.91 MB
- 文档页数:91
抽样分布与参数估计首先,我们来了解什么是抽样分布。
在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。
假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。
抽样分布的形状和性质取决于总体的分布和样本的大小。
通过分析抽样分布,可以得到有关总体参数的有用信息。
例如,我们想要知道一些城市成年人的平均年收入。
在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。
如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。
这个抽样分布将给我们提供有关总体平均年收入的估计和推断。
接下来,我们将讨论参数估计。
参数估计是指使用样本数据来估计总体参数的过程。
总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。
通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。
常用的参数估计方法有点估计和区间估计。
点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。
点估计给出了一个单一的值,但不能提供关于估计的精度的信息。
因此,我们常常使用区间估计。
区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。
区间估计能够向我们提供关于估计的精确程度的信息。
区间估计依赖于抽样分布的性质。
中心极限定理是制定抽样分布理论的一个重要原则。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
这使得我们可以使用正态分布的性质来计算置信区间。
构建置信区间的一种常用方法是使用样本均值的标准误差。
标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。
根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。
通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。
6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。
所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。
这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。
统计推断就是解决这些问题。
统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。
6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。
其中又可分为点估计和区间估计两类。
点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。
通常可以通过样本的相应值来进行估计。
如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。
但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。
在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。
因此就产生了区间估计的问题。
区间估计是通过样本来估计总体参数可能位于的区间。
例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。
因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。
θ1和θ2为所估计的参数θ的区间范围的上下限。
其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。
6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。
(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。
这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。
估计(estimation)是统计推断的重要内容之壹。
统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。
因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。
壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。
⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。
《应用统计学》教学大纲一、课程简介统计学是农林经济管理本科专业的一门学科基础必修课。
本课程采取理论讲授与实验操作交替进行的方式,理论讲授部分主要包括统计数据的收集、整理、分析及预测,重点讲授各种统计方法,如参数估计、假设检验、方差分析、时间序列分析、统计指数、相关与回归分析等;实验操作部分包括统计工作过程的实验、Excel等电子表格在统计分析中的应用、统计学知识的综合应用三个实验。
二、教学大纲1.教学目的开设此课旨在培养学生数据收集、处理和分析能力。
通过本课程的学习,学生掌握统计学基本理论、方法及在Excel等统计软件中的运用,达到能应用统计方法分析问题和解决问题的目的。
2.教学要求(1)对教师的要求教师要积极备课,认真准备实验,对课程内容要融会贯通,切忌照本宣科。
授课在多媒体教室,结合典型实用案例和相关统计软件,理论讲授与上机操作交替进行。
做到授课内容与大纲相符,注重全程考核,最终成绩由考勤、调查方案设计、实验报告撰写、调查报告撰写、上机测试及期末考试构成,成绩评价体系标准真实、严谨、公平、公正、公开,提升学生学习积极性。
(2)对学生的要求学生能系统地掌握各种统计方法,并理解各种统计方法中所包含的统计思想;能运用统计方法分析和解决实际问题的能力;能够熟练应用Excel等统计软件进行数据分析。
3.预备知识或先修课程要求先修课程包括《概论论与数理统计》、《微观经济学》、《宏观经济学》、《管理学原理》等。
4.教学方式课程包括理论讲授和实验操作两部分。
理论授课32学时,教师讲授与课堂讨论相结合;实验操作24学时,包括统计工作过程实验、Excel等统计软件的运用及统计学知识的综合运用,以学生上机操作为主,教师引导、实地调查为辅。
5.实验环境和设备1)硬件环境:每个学生一台微型计算机。
2)软件环境:Windows 7、Office 2007(或以上版本)(Excel需安装数据分析及规划求解功能)软件包、卓越班学生还需SPSS、DPS软件包。
第九章参数估计抽样的真正目的在于根据已知的统计量来估计总体参数。
检验特定假设有一定用处,但估计方法的用处更大。
基本上有两种估计,即点估计和区间估计。
第一节点估计点估计也即点值估计,是以一个最适当的样本统计值来代表总体参数值。
为了确定每一种估计究竟如何,就必须掌握某种标准。
估计量如果具有无偏性、一致性和有效性这三个要求或标准,就可以认为这种统计量是总体参数的合理估计或最佳估计。
1.无偏性如果统计量的抽样分布的均值恰好等于被估计的参数之值,那么这一估计便可以认为是无偏估计。
换句话说,从最终的结果来看,估计量的期望值就是参数本身。
2.一致性虽然随机样本和总体之间存在一定的误差,但当样本容量逐渐增加时,统计量越来越接近总体参数,满足这种情况,我们就说该统计量对总体参数是一个一致的估计量。
3.有效性估计量的有效性指统计量的抽样分布集中在真实参数周围的程度。
总而言之,如果一个估计量满足无偏性、一致性和有效性这三条准则,就可称其为最佳估计量。
第二节区间估计如果总体均值正好就是样本的均值,这当然非常好。
但如果两者不尽相同,点估计往往会造成一些不必要的误解。
在许多场合,人们宁愿在原来点估计值两边加一个区间,使得我们对参数在预料之中有相当把握。
因此在推论统计中我们更多采用的是区间估计的方法。
所谓区间估计,就是在一定的抽样平均误差内设一个可置信的区间,然后联系到这个区间的精度,将样本的统计值推断为总体的参数值。
1.精确性和可靠性区间估计的任务是,在点估计值的两侧设置一个区间,使得总体参数被估计到的概率大大增加。
当然,设置一个区间是很容易的,当我们对参数被估计到的信心不足时,我们总可以放宽区间。
如果这个区间的大小不受限制,我们就可以把参数被估计到的信心提高到任何水平。
但是区间加大,估计的效度随之降低。
当我们的信心提高到绝对时,估计的价值也随之丧失贻尽。
这就是说,还存在需要考虑的另一方面——区间估计的精确性问题。
这样一来,我们又宁愿估计区间要尽量小一点,最好就是点估计。
一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。
例如,样本均值、样本方差等。
1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。
例如,正态分布、t分布等。
二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。
例如,用样本均值来估计总体均值。
2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。
例如,置信区间。
三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。
3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。
四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。
4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。
4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。
六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。
6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。
讲解标准正态分布表的使用方法。
6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。
七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。
解释t 分布与正态分布的关系。
7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。
讲解自由度对t 分布形状的影响。
7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。
【数据分析师Level1】3.抽样分布及参数估计【数据分析师 Level 1 】3.抽样分布及参数估计1.随机实验随机实验是概率论的⼀个基本概念。
概括的讲,在概率论中把符合下⾯三个特点的试验叫做随机试验可以在相同的条件下重复的进⾏每次试验的可能结果不⽌⼀个,并且能事先明确试验的所有可能结果进⾏⼀次试验之前不能确定哪⼀个结果会出现随机事件在概率论中,随机事件(或简称事件)指的是⼀个被赋予⼏率的事物的集合,也就是样本空间中的⼀个⼦集。
简单来说,在⼀次随机试验中,某个特定时间可能会出现也可能不会出现;但是当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。
随机变量设随机试验的样本空间S=e,X=X(e)S = {e},X=X(e)S=e,X=X(e)是定义在样本空间S上的单值实值函数,称X为随机变量2.正态分布的图像形式既然介绍变量的分布情况,就要介绍⼀下正态分布。
⾸先,正态分布是关于均值左右对称的,呈钟形,如下图所⽰。
其次,正态分布的均值和标准差具有代表性,只要知道其均值和标准差,这个变量的分布情况就完全知道了。
在正态分布中,均值=中位数=众数3.中⼼极限定理从均值为 µ\muµ,⽅差为σ2\sigma^2σ2的⼀个任意总体中抽取容量为n的样本,当n充分⼤时,样本均值的抽样分布近似服从均值为 µ\muµ ,⽅差为σ2n\frac{\sigma^2}{n}nσ2的正态分布根据中⼼极限定理,我们知道如果做很多次抽样的话会得到很多个样本均值,⽽这些样本均值排列起来会形成正态分布,他们的平均数是µ\muµ,标准差是σn\frac{\sigma}{\sqrt{n}}nσ换句话说,有约68% 的样本均值会落在 µ±σn\mu \pm \frac{\sigma}{\sqrt{n}}µ±nσ之间,有约 95 %的样本均值会落在 µ±2σn\mu \pm 2\frac{\sigma}{\sqrt{n}}µ±2nσ有约 99.7 %的样本均值会落在 µ±3σn\mu \pm 3\frac{\sigma}{\sqrt{n}}µ±3n σ把上述说法稍微转换⼀下就变成:有68 %的 x‾±σn\overline x \pm \frac{\sigma}{\sqrt{n}}x±nσ会包含着 µ\muµ有95 %的 x‾±2σn\overline x \pm 2\frac{\sigma}{\sqrt{n}}x±2nσ会包含着 µ\muµ有99.7 %的 x‾±3σn\overline x \pm 3\frac{\sigma}{\sqrt{n}}x±3nσ会包含着µ\muµ⽽这就是抽样和估计最根本的道理我们从全体之中以随机抽样⽅式抽取n个样本,取得样本观察值,计算它们的平均数 x‾\overline xx ,然后加减两倍的σn\frac{\sigma}{\sqrt{n}}nσ得到⼀组上下区间,然后说:我们有95 % 的信⼼,这个上下区间⼀定会包含着全体的平均数 µ\muµ。