重力热管的工质选择
- 格式:pdf
- 大小:157.56 KB
- 文档页数:4
同心套管结构内热式重力热管的传热性能试验刘小平;张素军;李菊香【摘要】搭建了同心套管结构内热式重力热管的试验装置.测试了自然冷却条件下同心套管结构内热式重力热管的启动性能和传热性能,研究了热管蒸发段的管内蒸发传热系数和冷凝段的管内冷凝传热系数随传热量的变化规律.结果表明,在热管外管保温条件下,热管具有较好的启动性能;在热管外管未保温条件下,热管具有较好的整体均温性;在相同的蒸发段加热热流密度时,外管未保温条件下的管内蒸发换热系数要比外管保温条件下的大;外管保温条件下的管内冷凝换热系数要比外管未保温条件下的大.【期刊名称】《南京工业大学学报(自然科学版)》【年(卷),期】2015(037)001【总页数】6页(P117-122)【关键词】同心套管结构;重力热管;内热式;传热性能;试验研究【作者】刘小平;张素军;李菊香【作者单位】南京工业大学产业处,江苏南京211800;南京工业大学能源学院,江苏南京211800;南京工业大学能源学院,江苏南京211800【正文语种】中文【中图分类】TK124Gaugler[1]率先于1943年提出热管原理。
1964年,Grover等[2]独立发明了类似于Gaugler提出的热管元件,并将其正式命名为热管,建议可用于宇宙飞船。
1967年,一根不锈钢-水热管首次被送入地球卫星轨道并运行成功[3],从此吸引了大量的科研人员从事热管的研究开发。
重力热管结构简单、传热性能稳定,在工业领域得到广泛的应用[4]。
对于套管结构的热管,目前应用较多的为水平放置的径向热管[5-8]。
本文提出一种垂直放置的同心套管式重力热管,可作为石油开采过程采油井的油管,利用井底热稠油的热量加热由于地层散热流至井口的冷稠油,以改善采油井中稠油的流动性。
李菊香等[9]于1995年首次提出用重力热管解决稠油开采中稠油黏度大的难题,最初的理念是将采油井筒中心的抽油杆以热管替代,随后又有文献[10-16]对此进行报道。
新型重力热管换热器传热性能的实验研究曹小林;曹双俊;曾伟;王芳芳;李江;池东【摘要】基于常规重力热管换热器难以安装翅片结构以强化管外换热,提出一种新型结构形式的重力热管换热器,该热管由一些并排的矩形通道而不是通常的圆管组成.并建立实验测试平台,进行一系列对比实验,重点分析加热功率、工质充液率、倾角及冷凝段风速对其运行热阻的影响.研究结果表明:加热功率对热管的运行性能有重要影响;当工质充液率约为20%时,热管换热器具有最小运行热阻;在最佳充液率为20%和加热功率为360 W时,运行热阻随倾角的增加有减小趋势,但当加热功率较大时,倾角对热管换热器的运行热阻影响不大;随着冷凝端风速的增加,热管换热器的运行热阻不断减小.%Based on the fact that normal gravity-assisted heat pipes are difficult to be enhanced with fins, an innovative gravity-assisted heat pipe was developed, which is made of several rectangular channels in parallel instead of normal round channels. A test apparatus was set up, with which the influences of heating input power, filling ratio, inclination angle and air velocity at condenser section on the heat transfer performance were investigated by contrast tests. The results show that heating input power has an important effect on heat transfer characteristics. The minimum heat transfer resistance is gotten at the filling ratio of about 20%. When filling ratio is 20%, the thermal resistance decreases slightly with the increase of the inclination angle when the input power is 360 W, but the inclination angle has little effect on thermal resistance for higher heat input power. The thermal resistance decreases gradually as the air velocity with the increase of condenser section.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2012(043)006【总页数】5页(P2419-2423)【关键词】传热;换热器;热管;热阻【作者】曹小林;曹双俊;曾伟;王芳芳;李江;池东【作者单位】中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083;中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083;中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083;中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083;中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083;中南大学能源科学与工程学院,流程工业节能湖南省重点实验室,湖南长沙,410083【正文语种】中文【中图分类】TK172与普通热管相比,重力热管不仅结构简单、制造方便、成本低廉,而且传热性能优良、工作可靠。
太阳能重力热管工质注液量应以实验和实践来确定与典型热管的区别是,真空管内的太阳能重力热管除冷凝段外,受太阳辐射的部分均为蒸发段,而不存在明显的中间绝热段。
在蒸发段,热管均匀地吸收太阳辐射能,可以视为热管的瞬时径向等热通量传热过程;液态工质在重力作用下克服与管壁和蒸汽流的摩擦阻力,从蒸发段顶部流向底部,沿程接受径向传热而不断相变形成蒸汽,体积急剧膨胀;在冷凝段,蒸汽释放所携带的相变潜热又成为液态,体积急剧收缩;因工质体积变化产生的压差成为蒸汽克服重力向上流动的动力。
在稳定工况下,太阳能重力热管处于传热平衡以及传质平衡状态,此时热管内工质的整体温度和压力也处在动平衡状态,不发生明显变化。
但由于太阳辐照度、环境温度等气象条件都是随时间而发生变化的,因此太阳能重力热管的传热传质过程,也必然随着上述参数变化而变化。
当热管内工质的温度小于干涸温度时:工质处于饱和蒸汽、饱和水两相状态;其状态可由所对应状态下的饱和温度、饱和压力来描述。
随着加热量的增加,工质的饱和温度及饱和压力随之增高,工质的汽相成分随之增加,而液相成分则随之减少(即液位下降)。
随着加热量的增加,当热管内工质的温度被加热到干涸温度时:工质完全处于饱和蒸汽单相状态,而液相成分随之减少到0(即液位下降至0),压力为干涸温度所对应的饱和压力。
此时热管利用工质的蒸发、冷凝来进行传热的作用已完全消失,即进入所谓“干涸”状态。
随着加热量的继续增加,当热管内工质的温度被加热到大于干涸温度时:工质完全处于过热蒸汽单相状态无液相成分,性质更加接近理想气体,压力也随温度的增高而增加——可以近似地认为压力正变于过热蒸汽的绝对温度。
此时“干涸”现象更为明显,热管的工作条件更为恶劣。
热管的工作温度范围随着工质灌充量的增加而增大,是否工质灌充量越多越好呢﹖显然这是不正确的,如当工质达到临界状态后(水的临界温度为374.15℃,临界压力为22.1MPa;),工质整体直接由液态转变为气态,不再有汽、液共存的现象,从而热管无法正常工作。
两种不同结构的回路型重力热管性能比较陈绍杰;杨峻【摘要】Having advantages of the loop thermosyphon and those of gravity heat pipe combined to design a loop thermsyphone was implemented.Basing on the experiments,the heat transfer performance of loop thermo syphons with different structures was analyzed to show that,the heat transfer performance of type A loop thermosyphon outperforms that of the type B;and different tilt directions have little effect on the two loop thermosyphons.Simulating tooth-shaped fin's influence on the loop thermosyphon shows that,the tooth-shaped fin can effectively enhance the natural convection heat transfer and increase the heat transfer power of the loop thermosyphon.%将回路型热管和重力热管的优点相结合,设计了回路型重力热管.通过试验的方法分析两种不同结构的回路型重力热管的传热性能,结果表明:A型回路型重力热管的传热性能优于B型,不同的倾斜方向对两种回路型重力热管几乎没有影响.通过数值模拟的方法研究了齿形翅片对回路型重力热管的影响,结果表明:齿形翅片可以有效强化自然对流传热,增加回路型重力热管的传热功率.【期刊名称】《化工机械》【年(卷),期】2017(044)002【总页数】5页(P131-134,144)【关键词】回路型重力热管;齿形翅片;传热性能;倾斜方向【作者】陈绍杰;杨峻【作者单位】南京工业大学机械与动力工程学院;南京工业大学机械与动力工程学院【正文语种】中文【中图分类】TQ051.21热管是一种依靠工质的相变来传递热量的高效传热元件。
热管的特性,结构与工作原理/heatpipe04/02/2007-2-27/72277735314.htm晨怡热管从热力学的角度来看,物体的吸热、放热是相对的,凡是有温差存在时,就必然发生热从高温处传递到低温处,这是自然界和工程技术领域中极普遍的一种现象,而热传递的方式有三种:辐射、对流、传导,其中以热传导为最快。
1963年美国Los Alamos 国家实验室的G.M.Grover 发明了一种称作为『热管』的传热组件,它充分利用热传导原理与致冷介质快速热传递性质,透过热管将发热物体的热量迅速传递到体外,导热能力超过了任何已知金属的导热能力。
热管的特性:1.热管传热能力高因为热管的传热主要靠工质相变过程中吸收.释放气化潜热和蒸汽流的传热,所以它的传热能力较其他导热材料高几十倍。
2.热管的均温特性好热管工作时,管内蒸汽处于饱和状态,蒸汽流动和相变时的温差小,所以沿热管蒸发端表面的温度梯度很小,可自动地形成均匀的热流温度。
3.具有可变热流密度的能力由于热管中的蒸发和冷凝空间是分开的,若在蒸发端输入高热流密度,则在冷凝端可得到低的输出热流密度,实现“热变压器”的作用。
4.具有良好的恒温特性采用一种充有惰性气体的可控热管,当输入端的热量变化时,因蒸汽压力的变化使冷凝端的冷凝面积改变,以维持热源温度的恒定。
热管典型结构以及工作原理:热管由管壳﹑吸液芯和工质组成,热管的工作段可分为蒸发段,绝热段和冷凝段三部分。
当蒸发端收热时,通过管壁使浸透于细液芯中的工质蒸发,蒸汽在蒸发和冷凝端之间所形成的压差作用下流向冷凝端,由于冷凝端受到冷却作用,蒸汽凝结为液体,释放汽化潜能。
冷凝后的气体,靠吸液芯与液体相结合所产生的毛细力作用,将冷凝液输送回蒸发段,以形成工作循环。
热管规格如下:直径mm 长度mm 备注3 0-280 圆热管烧结/ 铜网4 0-280 圆热管烧结/ 铜网5 0-280 圆热管烧结/ 铜网热管工质特性如下表:液芯类型:单层.多层丝网格吸液芯,烧结粉末吸液芯,轴向槽道吸液芯,组合型吸液芯。
重力热管中传热与流动数值模拟分析及案例比较摘要:针对FLUENT模拟中有三种模型这个事实,本文通过对国内外的热管数值模拟实例的分析比较,总结出FLUENT中使用的三种模型的差异和适用性,证明了数学模型及求解过程的正确性,为优化重力热管设计参数和提高重力热管的换热性能提供了理论依据。
关键词:重力热管,FLUENT,数学模型Abstract: aiming at the FLUENT simulation of the fact that there are three kinds of model, in this paper numerical simulation of heat pipe at home and abroad of example analysis and comparison, sums up the use of three kinds of FLUENT model, and the difference of the applicability, and prove the mathematical model and the correctness of the solving process, to optimize the gravity heat pipe design parameters and improve the gravity of the heat pipe heat exchange performance provides theory basis.Keywords: gravity heat pipe, FLUENT, the mathematical model中图分类号:TE08文献标识码:A 文章编号:1.引言随着社会的发展,能源问题己经日趋严重,节能的呼声也日益高涨。
热管作为一种高效传热元件己经在各种热能综合利用场合得到了应用,并体现了巨大的优越性。
热管换热系统的设计⽅案热管散热器设计⽅案热管散热器⼯作原理热管技术的原理和普通的散热器不同,热管主要是利⽤⼯质的蒸发与冷凝来传递热量。
热管⼀般是由管壳、吸液芯和⼯质三个部分组成。
将管内抽⾄较⾼的真空度后充以适量的⼯质,使得紧贴管内壁的吸液芯⽑细多孔材料中充满液体后加以密封。
热管有两端,分别为蒸发端(加热端)和冷凝端(散热端),两端之间需要采取绝热措施。
当热管的⼀端受热时(即两端出现温差时),⽑细芯中的液体蒸发汽化,蒸汽在压差之下流向另⼀端放出热量并凝结成液体,液体再沿多孔材料依靠⽑细作⽤流回蒸发端。
热管散热器的分类和特点按照⼯作温度,热管可以分为:(1)深冷热管:⼯作温度范围为(100~200)K,⼯质可选⽤氦、氩、氮、氧等。
(2)低温热管:⼯作温度范围为(200~250)K,⼯质可选⽤⽔、氟利昂、氨、酒精、丙酮等有机物质。
(3)中温热管:⼯作温度范围为(550~750)K,⼯质可选⽤导热姆A、⽔银、硫、铯等物质。
(4)⾼温热管:⼯作温度范围⼤于750K,⼯质可选⽤钾、锂、铝、银等⾼熔点液态⾦属。
热管散热器的特点:(1)利⽤⼯质的相变传热,传热能⼒⾼。
(2)热管内蒸汽处于饱和状态,均温特性好。
(3)具有可变换热流密度特性。
(4)具有良好的恒温特性。
电⼦设备热管散热器的设计1.热管的设计要求(1)⼯作温度:根据电⼦设备、电⼦器件及整机的温度控制要求,热管的⼯作温度⼀般为-50℃~200℃。
(2)发热量:根据器件的发热功率和⼯作环境条件确定热管所需传递的功率。
(3)热特性:按照电⼦器件发热功率的⼤⼩和温度控制的要求(均温、恒温或控温)来设计蒸发端、冷凝端、吸液芯和管壳的⼏何形状、尺⼨。
(4)⼯作环境:根据电⼦设备的⼯作环境条件(如陆地、海⾯或⾼空等)来估计重⼒场对热管⼯作的影响,同时确定冷凝端与冷却介质的连接⽅式。
(5)结构尺⼨:根据⽤户提供的热管外形尺⼨、重量等要求进⾏结构设计。
2.⼯质选择(1)选择要求⼯质的⼯作温度范围在⼯质的凝固点与临界温度之间,以接近⼯质的沸点为宜;选⽤的⼯质⽆毒、不易爆、使⽤安全;⼯质与管壳材料及吸液芯应相容,对热管的安全⼯作和可靠性不产⽣有害的影响;⼯质的品质因素⾼;重⼒场条件下的热管,⼯质的选⽤应考虑⽑细⼒的提升⾼度。