一次函数与正比例函数
- 格式:doc
- 大小:47.00 KB
- 文档页数:2
一次函数与正比例函数洋葱数学一次函数与正比例函数是数学中常见的两种函数类型。
一次函数,也称为线性函数,是指形式为y = ax + b的函数,
其中a和b是常数。
一次函数的图像是一条直线,具有固定的斜率
和截距。
斜率表示函数的增长速率,截距表示函数与y轴的交点。
正比例函数,也称为比例函数,是指形式为y = kx的函数,其
中k是常数。
正比例函数的图像是通过原点的直线,具有固定的斜
率k。
这意味着随着x的增大,y也以相同的比率增大。
洋葱数学,可能是指著名的数学教育机构洋葱数学。
洋葱数学
致力于推广数学思维和数学教育,提供线上线下的数学培训课程,
帮助学生提高数学能力和解决问题的能力。
在洋葱数学的课程中,一次函数和正比例函数都是基础知识点。
学生通过学习一次函数和正比例函数的特点、性质和应用,可以建
立起对函数的初步理解和运用能力。
这些知识将为学生后续学习更
高级的数学概念和技巧奠定基础。
一次函数知识要点详解1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.说明: (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k≠0时,y=b 仍是一次函数.(4)当b=0,k=0时,它不是一次函数.2 确定一次函数的关系式根据实际问题中的条件正确地列出一次函数及正比例函数的表达式,实质是先列出一个方程,再用含x 的代数式表示y .3 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.4 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.5 一次函数y=kx+b (k ,b 为常数,k≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上;②当b <0时,直线与y 轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x向上平移一个单位得到的.6 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.7 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.如点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.8 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.9 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.10 用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.如已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x .说明: 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).11。
一次函数和正比例函数的解析式
一次函数是一种常见的数学函数,它由一次多项式表示,其解析式为y = ax + b,其中a和b分别为实数。
它的图像可以表示成一条抛物线,它具有单调性(当a>0时,表示单调递增,而a<0时,表示单调递减)和对称性(当a=0时,其图像为水平直线。
而当a>0或a<0时,其图像为抛物线,且会拥有对称性)等特征,对此函数的分析也相对简单。
正比例函数也是一种常见的数学函数,它表示一种关系,即两个变量之间存在正比例关系。
根据数学定义,当其中一个变量发生变化时,另一个变量也会按照同样的比例发生变化。
正比例函数的解析式为y = kx,其中k是比例常数,表示两个变量的变化比例。
由于它们共同贡献的比例因子为1,因此它被称为比率函数。
它的图像可以表示成一条直线,它具有线性性(当k>0时,表示单调递增,而k<0时,表示单调递减)和对称性(当k = 0时,其图像为水平直线)等特征,对此函数的分析也相对容易。
一、探究新知
1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5cm.
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:
(2)写出x与y之间的关系式
2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.
(1)完成下表:
(2)你能写出x与y之间的关系式吗?
(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?
探究二:通过观察、探索、总结,归纳出一次函数与正比例函数的概念:
一般地,若两个变量x,y间的关系式可以表示成的形式,则称y是x 的 (x是自变量,y为因变量).特别地,当时,则y是x的正比例函数.
探究三:学以致用
1写出下列各题中x与y之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?
(1)汽车以60千米/时的速度匀速行驶,行驶路程y(千米)与行驶时间x(时)之间的关系;
(2)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(3)一棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米),则y与x的关系.
2某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元.
(1)写出每月电话费y(元)与通话次数x(x>50)的函数关系式;
(2)求出月通话150次的电话费;
(3)如果某月通话费为53.6元,求该月通话的次数.
二课堂小结
这节课我们学习了一类很有用的函数—次函数,只要解析式可以表示成y kx b
=+(,k b为常数,k≠0)的形式的函数则称为一次函数.正比例函数是一次函数当0
b=时的特殊情形.。