热处理组织与缺陷形态观察
- 格式:ppt
- 大小:1.24 MB
- 文档页数:12
金属热处理产生的组织缺陷
金属热处理缺陷指在热处理生产过程中产生的使零件失去使用价值或不符合技术条件要求的各种补助,以及使热处理以后的后续工序工艺性能变坏或降低使用性能的热处理隐患。
最危险的缺陷为裂纹,其中最主要的是淬火裂纹,其次是加热裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹等。
导致淬火裂纹的原因:(1)原材料已有缺陷(冶金缺陷扩展成淬火裂纹);(2)原始组织不良(如钢中粗大组织或魏氏组织倾向大);(3)夹杂物;(4)淬火温度不当;(5)淬火时冷却不当;(6)机械加工缺陷;(7)不及时回火。
最常见的缺陷是变形,其中淬火变形占多数,产生的原因是相变和热应力。
残余应力、组织不合格、性能不合格、脆性及其他缺陷发生的频率和严重性较低。
内应力来源有两个方面:(1)冷却过程中零件表面与中心冷却速率不同、其体积收缩在表面与中心也不一样。
这种由于温度差而产生的体积收缩量不同所引起的内用力叫做“热应力”;(2)钢件在组织转变时比体积发生变化,如奥氏体转变为马氏体时比体积增大。
由于零件断面上各处转变的先后不同,其体积变化各处不同,由此引起额内应力称作“组织应力”。
GCr15轴承钢球的热处理工艺及缺陷分析摘要:本论文重点对GCr15轴承钢球热处理工艺的设计进行了讨论,同时对热处理后其可能存在的热处理工艺缺陷进行了分析。
钢球在不同热处理工艺下虽然都能达到其使用要求,但所需的成本却大不相同,因此在满足其使用要求的同时也应该注意生产成本。
热处理常常因操作、原材料等产生缺陷,但只要有正确的热处理工艺并严格按工艺进行加工热处理缺陷也是可以避免的,即使产生了缺陷也可以采取相应的措施及时修复缺陷。
关键词:GCr15 轴承钢球热处理设计热处理工艺热处理缺陷引言滚动轴承是机械工业十分重要的基础标准件之一;滚动轴承依靠元件间的滚动接触来承受载荷,与滑动轴承相比:滚动轴承具有摩擦阻力小、效率高、起动容易、安装与维护简便等优点。
缺点是耐冲击性能较差、高速重载时寿命低、噪声和振动较大。
图 1 轴承及钢球实物图滚动轴承的基本结构(图 1):内圈、外圈、滚动体和保持架等四部分组成。
常用的滚动体有球、圆柱滚子、滚针、圆锥滚子。
轴承的内、外圈和滚动体,一般是用轴承钢(如GCr15、GCr15SiMn)制造,热处理后硬度应达到61~65HRC。
当滚动体是圆柱或滚针时,有时为了减小轴承的径向尺寸,可省去内圈、外圈或保持架,这时的轴颈或轴承座要起到内圈或外圈的作用。
为满足使用中的某些需要,有些轴承附加有特殊结构或元件,如外圈带止动环、附加防尘盖等。
滚动轴承钢球的工作条件极为复杂,承受着各类高的交变应力。
在每一瞬间,只有位于轴承水平面直径以下的那几个钢球在承受载荷,而且作用在这些钢球的载荷分布也不均匀。
力的变化由零增加到最大,再由最大减小到零,周而往复得增大和减小。
在运转过程中,钢球除受到外加载荷外,还受到由于离心力所引起的载荷,这个载荷随轴承转速的提高而增加。
滚动体与套圈及保持架之间还有相对滑动,产生相对摩擦。
滚动体和套圈的工作面还受到含有水分或杂质的润滑油的化学侵蚀。
在某些情况下,轴承零件还承受着高温低温和高腐蚀介质的影响。
高频焊缝组织及缺陷分析本文结合生产实际论述了ERW 焊接时输入热量、挤压力、焊接速度对熔合线宽度热影响区宽度、流线上升角的影响,对焊缝缺陷脆性断口、灰斑、夹杂物提出了见解,另外介绍了母材缺陷分层、夹杂物、带状组织对ERW 焊缝的危害性。
ERW 焊管具有成本低、生产效率高等优点,已成为石油、天然气以及煤炭输送主要选用管,随着ERW 焊管质量的提高有许多国家已用于套管和钻管方面。
为确保ERW 焊管的质量,各国都利用本国资源泉,从冶金质量和所轧制工艺提高焊管钢钟等级,采用各种焊接方式来保证焊缝质量,以满足钢管在高压防腐等方面的需求。
由于高频焊接时热量集中,焊缝很窄,再加上没有填充金属,要使接头的强度和韧性高于母材,达到设计要求,所以改麻改善高频焊接接头这个薄弱环节,提高强度和韧性是研究的中心。
1 高频焊缝金相组织高频焊缝的宏观组织是由腰鼓形、熔合线和金属流线组成。
1.1腰鼓形腰鼓形实际上是高频焊缝的热影响区。
它可以判定焊接规范的大小、要腰鼓形的宽窄焊接时输入热量大小有关,一般认变输入热量大小有关,一般认为输入热量愈大,腰鼓形愈窄,输入量愈小,腰鼓形愈窄,当输入热量一定时焊接速度愈慢,腰鼓形变窄,速度愈快,腰鼓愈窄。
图1 是理想的腰鼓形。
合理的腰鼓形为带钢厚度中心部分的热影响区宽度是板厚的四分之一到三分之一,它是用来控制输入量大小的判据。
图2是较宽的腰鼓形。
1.2亮线亮线也称熔合线焊合线,它是焊接时被加热到高温时脱碳,表面的炭被烧损或者是富炭的液相被挤出。
熔合线的宽窄是烛接时输入热量大小和成型挤压量的大小重要指标,是影响焊管质量的重要因素。
熔合线的宽窄世界各国没有统一的标准,一般为内近控标准,例如新日铁规定0.02-0.2mm,川崎要求小于0.1mm,原联邦德国规定0.02-0.12mm。
我国资料介绍在0.02-0.11mm。
有人认为熔合线小于0.02mm时是输入量不足或挤压量太大而产生,见图3,当热量不足时,蚕食状铁素体一般细小,熔合线模糊不清晰。
高温合金锻造后的组织缺陷分析摘要:通过对低倍检查有缺陷的GH4169高温合金零件的解剖,用光学显微镜和电子扫描电缆从组织里和成分上对表面缺陷进行了详细的分析,查清了缺陷的性质以及和其它类似缺陷的区别,为确定缺陷的性质提供了检查方法。
关键词:黑斑;偏析;高倍检查我国的GH4169高温合金与美国的InconeL718合金成分相似。
nconeL718合金是由美国国际公司研制成功的,并且是于1959年公开的一种以体心四方和面心立方分析出强化的变形高温合金。
1试验过程的确定从有缺陷的零件中选取了2件斑点比较多的零件,其中斑点最多的做被解剖件,另一件重新腐蚀后,涂漆保存。
①组织形貌分析:先对零件进行低倍照相,保留缺陷的宏观现象。
再用线切割方法切取试样,用Neophot32光学显微镜和S-4800扫描电子显微镜观察缺陷的微观组织并照相。
②热处理试验:试样照完高倍组织后,在1160℃条件下保温1h进行热处理以消除Laves 相,来验证Laves相是否回溶。
③相成份分析:用S-4800扫描电子显微镜上的能谱对缺陷中的相进行成份分析,对能谱不确定的相,用X-射线衍射仪进行验证,来确定相的性质。
④高倍组织的检查方法比较:对在低倍组织检查下判断不了的缺陷,进行高倍组织检查。
对抛光、腐蚀性的试样采用复型、照相和直接用三维视频显微镜观察相进行比较,对比两种方法的实用性。
2试验分析2.1 组织形貌分析黑色斑点在零件上呈现出放射状分布,且平面处的斑点比较大、数量少。
零件边缘分布比较密集,切割下面斑点磨制金相试样,在Neophot32光学显微镜下观察,斑点中相密集,分布于晶界和晶粒内,斑点周围晶粒度粗大,晶内无相。
斑点中富集了大量的白色块状物,且平面与边缘上的斑点微观组织基本相同。
在S-4800扫描电子显微镜里观察黑色斑点,是由不受腐蚀的块状形成不规则网,使斑点看起来比较粗糙。
而块状物周围腐蚀比较重,使整个斑点看起来比较暗,形成黑斑。
钢铁中常见的金相组织区别简析一.钢铁中常见的金相组织1.奥氏体—碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处。
2.铁素体—碳与合金元素溶解在a-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体—碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4.珠光体—铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
5.上贝氏体—过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。
过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8o铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片.典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。
一:锻造裂纹与热处理裂纹形态一:锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X 的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型外,有时会出现有些锻造裂纹比较细。
裂纹周围不是全脱碳而是半脱碳。
淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和上有明显的差别。
对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。
由于热处理加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。
产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。
有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。
结构钢常见的缺陷:1 锻造缺陷(1)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。
出现过烧说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。
(2)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。
锻造温度高,或者终端温度低,都容易产生裂纹。
还有一种裂纹是锻造后喷水冷却后形成的。
(3)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。
在显微镜上观察时,可发现折叠周围有明显脱碳。
2 热处理缺陷(1)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。
此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。
(2)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。
(3)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。
(4)软点:显微组织有块状或网状屈氏体和未溶铁素体等。
西安航空学院
实验报告
课程名称材料创新实验
实验项目名称热处理保温时间对LA91镁合
金硬度的影响
实验学生班级
实验学生姓名
同组学生姓名
实验时间2019.6.24—2019.7.5实验地点材料研究中心
实验成绩评定
指导教师签字年月日
硬度数值。
(6)记录数据
4.3 布氏硬度的测定
(1)调节实验力及加载载荷时间
(2)将试样放置在载物台上,旋转手轮使试样上升至顶住压头,继续旋转手轮至手轮空转,停止旋转。
(3)按下START按钮,压头开始加载,加载时间30秒。
(4)加载结束,反向转动手轮使载物台下降取出试样,
(5)用读数器读出压痕直径,乘于2,查表得出试样的硬度值。
四、实验记录处理
1.金相组织图
图1·编号:1 物镜倍数:200
图2·编号:1 物镜倍数:500
图3·编号:2 物镜倍数:200
图4·编号:2 物镜倍数:500
图5·编号:3 物镜倍数:200
图6·编号:3 物镜倍数:500
图7·编号:4 物镜倍数:200
图8·编号:4 物镜倍数:500
图9·编号:5 物镜倍数:200
图10·编号:5 物镜倍数:500 2.洛氏、布氏、维氏硬度。
镁合金热处理过程中组织与相的变化目录1、概述 (2)2.镁合金热处理过程分析 (2)2.1铸太组织 (2)2.2组织形貌变化 (3)2.3 溶质原子扩散 (3)2.4 枝晶组织球化分析 (3)1、概述镁合金是现代金属结构材料中最轻的一种,以其密度低、比强度和比刚度高、尺寸稳定性好、电磁屏蔽好及价格稳定等优点,近年来在航空航天、仪器制造、国防和电子工业等领域,尤其是汽车工业中获得日益广泛的应用[1]。
镁合金半固态成具有成形温度低、凝固收缩小、缺陷和偏析减少、晶粒尺寸细小、模具寿命延长等优点,被专家学者誉为21世纪新一代新兴金属加工方法。
但是,要实现镁合金的半固态成型,首先必须制备初生相为颗粒的非枝晶组织合金。
国内外研究者常用的枝晶粒化方法为机械搅拌法或电磁搅拌法。
由于机械搅拌法的工艺参数难以控制、搅拌设备易磨损和腐蚀、不适应与高熔点合金和易氧化合金,因此该法很难在工业上推广应用;国外已将电磁搅拌法应用于生产,但该法设备投资大,工艺复杂。
半固态等温热处理作为20世纪90年代开发的一种半固态枝晶组织坯料制备方法,能够在半固态成形前的二次加热过程中直接把原材料锭坯变为半固态非枝晶组织坯料,具有工艺简单、成本低廉等优点[2-3]。
本文采用半固态等温热处理法, 对应用最广泛的AZ91D铸造镁合金进行了研究, 观察了其在半固态等温热处理中的组织和相的变化。
2.镁合金热处理过程分析2.1铸太组织AZ91D 镁合金初生相α相(灰色)以树枝晶形态存在,沿α相不连续分布的白色组织为(α+β)共晶组织。
2.2组织形貌变化随着保温时间的延长,铸态组织中的枝晶臂逐渐消失,由不规则形状向球状转变。
晶界处的共晶组织和晶粒内部的富Al、Zn部分首先熔化,在两个晶粒间以液态薄膜形式存在,在多晶粒交界处以液态熔池形式存在,而在晶粒内部则以小液滴形态存在。
到10 min时,液态薄膜的厚度增加,熔池的体积增大,晶粒完全被液态金属层包围,而晶粒内部开始出现小液滴,初生晶粒全变为近球状的颗粒组织。
热处理缺陷一、淬火裂纹(一)淬火裂纹的类型和特征1. 纵向裂纹:沿工件纵向分布,裂纹较深而长,一条或几条。
产生原因:完全淬透,温度升高,裂纹倾向增大,尺寸较长而形状复杂的工件易产生纵向裂纹2. 横向裂纹:裂纹垂直于轴向,断口形貌由中心向四周发散,易长生于尺寸较大的工件,由于内外层马氏体相变不同时,相变应力较大产生3. 表面裂纹:呈网状,深度较浅,高频或火焰淬火时,加热未达到奥氏体化温度就快冷火加热到临界温度以上后冷速慢4. 剥离裂纹:表面淬火工件,表面淬硬层剥落或化学热处理后沿扩散层出现的表面剥落称玻璃裂纹。
裂纹平行于工件表面,潜伏在表皮下。
5. 淬火裂纹微观特征:抛光态下,曲折刚直,多沿晶扩展,也有穿晶、混晶扩展,裂纹两侧无脱碳,断口上无氧化色,呈脆性沿晶或混晶断裂。
(二)淬火裂纹形成机理钢中奥氏体向马氏体转变时体积增大所产生的应力导致淬火裂纹。
当钢淬火冷却时,在首先达到M s点温度的工件外层率先形成马氏体,发生体积膨胀,产生应力,外表面的马氏体膨胀几乎不受限制。
继续冷却当靠近中心部位的材料到达M s点温度时,新生的马氏体膨胀收到早已形成的外层马氏体的限制,产生使表面张开的内应力。
当马氏体大量形成所产生的内应力大于零件外层淬火状态的马氏体强度时,便出现开裂。
(三)影响淬火裂纹的因素1. 钢的化学成分:含碳、铬、钼、磷高易引起裂纹2. 材料缺陷:发纹、气泡、碳化物偏析、非金属夹杂、过热、折叠、微裂纹等3. 钢件形状结构:截面急剧变化的工件,有尖角、缺口、孔洞、槽口、冲压标记、刻痕、加工刀痕等应力集中部位易发生。
4. 淬火前原始组织:球状珠光体比片状珠光体不易产生淬火裂纹,因球状珠光体淬成马氏体时其比容变化小、应力小5. 淬火温度淬火温度高易产生裂纹,奥氏体晶粒粗大,淬透性提高,淬裂倾向大。
淬火温度与淬火裂纹发生率之间有三种情况:1)对于小型零件,淬火温度高,淬火裂纹发生率高2)对于大型零件,淬火温度高,淬火裂纹发生率低3)对于中型零件,裂纹发生有个转变温度6. 冷却速度冷速快,使表面产生压应力,内层为张应力,这种应力不易产生裂纹,但冷到马氏体转变点以下时产生相变应力,表面为张应力,易产生淬火裂纹。
焊后热处理常见缺陷及防止措施
过热和过烧
应热处理温度过高或保温时间过长而引起晶粒显著粗化的现象称为过热。
在实际焊接热处理中,过热可能是热电偶固定不当或测温不准确而造成的。
过热可使金属材料的强度降低,塑性变差。
过热可用正火来消除。
因热处理温度过高,不仅造成晶粒粗大、而且引起晶界局部融化的现象称为过烧。
过烧可使金属材料的强度显著降低,塑性级差。
过烧是无法消除的,因而只能是材料报废。
变形和开裂
变形和开裂是热处理中很难避免的一种缺陷。
当焊接残余应力、焊后热处理引起的附加热应力以及工件结构因素造成的应力集中等的合应力超过材料的屈服强度时,蒋银企工件变形,超过材料的抗拉强度时,蒋
银企工件的断裂。
因此,工件内部严重的组织缺陷、截面设计不合理、冷却过快或冷却方式不合理、淬火后未及时回火等,都会增加变形及开裂的可能性。
防止焊件变形和开裂正是焊接热处理的主要任务。
回火缺陷回火缺陷主要包括硬度偏高、硬度不足、回火脆性以及去应力效果不佳等,它是有与焊后热处理过低、过高或在回火脆性区加热造成的。
可以按照正确的工艺重新回火进行返修。
非马氏体钢中出现马氏体组织
非马氏体钢出现马氏体组织是有与焊后热处理冷却速度过快造成的,它的存在围堰赤裂纹的产生提供了条件。
可通过预热、焊后保温冷却等措施该组织的出现,对已出现马氏体组织的焊件,可通过焊后热处理来改善。
轴承钢的热处理与组织演变实验结论
1. 固溶处理:固溶处理是常用的热处理方法之一,可以通过加热轴承钢至其固溶温度,然后迅速冷却,以使固溶体形成。
固溶处理可以消除轴承钢中的析出物和晶体缺陷,提高材料的韧性和塑性。
实验结果表明,适当的固溶处理可以显著改善轴承钢的力学性能。
2. 淬火处理:淬火是在固溶处理后的热处理中常用的方法之一。
通过迅速冷却轴承钢,使其经历马氏体转变,从而提高材料的硬度和强度。
实验结果表明,淬火处理可以显著增加轴承钢的硬度,但也会导致材料脆性增加。
因此,在选择淬火工艺时需要根据具体应用需求进行权衡。
3. 回火处理:回火处理是对淬火后的轴承钢进行加热处理,以减轻淬火过程中产生的内部应力和改善材料的韧性。
回火温度和时间的选择对于轴承钢的性能具有重要影响。
实验结果表明,适当的回火处理可以使轴承钢的硬度略微降低,但能够显著提高其韧性和抗冲击性能。
钢热处理十种组织缺陷分析及对策钢的力学性能、物理性能和化学性能决定钢的热处理组织。
正常组织赋予钢优异性能;组织缺陷恶化钢的性能,降低产品质量和使用寿命,甚至发生事故。
钢热处理主要有十种组织缺陷.分析原因,采取对第,有显著技术经济效益。
一、奥氏体晶粒粗大钢奥氏体晶粒定为13级,一级最粗,13 级最细。
晶粒愈细,强韧性愈佳,淬火得到隐晶马氏体;晶粒禽粗,强韧性愈差、脆性大,淬火得到粗马氏体。
实践证明.奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大当加热温度一定时,快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大奥氏体晶粒随钢中含C、Mn元素增加而增大,随钢中含W、Mo、V元素增加而细化。
钢最终淬火前未经预处理,奥氏体晶粒易粗化,淬火得到粗马氏体,强韧性低,脆性大。
晶粒粗化,降低晶粒之闻结合力,力学性能恶化。
对策——合理选择加热温度和保温时间。
加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。
加热温度应按钢的临界温度确定,保温时间接加热设备确定。
合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、激光加热等。
淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。
选用细晶粒钢和严格控温等措施。
二、残余奥氏体量过多钢件淬火后过冷奥氏体已转变成淬火马氏体.未完全转变者为残余奥氏体。
残余奥氏体在回火过程可部分转变成马氏体,但因材料与工艺不同,残余奥氏体可多可少保留在使用状态中。
保留少量残余奥氏体有利增加强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。
但过量残余奥氏体将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致使用时发生尺寸变化等不利因素。
园此,残余奥氏体含量不宜过多。
高合金钢中有大量降低Ms点的台金元素,会增加淬火钢残余奥氏体量,如高速钢淬火后残余奥氏体量高达50%以上;过高的淬火加热温度会使钢中C和合金元素大量溶入高温奥氏体中,提高了台金化奥氏体稳定性,不易发生马氏体相变,保留在淬火组织中,增加残余奥氏体量;等温淬火较普通淬火残余奥氏体量多;淬火冷却速度慢,残余奥氏体量多等。
碳钢的热处理及非平衡组织观察碳钢是指含有0.02%至2.11%碳的铁碳合金,是最常见的钢材之一、热处理是通过加热和冷却等工艺来改变材料的物理和力学性能的过程。
在碳钢的热处理中,常见的工艺包括退火、正火、淬火和回火等,各个工艺对应的非平衡组织观察也有所不同。
首先是退火工艺。
退火是将钢材加热到一定温度,然后缓慢冷却的过程。
通过退火处理,碳钢中的过饱和固溶体会形成晶粒,同时还能消除应力和负的显微组织。
在退火过程中,可以观察到一些非平衡组织。
例如,在较高温度下(通常在固溶体区域内),钢材中的过饱和固溶体形成的亚结构可以通过电子显微镜进行观察。
此外,通过退火处理,钢材中的非均匀位错分布和析出相等也可以被观察到。
其次是正火工艺。
正火是将钢材加热到一定温度,然后用适当速度冷却的过程。
正火处理在提高材料硬度和强度方面非常有效。
在正火过程中,可以观察到非平衡组织的形成。
例如,在冷却速率较高的情况下,钢材中会形成马氏体,在金相显微镜下可以观察到马氏体的形貌和分布。
此外,正火处理还可以导致一些晶体缺陷的形成,如晶界偏析、位错堆积等,这些缺陷可以通过电子显微镜和X射线衍射来观察。
然后是淬火工艺。
淬火是将钢材加热至临界温度以上,然后迅速冷却的过程。
淬火处理可以获得高硬度和高强度的钢材。
在淬火过程中,可以观察到许多非平衡组织。
例如,在冷却速率非常快的情况下,钢材中的奥氏体会发生相变,形成马氏体。
在金相显微镜下,可以观察到马氏体的形貌和分布,并通过衍射技术来分析其结构。
最后是回火工艺。
回火是将淬火后的钢材再次加热至较低温度,然后适当冷却的过程。
回火处理可以改善淬火后的钢材的韧性和稳定性。
在回火过程中,可以观察到一些非平衡组织的形成和变化。
例如,在回火温度较高的情况下,马氏体会开始分解,形成回火马氏体和残留奥氏体。
通过金相显微镜和衍射技术,可以观察到这些非平衡组织的形貌和分布,并进一步分析其对材料性能的影响。
综上所述,碳钢的热处理对材料的物理和力学性能具有显著的影响。
45钢热处理组织异常原因分析与控制卢爱凤【摘要】45钢在使用过程中热处理组织出现晶粒粗大、淬透性差的问题。
经检验发现多个炉次生产的产品均出现了此问题,因此分析认定这是一个系统的质量缺陷问题,钢水中杂质含量较多且分布不均、轧制温度较高是造成该问题的主要原因,并对此提出了解决的方案与方法。
%The coarse grain and Inspections showed that such problems The main reasons were more impurities methods were presented. low hardenability in heat treatment of 45 steel have appeared in use. were found in several furnace products, so it was a systemic quality defect. and non-distributions, high rolling temperature, then effective solutions and【期刊名称】《理化检验-物理分册》【年(卷),期】2012(048)011【总页数】4页(P766-769)【关键词】45钢;晶粒粗大;淬透性;过烧;轧制工艺【作者】卢爱凤【作者单位】莱芜钢铁股份有限公司,莱芜271104【正文语种】中文【中图分类】TG157最近,笔者公司物理室对某企业提出的质量异议试样进行分析,该零件由45钢制造,零件材料为笔者公司特钢厂生产,热处理后组织出现异常,主要表现为组织晶粒粗大,淬透性差,只淬透了表面非常薄的一层。
因此物理室对零件原始材料进行了淬火试验,发现由特钢厂和新二区生产的45钢均存在此类现象。
物理室及时对当天生产的45钢进行了6个炉次的取样,在840℃保温40min水淬试验后,发现5炉均存在淬透性差、晶粒粗大现象,所以可以判定这是一个系统的质量缺陷问题。
热处理检验方法和规范金属零件的内在质量主要取决于材料和热处理。
因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。
在G B/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。
为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范一、使用范围:本规范适用于零件加工部所有热处理加工零件。
二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。
为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。
1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法 GB231 金属布氏硬度试验方法GB1818 金属表面洛氏硬度试验方法GB4340 金属维氏硬度试验方法GB4342 金属显微维氏硬度试验方法GB5030 金属小负荷维氏试验方法2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。
通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。
且及时作检验记录。
同时,若发现硬度超差,应及时作检验记录。
同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。