高分子材料的性能特点共37页文档
- 格式:ppt
- 大小:4.81 MB
- 文档页数:37
第七章高分子第2节高分子材料性能特点和常用高分子材料Part 1高分子材料性能特点一、高分子材料的力学性能特点1. 低强度和较高比强度影响聚合物实际强度的因素很多,可以分为两大类:与材料本身有关的影响因素包括高分子的化学结构、分子量及其分布、支化和交联、结晶与取向、增塑剂、共混、填料、应力集中物与外界条件有关的影响因素包括温度、湿度、光照、氧化老化、作用力的速度等高聚物的抗拉强度通常比金属材料低,但密度小,只有钢的1/4~1/6,所以其比强度并不比某些金属低在高聚物的加工成型过程中形成各种缺陷是普遍存在的现象。
这些缺陷就是应力集中物,尽管非常微小,有的时候甚至肉眼不能发现,但是却成为降低聚合物机械强度的致命弱点,是造成聚合物实际强度和理论强度之间巨大差别的主要原因之一例如:生产过程中常会混进一些杂质;由于混炼不均、塑化不足造成的微小气泡和接痕等等。
表里冷却速率不同形成微裂纹及表面龟裂。
增塑剂的加入对聚合物起了稀释作用,减少了高分子链之间的作用力,因而强度降低。
强度的降低值与增塑剂的加入量约成正比2. 高弹性和低弹性模量高弹性高聚物在一定的条件下可以处于高弹态。
高弹态高聚物在小应力作用下能产生很大的可逆弹性变形,这种独特的行为称为高弹性。
金属、陶瓷、玻璃态或晶态高聚物则只有在较大应力作用下产生微小可逆弹性变形分子量足够高,经轻度交联的柔性链高聚物在高弹态具有最典型的高弹性,与金属的弹性相比高聚物的高弹性,弹性形变大,最高可达1000%高聚物弹性模量低,高弹模量只有约0.1~1MPa3.黏弹性理想的弹性体当受到外力后,平衡形变瞬时达到,与时间无关理想的黏性体当受到外力后,形变是随时间线形发展的黏弹性高聚物的形变性质是与时间有关的,这种关系介于理想弹性体和理想黏性体之间,因此高分子材料常被称为黏弹性材料,黏弹性是高分子材料的另一个重要的特性力学松弛蠕变应力松弛内耗力学松弛 聚合物的力学性质随时间的变化的统称 滞后现象根据高分子材料受到外力作用的情况不同,可以观察到不同类型的力学松弛现象蠕变指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象例如软聚氯乙烯丝(含增塑剂)钩着一定重量的砝码,会慢慢的伸长;去掉砝码后,会慢慢缩回去,这就是聚氯乙烯丝的蠕变现象从分子运动和变化的角度来看,蠕变过程包括三种形变普弹形变当高分子材料受到外力作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变。
高分子材料的特性
高分子材料是一类由大量重复单元组成的材料,具有许多独特的特性。
首先,高分子材料通常具有较高的分子量和分子量分布,这使得它们具有较强的韧性和耐磨性。
其次,高分子材料具有良好的绝缘性能,这使得它们在电子领域有着广泛的应用。
此外,高分子材料还具有较高的化学稳定性和耐腐蚀性,能够在恶劣环境下长期稳定地工作。
另外,高分子材料还具有较好的加工性能,可以通过各种加工方法制备成各种形状的制品。
高分子材料的特性还包括其独特的热性能。
一般来说,高分子材料具有较低的熔点和玻璃化转变温度,这使得它们在高温下仍能保持较好的形状稳定性。
此外,高分子材料还具有较低的热传导性能,能够在一定程度上起到隔热的作用。
另外,高分子材料还具有较好的可塑性和可回收性,能够通过加热和压力重新塑形,实现材料的再利用。
除此之外,高分子材料还具有较好的透明性和光学性能。
一些高分子材料具有较高的透光率和折射率,能够用于光学透镜、光纤等领域。
同时,高分子材料还具有良好的色彩稳定性和耐光性,能够长期保持其外观和性能。
另外,高分子材料还具有较好的声学性能,能够用于声学隔音、吸音等方面。
综上所述,高分子材料具有众多独特的特性,使得它们在各个领域有着广泛的应用前景。
随着科学技术的不断进步,相信高分子材料的特性将会得到更好的发挥和应用,为人类社会的发展做出更大的贡献。
高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。
一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。
巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。
于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。
高分子材料的性能是其内部结构和分子运动的具体反映。
掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠的依据。
高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。
因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。
高分子结构通常分为链结构和聚集态结构两个部分。
链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。
近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。
远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。
聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
1. 近程结构(1) 高分子链的组成高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。
高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。
塑膠的測試技術塑膠材料的簡介:塑膠材料是一種高分子聚合物,它的分子量一般在20000以上,單一的塑膠無法滿足我們的生產的需要,我們在生活生產中應用的各種塑膠是在單一的塑膠中加作入各種助劑混合而成的復合高分子.高分子材料是許許多多的卷曲的高分子鏈彼此相互纏繞在一起而成的,當高分子受力的時候,卷曲的高分子被拉直,高分子的這種結構使其具有金屬無法比擬的伸長率.另外由於塑膠是由許許多多的高分子長鏈相互纏繞在一起,分子鏈間有較大的作用力,塑膠的這種性能使其一方面具有較高的性能,另一方面塑膠在熔融狀態下由於彼此間相互纏繞而具有很大的熔體粘度.高分子經常測試的項目及相應的測試技術.一.塑膠材料的物理測試項目:熔融指數(MI):定義:在一定的溫度和負荷條件下,塑膠熔體每10min通過標準口模的重量彧體積.MI有兩種表示方式MFR和MVR.以重量的表示的熔融指數為熔體重量流動速率(MFR),以體積表示的稱為熔體體積流動速率(MVR).目的:MI代表熔體的流動性能,MI越大熔體的流動性越好,越小流動越困難.同時MI值可以大體上反映樹脂分子量的大小,當樹脂分子量大時MF值低,分子量小時,MF值高,而分子量大小和塑膠性能有直接的聯系.因此MI是確定加工工藝的重要參考指標之一.其測試流程如下:1.藍黑點:概述:加熱一定量的樣品顆粒,在規定條件下,用熱壓機使顆粒在金屬片中加熱,然后在規定條件下用冷壓機將其冷卻,觀察壓出的試片藍黑點狀況.目的:藍黑點是塑膠要檢測的一個重要項目,它可以檢測塑膠中含有的雜質的情況,以保證產品的質量.測試方法如下流程:灰分:將塑膠原料在800℃下燃燒6小時,塑膠殘餘的部分占總重的比率.目的:由於塑膠原料中的有機的成分已經燃燒變成氣體成分,因此灰分反映了塑膠中無機填料和礦物質所占的比例.含水率:塑膠中含有水分的多少,含水率的測試對含有极性基團的塑膠原料例。
高分子材料的性质与应用高分子材料是一类由大量重复单元组成的聚合物材料,其特点是分子量大、结构复杂,具有良好的延展性和可塑性。
本文将重点讨论高分子材料的性质以及其在不同领域中的应用。
一、高分子材料的性质高分子材料具有多种特性,包括但不限于以下几个方面。
1. 分子量大:高分子材料的分子量通常在数千到数百万之间,相较于普通物质要高得多。
这使得高分子材料具有较高的强度和韧性。
2. 可塑性:高分子材料可以通过加热或添加塑化剂等方式使其变得柔软和可塑,可广泛应用于注塑、挤出和吹塑等塑料成型工艺中。
3. 热稳定性:高分子材料在高温下具有较好的稳定性,不易熔化或分解。
这使得高分子材料在高温环境中具有较好的应用潜力,例如用于制造高温耐用的塑料制品。
4. 化学稳定性:高分子材料对各种化学物质具有较好的耐腐蚀性,不易受到酸、碱、溶剂等的侵蚀。
这使得高分子材料在化工、医疗器械等领域中得到了广泛应用。
5. 绝缘性:由于高分子材料中的分子间通常有较多的空隙,因此它们具有较好的绝缘性能,可以用于制造电缆、绝缘材料等。
二、高分子材料的应用由于高分子材料具有较好的性质,因此在各个领域中都有广泛的应用。
1. 塑料制品:高分子材料广泛应用于塑料制品的制造中,如日常生活中的家居用品、电子设备外壳、汽车零部件等。
2. 医疗器械:高分子材料在医疗器械的制造中具有重要地位,例如制造人工关节、血管支架、医用塑料瓶等。
3. 化工领域:高分子材料在化工领域中被广泛应用,如制造聚合物材料、橡胶、涂料、胶粘剂等。
4. 纤维材料:高分子材料可以用于制造纤维材料,如合成纤维、塑料纤维等,广泛应用于纺织、服装等行业。
5. 管道材料:高分子材料在制造管道材料方面具有优势,如用于城市给排水管道、石油天然气输送管道等。
6. 电子领域:高分子材料在电子领域中具有广泛应用,例如制造电缆、电子元件封装材料等。
总结:高分子材料以其独特的性质和广泛的应用领域受到了广泛的关注。
高分子材料的性质与应用高分子材料是一类具有特殊性质和广泛应用的材料,其特点是由大量重复单元构成的长链结构。
本文将对高分子材料的性质进行探讨,并介绍其在不同领域中的应用。
一、高分子材料的性质高分子材料具有以下几个主要性质。
1. 分子量大:高分子材料的分子量通常在几万至上百万之间,分子量越大,其物理性质越优异。
2. 高柔韧性:由于高分子材料的长链结构,使得其具有较高的柔韧性,能够承受较大的拉伸变形。
3. 高吸湿性:高分子材料的分子链中含有大量的极性基团,使其具有吸湿性。
这种性质使得高分子材料在一些特殊应用中具有优势,比如制作吸湿性材料。
4. 耐热性:高分子材料中的键结构稳定,使其在高温条件下能够保持较好的物理性能。
5. 耐化学性:高分子材料在一定程度上能够耐受化学物质的侵蚀,具有一定的耐酸碱性。
二、高分子材料的应用领域1. 塑料制品:高分子材料的一大应用领域就是制造各种塑料制品。
不同种类的高分子材料可以通过调控其化学结构和分子量来制备出不同性能的塑料制品,如聚乙烯、聚氯乙烯等。
2. 纤维材料:高分子材料可以通过纺丝、拉伸等工艺制造出各种纤维材料,具有良好的拉伸性和柔韧性。
这些纤维材料广泛应用于纺织、服装、建筑等领域。
3. 包装材料:高分子材料的耐化学性和吸湿性使其成为理想的包装材料。
用高分子制造的塑料薄膜可以用于食品、药品等包装领域,具有良好的密封性和保鲜效果。
4. 电子材料:高分子材料在电子领域中也有广泛的应用。
例如,聚酰亚胺材料具有优异的电绝缘性能,可用于制造印制线路板等电子元件。
5. 医疗材料:高分子材料在医疗领域中具有很好的应用前景。
生物相容性好、可降解的高分子材料在医疗器械、组织工程等方面有广泛的应用。
6. 高分子复合材料:高分子材料与其他材料的复合可以产生更加优异的性能。
高分子复合材料广泛应用于汽车、航空航天、建筑等领域,用以制造轻量化、高强度的结构材料。
总结:高分子材料具有独特的性质和广泛的应用领域。