7.7平行线的性质第一课时教案
- 格式:pdf
- 大小:200.79 KB
- 文档页数:6
浙教版七年级数学下册《平行线的性质》第一课时教学设计一、教学内容《平行线的性质》第一课时:课程导入二、教学目标1. 了解本单元教学内容,初步理解平行线的定义。
2. 激发学生学习数学的兴趣,培养学生学习数学的自信心。
三、教学重点1. 了解本单元教学内容。
2. 理解平行线的定义。
四、教学难点1. 激发学生学习数学的兴趣。
2. 培养学生学习数学的自信心。
五、教学方法板书法、讲授法、互动法六、教学过程Step 1 自我介绍及课程导入(5分钟)1. 教师自我介绍并简单介绍本单元教学内容。
2. 学生们进行自我介绍,并介绍自己对数学学习的看法。
Step 2 导入(10分钟)1. 教师介绍平行线的概念,强调平行线的重要性。
2. 点名,提问学生学习平行线的目的,并请学生回答。
3. 整理学生的回答,强调平行线的定义具有普适性。
Step 3 课堂互动(30分钟)1. 分组让同学们自由讨论平行线的特点,发现平行线的重要性。
2. 根据同学们的讨论内容,教师逐步引导学生领悟平行线的相关性质,如等角相似、夹角等于180°等等。
3. 教师适当引导同学们提出自己感兴趣的问题,向学生介绍数学竞赛、趣味数学等相关课程,激发同学们兴趣。
Step 4 归纳总结(5分钟)让学生做简单的小结,并请他们在小结中照顾到平行线的定义及性质等。
七、课堂巩固回答教师出的几道平行线有关的问题。
八、课后作业1. 完成课堂上有关平行线的问题,并对答案进行检查;2. 了解关于平行线的相关知识,为下节课做好准备。
九、板书设计《平行线的性质》第一课时一、导入二、平行线的概念三、平行线的定义四、课堂互动五、小结十、教学反思这节课,通过自我介绍及课程导入,教师向学生介绍平行线的概念,强调平行线的重要性。
之后就引导学生发现平行线的相关性质,包括等角相似、夹角等于180°等等,激发同学们兴趣。
最后让学生做小结,并在小结中照顾平行线的定义及性质等。
此次课程互动性很强,能够有效提高学生学习数学的兴趣,但也存在教学时间过长的问题,可以在下次课程中适当掌握好时间。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。
2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。
三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。
四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。
3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。
4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。
五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。
六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
一、教学目标:知识与技能:1. 理解平行线的概念,能够识别和判断平行线;2. 掌握平行线的性质,能够运用平行线的性质解决实际问题。
过程与方法:1. 通过观察、操作、思考等活动,培养学生的观察能力和思维能力;2. 学会用画图工具绘制平行线,提高学生的动手操作能力。
情感态度价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性;2. 培养学生的团队合作精神,学会与他人交流和分享。
二、教学重点与难点:重点:1. 平行线的概念及性质;2. 运用平行线的性质解决实际问题。
难点:1. 平行线的判断;2. 运用平行线的性质解决复杂问题。
三、教学准备:教师准备:1. 平行线的图片或实物;2. 画图工具(如直尺、三角板等);3. 教学课件或黑板。
学生准备:1. 课本及相关学习资料;2. 画图工具。
四、教学过程:1. 导入:1.1 教师出示平行线的图片或实物,引导学生观察并说出平行线的特点;2. 探究平行线的性质:2.1 教师引导学生通过观察、操作、思考等活动,发现平行线的性质;3. 应用平行线的性质:3.1 教师出示实际问题,引导学生运用平行线的性质解决问题;3.2 学生独立思考,小组交流,展示解题过程,教师进行点评和指导。
五、作业布置:1. 练习课本上的相关题目;2. 运用平行线的性质解决实际问题,并将解题过程和答案写在作业本上。
教学反思:本节课通过观察、操作、思考等活动,让学生掌握了平行线的性质,并能运用平行线的性质解决实际问题。
在教学过程中,注意引导学生主动参与,培养学生的观察能力、思维能力和动手操作能力。
通过小组合作,培养学生的团队合作精神。
但在教学过程中,也发现部分学生对平行线的判断仍存在困难,需要在今后的教学中加强练习和指导。
六、教学拓展:1. 引导学生思考:还有哪些几何图形的性质可以运用到实际问题中?2. 学生举例说明,教师进行点评和指导。
七、课堂小结:八、课后反思:1. 教师对本节课的教学效果进行反思,分析学生的掌握情况;2. 针对学生的薄弱环节,制定相应的教学措施。
平行线的性质(第1课时)教学目标:知识目标:1、理解并掌握平行线的三个性质,并能运用它们作简单的推理。
2、经历探索直线平行的性质的过程,并能灵活运用它们进行简单的推理和计算。
数学思考:经历观察、操作、想像、推理、交流等活动,掌握平行线的性质,进一步发展空间观念,推理能力和有条理表达能力。
情感态度:通过对平行线的性质的探究,是学生认识到数学与现实生活的密切联系,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识。
教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算. 教学难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.教学过程:一、复习引入思考:判定两条直线平行的三种方法是什么?在这一节课里:我们探究:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?二、探究新知1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的4个角c b a43212.学生测量这些角的度数,把结果填入表内.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?分析后,让学生写出猜想.教师板书:(1):两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.(2):两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.(3):两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.学生验证猜测.学生活动: 设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?归纳:平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.4、教师引导学生理清平行线的性质与平行线判定的区别.平行线的性质 平行线的判定 因为a ∥b, 因为∠1=∠2, 所以∠1=∠2 所以a ∥b. 因为a ∥b, 因为∠2=∠3, 所以∠2=∠3, 所以a ∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.cb a4321学生交流后,师生归纳:两者的条件和结论正好相反 5、平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么?解:略三、巩固练习1.如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD . 求证:∠1+∠2=90°.D C BA2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°.四、课内总结今天,你收获了什么?五、课后作业 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、选择题.1.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( )A.∠1=∠2B.∠1>∠2;C.∠1<∠2D.无法确定 2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( )A.向右拐85°,再向右拐95°;B.向右拐85°,再向左拐85°C.向右拐85°,再向右拐85°;D.向右拐85°,再向左拐95° 三、解答题1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.4321DCBA2.如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.E21DCB。
经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。
2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。
五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。
2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。
3. 应用:运用平行线的性质和判定方法解决实际问题。
4. 总结:对本节课的内容进行总结,布置课后作业。
第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。
2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。
3. 练习:进行课堂练习,巩固所学知识。
4. 总结:对本节课的内容进行总结,布置课后作业。
六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。
2. 探究:引导学生通过实际操作,发现并证明平行线的性质。
3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。
4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。
5. 总结:对本节课的内容进行总结,布置课后作业。
七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。
一、教学目标:1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、交流的能力,提高学生的逻辑思维能力。
3. 培养学生运用平行线的性质解决实际问题的能力。
二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:a. 平行线永不相交。
b. 平行线在同一平面内。
c. 平行线之间的夹角相等。
d. 平行线与横截线之间的夹角相等。
三、教学重点与难点:1. 教学重点:平行线的性质及应用。
2. 教学难点:平行线性质的证明及运用。
四、教学方法:1. 采用问题驱动法,引导学生探究平行线的性质。
2. 利用多媒体演示,直观展示平行线的性质。
3. 运用小组合作交流,培养学生团队协作能力。
4. 结合实际例子,让学生运用平行线的性质解决问题。
五、教学过程:1. 导入新课:通过生活实例,引导学生认识平行线,激发学生学习兴趣。
a. 学生自主探究平行线的定义,总结平行线的特点。
b. 教师引导学生探究平行线的性质,引导学生进行证明。
c. 学生分组讨论,总结平行线性质的应用。
3. 课堂练习:出示练习题,让学生运用平行线的性质解决问题。
4. 总结提升:教师引导学生总结本节课所学内容,强化记忆。
5. 课后作业:布置相关作业,巩固所学知识。
教学评价:通过课堂表现、练习题和课后作业,评价学生对平行线性质的掌握程度。
六、教学策略与资源:1. 教学策略:a. 采用问题引导,激发学生思考。
b. 利用多媒体演示,增强直观感受。
c. 设计丰富多样的练习,巩固知识。
d. 鼓励学生小组讨论,培养合作精神。
2. 教学资源:a. 多媒体教学设备。
b. 平行线性质的图片或实物。
c. 练习题及答案。
d. 教学课件。
七、教学进度安排:1. 课时:2课时。
2. 教学内容:a. 第一课时:平行线的定义及性质(1-2)。
b. 第二课时:平行线的应用及练习(3-4)。
八、教学反思:1. 反思内容:a. 学生对平行线性质的理解和掌握程度。
《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线互相平行。
(2)平行线与横穿它们的直线相交,交角相等。
(3)平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的概念及性质。
2. 教学难点:平行线性质的理解和应用。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。
2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。
3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。
五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。
2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。
(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。
3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。
(2)设置练习题,让学生运用平行线的性质解决问题。
4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。
(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。
5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。
六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。
2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。
3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。
七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
3. 关注学生的学习需求,不断优化教学内容,提升教学质量。
八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。
教案探索平行线的性质教学目标:1. 学生能够理解平行线的定义。
2. 学生能够运用平行线的性质解决实际问题。
3. 学生能够通过小组合作,培养团队协作能力和探究精神。
教学重点:1. 平行线的定义。
2. 平行线的性质。
教学难点:1. 平行线性质的推导和应用。
教学准备:1. 教学课件或黑板。
2. 直尺、圆规等绘图工具。
3. 小组合作材料。
教学过程:一、导入1. 教师出示一些生活中的平行线实例,如铁轨、斑马线等,引导学生观察并提问:“你们发现了什么共同特点?”二、新课讲解1. 教师讲解平行线的定义:“在同一平面内,不相交的两条直线叫做平行线。
”2. 教师引导学生通过绘图,理解平行线的性质。
3. 教师出示例题,引导学生运用平行线的性质解决问题。
三、小组合作1. 教师将学生分成小组,每组发放一张大白纸和绘图工具。
2. 教师提出任务:“请同学们在白纸上画出两组平行线,并标出各条线之间的距离。
”3. 学生在小组内讨论、协作,完成绘图任务。
4. 教师巡回指导,解答学生疑问。
四、成果展示1. 各小组将绘制的平行线作品贴在黑板上。
2. 教师邀请部分小组分享他们的绘图过程和心得。
3. 教师对学生的作品进行点评,强调平行线的性质。
五、课堂小结1. 教师引导学生回顾本节课所学内容,提问:“今天我们学习了什么?”六、作业布置1. 教师布置作业:“请同学们课下观察生活中的平行线,并尝试运用今天所学的知识解决问题。
”2. 教师提醒学生按时完成作业,巩固所学知识。
教学反思:本节课通过生活中的实例导入,激发学生的学习兴趣。
在教学过程中,注重学生的动手操作和小组合作,培养学生的团队协作能力和探究精神。
在成果展示环节,充分展示学生的作品,提高学生的自信心。
总体来说,本节课教学效果较好,学生能够掌握平行线的性质,并能够运用所学知识解决实际问题。
在今后的教学中,可以进一步引导学生深入探究平行线的性质,提高学生的数学素养。
教案奇妙的分数世界教学目标:1. 学生能够理解分数的基本概念。
平行线的性质(第1课时)优秀教案威宁县龙街第二中学白刻生教学目标:1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.教学过程一、复习回顾活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠(已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠=1800 (已知)所以a∥b()活动目的:平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,因此,复习判定直线平行的条件为后面学习性质做好准备。
二、动手操作、探求新知反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
(1)测量同位角∠1 和∠5 的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换另一组平行线试试,你能得到相同的结论吗?这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:活动1、先测量角的度数,把结果填入表内.活动2、根据测量所得的结果作出猜想:同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?活动3、验证猜测.另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?活动4、归纳平行线的性质性质1:两条平行直线被第三条直线所截,同位角相等。
《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。
过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。
二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。
2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。
学生可以分组讨论,分享自己的发现。
3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。
学生可以分组讨论,共同完成证明过程。
4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。
学生可以独立思考,也可以分组讨论。
5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。
6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。
7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。
平行线之间的距离相等。
平行线上的对应角相等。
平行线上的内错角相等。
平行线上的同位角相等。
六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。
教师可以根据学生的作业完成情况和课堂表现来进行评估。
七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。
教师可以通过考试、作业、课堂表现等方式来进行评价。
教师需要给予学生及时的反馈,帮助学生提高。
八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。
这些题目可以包括证明题、应用题等,难度可以适当增加。
《平行线的性质》教学设计教学目标:知识与能力:总结平行线的三个特征,能应用这些性质进行简单的计算和推理 过程与方法 :经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
情感态度价值观:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
教学重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
教学难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
课型、课时:新授课、一课时教学手段: 多媒体课件、三角尺、直尺。
教学方法:创设情境、合作探究教学过程: 第一课时课前德育教育:五个认同一、激趣导入:1、导言:复习平行线的判定引出平行线的性质2、展示课时目标:(大屏幕展示)二、自主学习:(大屏幕展示导学习题并让学生提前准备好做好的导学案) 两条平行线被第三条直线截得的同位角会具有怎样的数量关系?如图,已知直线 a ∥b ,c 是截线. 87654321cb a三、合作探究(分小组讨论问题,然后展示,教师点评并指正)合作探究1两条平行线被第三条直线截得的同位角会具有怎样的数量关系?1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?2、自己阅读课本的18页“探究”部分,并把空填好。
合作探究2两条平行线被第三条直线截得的内错角会具有怎样的数量关系?两条平行线被第三条直线截得的同旁内角会具有怎样的数量关系?你能根据性质1,说出性质2,性质3成立的理由吗?如图,因为a ∥b. 所以 ∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3,类似地,对于性质3,你能说出道理吗?想一想:这节课开始的那个问题应该如何解决?四、精讲解疑:例1 如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?答:∠2 =110º.因为AB ∥CD ,∠1和∠2是内错角,根据两直线平行,内错角相等,得到∠1=∠2.因为∠1=110º,所以∠2 =110º.EDCB A1234(2)从∠1=110º可以知道∠3是多少度吗?为什么?G F E DC B A 答:∠3 =110º.因为AB ∥CD ,∠1和∠3是同位角,根据两直线平行,同位角相等,得到∠1=∠3.因为∠1=110º,所以∠3 =110º.(3)从∠1=110º可以知道∠4是多少度吗?为什么?答:∠4=70º.因为AB ∥CD , ∠1和∠4是同旁内角,根据两直线平行,同旁内角互补,得到∠1+∠4=180º.因为∠1=110º,所以∠4=70º五、达标测评:1、测评习题:例2 如图,已知AB ∥CD ,AE ∥CF ,∠A= 39°, ∠C 是多少度?为什么?方法一解:∵AB ∥CD ,∴ ∠C=∠1.∵ AE ∥CF , ∴ ∠A=∠1.∴ ∠C=∠A . ∵∠A = 39º, ∴∠C = 39º.方法二 解:∵AB ∥CD , ∴ ∠C=∠2.∵ AE ∥CF , ∴ ∠A=∠2. ∴ ∠C=∠A .∵∠A = 39º, ∴∠C = 39º.2、课堂小结:(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题? 板书设计:5.3 平行线的性质5.3.1平行线的性质(第一课时)性质1 两条平行线被第三条直线 所截,同位角相等.性质2 两条平行线被第三条直线 所截,内错角相等.性质3 两条平行线被第三条直线 所截,同旁内角互补.布置作业:教科书 习题5.3 第2、4、6题教学反思:G F ED C BA G F E D CB A 2 1。
5.3 平行线的性质(第1课时)(学生独立回忆,思考并回答问题。
)【承上启下。
】2、师:反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这就是我们这节课要探究的问题。
二、探究合作交流一1、画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:(学生自学,独立思考并回答问题)角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数2、观察、猜想两条直线被第三条直线截得的同位角有什么关系?生回答可以用度量的方法或剪切的方法来验证。
(多媒体展示)3、如果改变截线的位置,你发现的结论还成立吗?(学生分组讨论,观察、思考问题)4、如果两直线不平行,上述结论还成立吗?变式1:已知条件不变,求∠3,∠4的度数? 变式2:已知∠3 =∠4,∠1=47°,求∠2的度数? 四、走进生活1如图,是一块梯形铁片的残余部分,量∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度? 【让学生独立思考,同时,通过实例,培养学生分 析问题的能力,让学生从具体的实例中发现数学问题 ,使学生懂得数学来源于实际生活,服务于实际生活。
】五、巩固提升 六、总结升华、反思提升1.回顾本节课学习的主要内容,填写下表:2.运用平行线性质的前提条件是什么?3.本节课涉及的数学思想方法有哪些?4.本节课的学习,你还有哪些收获或疑惑? 归纳:性质:线的关系←角的关系判定:角的关系→线的关系【学生对本节课进行知识梳理,巩固教学目标。
】A BCD七、板书设计:5.3平行线的性质(第1课时)。
《平行线的性质》(第一课时教案)教学目标:1、理解平行线的性质,掌握他们的图形语言、文字语言、符号语言,并灵活的进行实际应用。
2、经历观察、实验、猜想、验证等数学活动,培养他们分析问题和解决问题的能力。
3、体会几何知识来源于实践并反作用于实践,认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
重点:理解并应用平行线的性质。
难点:探究平行线的性质。
一、复习回顾、引入新课问题:我们学过判定两条直线平行的方法有哪些?如果将判定方法中的结论做为条件,是否能够得到判定方法中的已知。
二、合作交流、探索新知问题1:在自己的横格作业本上选择任意两条线作为平行线,再用铅笔任意画一条这组平行线的截线,选择其中一组同位角,猜想它们的关系如何?验证你的猜想。
问题2:同问题1,选择一组内错角,猜想两个角在数量上有什么关系?除了可以用测量的方法,能否给出理论证明?问题3:根据问题1、2,你能说出两条平行线被第三条直线所截,同旁内角有什么关系吗?能否给出理论证明?归纳新知:平行线性质定理:(1)两条平行线被第三条直线所截,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
简单的说成:(1)(2)(3)问题4:如图,直线a、b被直线c所截,在括号内为下面各小题填空:(1)性质1: a 1∵a//b ∴∠1=∠243(两直线平行,同位角相等) b2(2)性质2:∵a//b ∴∠ =∠(两直线平行,内错角相等)(3)性质3:∵a//b ∴∠ +∠=()三、拓展应用:例1:如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?(图见课本)练习1、如图,直线a//b,∠1=54°,那么∠2,∠3,∠4各是多少度?练习2、如图,∠ADE=∠ABC,若∠AED=42°,则∠B=_____,∠C=_______.四、本课小结,作业布置:1、本节课收获:由学生进行总结,其他同学帮忙补充2、对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决。
人教版数学七年级下册第7课时《平行线的性质(一)》教学设计一. 教材分析《平行线的性质(一)》是人教版数学七年级下册的一个重要内容,主要让学生了解和掌握平行线的性质。
本节课的内容包括平行线的性质、平行线的判定以及平行线的应用。
教材通过生活中的实例引入平行线的概念,然后引导学生探究平行线的性质,最后通过练习题来巩固所学知识。
二. 学情分析七年级的学生已经学习了直线、射线、线段等基本概念,对图形的认知有一定的基础。
但是,对于平行线的性质和判定,学生可能还没有直观的认识。
因此,在教学过程中,教师需要通过生动的实例和直观的图形,帮助学生建立平行线的概念,并引导他们发现和总结平行线的性质。
三. 教学目标1.知识与技能:使学生了解平行线的性质,能够运用平行线的性质解决一些实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的科学精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:平行线的判定。
五. 教学方法1.情境教学法:通过生活中的实例引入平行线的概念,让学生在实际情境中感受和理解平行线的性质。
2.启发式教学法:引导学生观察、操作、猜想、验证,激发他们的思维,培养解决问题的能力。
3.小组合作学习:让学生在小组内讨论、交流,共同完成任务,提高合作能力。
六. 教学准备1.准备一些平行线的实例,如楼梯、操场等,用于导入新课。
2.准备一些平行线的图片,用于展示和引导学生发现平行线的性质。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师展示一些生活中的实例,如楼梯、操场等,引导学生观察并提问:“这些图中有什么共同的特点?”学生回答后,教师总结引入平行线的概念。
2.呈现(10分钟)教师展示一些平行线的图片,引导学生观察并提问:“你们能发现平行线之间有什么特殊的关系吗?”学生回答后,教师总结并板书平行线的性质。