实际问题与一元一次方程球赛积分表问题教案人教版
- 格式:doc
- 大小:30.50 KB
- 文档页数:4
人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计一. 教材分析《实际问题与一元一次方程》这一节的内容,主要是让学生学会如何将实际问题转化为数学问题,进而利用一元一次方程来解决问题。
本节课通过球赛积分表问题,让学生了解实际问题中的一元一次方程的运用,培养学生的数学建模能力。
二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,对代数概念有一定的了解。
但学生对于如何将实际问题转化为数学问题,并运用一元一次方程来解决,还比较陌生。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。
2.过程与方法:学生通过解决球赛积分表问题,学会将实际问题转化为数学问题,培养学生的数学建模能力。
3.情感态度与价值观:学生能感受到数学在实际生活中的运用,提高学生学习数学的兴趣。
四. 教学重难点1.教学重点:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。
2.教学难点:学生如何将实际问题转化为数学问题,并找出未知数。
五. 教学方法1.情境教学法:通过球赛积分表问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例教学法:分析球赛积分表问题,让学生了解实际问题中的一元一次方程的运用。
3.小组合作学习:学生在小组内讨论如何解决球赛积分表问题,培养学生的合作能力。
六. 教学准备1.教师准备球赛积分表问题相关案例,以及解决问题的方法。
2.学生准备笔记本,用于记录解题过程。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生思考实际问题与数学问题的关系,激发学生的学习兴趣。
例如:“同学们,你们知道篮球比赛中的积分是如何计算的吗?”2.呈现(10分钟)教师展示球赛积分表问题,让学生观察并找出其中的数学问题。
例如:“请大家看这份球赛积分表,思考如何根据比赛结果计算每个队的积分?”3.操练(10分钟)教师引导学生尝试解决球赛积分表问题,指导学生如何将实际问题转化为数学问题。
义务教育学校课时教案备课时间上课时间:1.你能从表格中看出负一场积多少分吗?负一场积1分2.你能进一步算出胜一场积多少分吗?设:胜一场积 x 分,依题意,得10x+1×4=24解得: x=2所以,胜一场积2分.3.用式子表示总积分与胜、负场数之间的关系.若一个队胜m场,则负(14 – m)场,总积分为: 2m+(14 –m) = m+14。
即胜m场的总积分为 m +14 分4.某队的胜场总积分能等于它的负场总积分吗?设一个队胜x场,则负(14-x)场,依题意得: 2x=14-x解得: x=14/3想一想,x 表示什么量?它可以是分数吗?由此你能得出什么结论?解决实际问题时,要考虑得到的结果是不是符合实际.x的值必须是整数,所以x=14/3不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分。
巩固练习某赛季篮球联赛部分球队积分榜:(1)列式表示积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?解:观察积分榜,从最下面一行可看出,负一场积1分.设胜一场积x分根据表中其他任意一行可以列方程,求出x的值.例如,根据第一行可列方程:18x+1×4=40.由此得出 x=2.用表中其他行可以验证,得出结论:负一场积1分,胜一场积2分.如果一个队胜m场,则负(22-m)场,胜场积分为2m,负场积分为22-m,总积分为 2m+(22-m)=m+22.(2)设一个队胜了x场,则负了(22-x)场,如果这个队的胜场总积分等于负场总积分,则有方程22x-(22-x)=0解得 x=22/3其中,x (胜场)的值必须是整数,所以解不符合实际. 由此可以判定没有哪个队伍的胜场总积分等于负场总积分.三、随堂演练1. 某人在一次篮球比赛中,包括罚球在内共出手22次,命中14球,得28分,除了3个3分球全中外,他还投中了____个2分球和____个罚球.2. 一份试卷共25道题,每道题都给出四个答案,其中只有一个是正确的,要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.(1)如果一个学生得90分,那么他选对几题?(2)现有500名学生参加考试,有得83分的同学吗?解:(1)设他选对x道题,则不选或选错了(25 – x)道题. 由题意列出方程4x - (25 – x) = 90,解得x=23.即他选对了23题.(2)设选对了y道题,则选错了(25 – y)道题.由题意列出方程4y – (25 – y)=83,解得 y=21.6而答对的题数必须为整数,故不合题意舍去,不可能会有得83分的同学.3.下表中记录了一次实验中时间和温度的数据.(1)如果温度的变化是均匀的,21 min时的温度是多少?(2)什么时间的温度是34℃?解:(1)由题意知时间增加5 min,温度升高15℃,所以每增加1 min温度升高3℃.则21 min时的温度为10+21×3 =73(℃)(2)设时间为x min,列方程得3x+10=34,解得x=8.即第8分钟时温度为34℃.四、课堂小结通过这节课的学习,你有什么收获?现在你了解积分表了吗?你会算胜负场数与总积分的关系吗?板书设计2.你能进一步算出胜一场积多少分吗?设:胜一场积 x 分,依题意,得10x+1×4=24解得: x=2所以,胜一场积2分.作业设作业类型作业内容试做时长基础基本性作业(必做)。
3.4 实际问题与一元一次方程第3课时球赛积分表问题教学目标:1.会分析表格中的数据,从数据中找出隐含的条件.2.认识数学与生活的紧密联系、数学题目的形式多样性,培养学生学习数学的兴趣.教学重难点:分析表格数据,找出隐含条件,从而求出题目中的问题.教学过程:一、问题呈现课本P103探究2:1.学生分组讨论以下问题.(1)表格涉及的量中,要表示总积分,还需知道什么量?(2)表格中列出8个球队的积分中,只有一个球队的积分与其他球队的积分组成不同,这是哪一个球队?为什么?(3)如何求胜一场、负一场的积分?(4)用式子表示总积分与胜、负场数之间的数量关系?(5)将以上各数量填入下表:(6)根据以上表格数据解决以下问题:某队的胜场总积分能等于负场总积分吗?某队总积分是19分,该队胜几场?某队的胜场总积分能等于负场总积分的3倍吗?2.小结探究2的解题注意事项:(1)比赛总场次都是14,设胜场为x,则负场为(14-x),根据表格数据求出胜一场、负一场的分数,从而可表示出每个球队的总积分.(2)根据题目问题求出未知数的值后,还要看该未知数的值是否符合实际意义,如比赛场数不能是分数.3.反思:探究2中,用钢铁队的积分情况求出负一场得1分,再用其余任何一个队的积分求出胜一场积分,除了这种方法求负一场、胜一场积分外,如果没有钢铁队的积分,由其它球队的积分如何求胜一场、负一场的积分呢?按这种方法,胜一场、负一场的分都是未知量,可设胜一场得a分,拿前进队来说,如何用含a的式子表示负一场得的分?又以什么为相等关系列出关于a的方程求出a的值?学生分组讨论以上问题.二、巩固练习1.七年级举行篮球赛,比赛场次和各班积分情况如下表:(1)从两个班可以知道平一场比负一场多得分.(2)若胜一场3分,求平一场、负一场各得几分?(3)某班胜场是平场的2倍,积16分,求这个班胜几场.(4)某班平场是负场的2倍,积15分,可能吗?2.分组合作学习:课本P106练习第3题,提出问题:(1)比较七、八年级文艺小组、科技小组的活动次数和两个年级课外小组活动总时间,可以总结出什么结论?(2)九年级课外小组活动时间7h等于什么时间与什么时间的和?(3)设未知数解答.三、课时小结根据表格信息解决实际问题的方法.四、阅读课本课本P103~P104关于探究2的内容.。
实际问题与一元一次方程-赛积分表问题[教学目标]1、学会解决信息图表问题的方法;2、经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义。
[重点难点] 解决信息图表问题是重点;从图表中获取有用的信息是难点。
〔教学方法〕指导探究,合作交流〔教学资源〕小黑板[教学过程]一、问题导入我们都喜欢打篮球,你知道篮球比赛胜一场积多少分,负一场积多少分吗?我们今天就来讨论与球赛积分有关的问题。
(热身题:上学期某校初一级进行班际篮球赛,六个班进行单循环比赛,(即每个班都打5场比赛)实行积分制,胜一场积2分,负一场积1分,获得第一名的初一(2)班共积了9分。
请问初一(2)班共胜了几场球?分析:1、整理信息:找出已知信息和未知信息:初一(2)班共打了___场球,若胜了x场,则负了_______场,共积了__分。
胜一场积____分,胜场共积____分;负一场____分,负场共积_____分。
解:设初一(2)班共胜了x场,则负了(5-x)场。
依题意列方程得:2x+(5-x)=9解方程得:x=4答:初一(2)班共胜了4场球。
)二、例题某次篮球赛积分榜队名比赛场次胜场负场积分前进14 10 4 24东方14 10 4 24光明14 9 5 23蓝天14 9 5 23雄鹰14 7 7 21远大14 7 7 21卫星14 4 10 18钢铁14 0 14 14(1)用式子表示总积分与胜、负场数之间的数量关系;(2)某队的胜场总积分能等于它的负场总积分吗?分析:要解决这个问题,必须求出胜一场积多少分,负一场积多少分。
你能从积分表中看出负一场积多少分吗?从最后一行可以看出负一场积1分。
你能从表中看出求胜一场积分的等量关系吗?由第四行可知,胜场得分+负场得分=23设胜一场得x分,则9x+5×1=23解之,得x= 2用表中的其它行可以验证:负一场得1分,胜一场得2分。
3.4.3 球赛积分表问题(探究3)
教案内容
课本第106页至第107页内容.
教案目标
1.知识与技能
掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力.
2.过程与方法
通过探索球赛积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.
3.情感态度与价值观
鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.
重、难点与关键
1.重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,•还会进行推理判断.
2.难点:把实际问题转化为数学问题.
3.关键:从积分表中,找出等量关系.
教具准备
投影仪.
教案过程
一、引入新课
教师操作投影仪,展示课本第106页中“某次篮球联赛积分榜”.
学生观察积分榜,并思考下列问题:
(1)用式子表示总积分与胜、负场数之间的数量关系;
(2)某队的胜场总积分能等于它的负场总积分吗?
在学生充分思考、合作交流后,教师引导学生分析.
要解决问题(1)必须求出胜一场积几分,负一场积几分,•你能从积分榜中得到负一场积几分吗?你选择其中哪一行最能说明负一场积几分?
通过观察积分榜,从最下面一行数据可以发现,负一场积1分,•那么胜一场积几分呢?
学生可能会用算术方法,从积分榜中任意一行(除最后一行外),例如,从第一行244110
-⨯=2,即胜一场积2分. 你会用方程解吗?
设胜一场积x 分,从表中其他任何一行可以列方程,求出x 的值,例如从第三行得方程.
9x+5×1=23
解方程,得x=2
用表中其他行可以验证,得出结论,负一场积1分,胜一场积2分.
(1)如果一个队胜m场,则负(14-m)场,胜场积分2m,负场积分为14-m,总积分为2m+(14-m)=m+14.
(2)问题(2),学生可能通过计算积分榜中各队的胜场总积分和负场总积分,说明某队的胜场总积分不能等于它的负场总积分.
你能用方程,说明上述结论吗?
如果设一个队胜了x场,则负了(14-x)场,•如果这个队的胜场总积分等于负场总积分,那么列方程为
2x=14-x
由此,得 x=14 3
想一想,x表示什么量?它可以是分数吗?由此你能得出什么结论?
这里x表示一个队所胜的场数,它是一个整数,所以x=14
3
不符合实际意义.•由此
可以判定没有哪个队的胜场总积分等于负场总积分.
这个问题说明:利用方程不仅能求出具体数值,而且还可以进行推理判断,是否存在某种数量关系.
另外,上面问题还说明,用方程解决实际问题时,不仅要注意方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.
拓展延伸
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
我们可以从积分榜中积分不相同的两行数据列方程求得胜、负一场各得几分,例如,从第一、三行.
设胜一场积x分,则前进队胜场积分为10x,负场积分为(24-10x)分,•他负了4
场,所以负一场积分为2410
4
x
-
,同理从第三行得到负一场积分为
239
5
x
-
,从而列方
程为
2410
4x
-
=239
5
x
-
去分母,得5(24-10x)=4(23-9x)
去括号,得120-50x=92-36x
移项,得-50x+36x=92-120
合并同类项,得-14x=-28
x=2
当x=2时,2410
4
x
-
=
24102
4
+⨯
=1
仍然可得出结论:负一场积1分,胜一场积2分.
二、巩固练习
有一些分别标有5,10,15,20,25,…的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数字之和为240.(1)小明拿到了哪3张卡片?
(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?
解:(1)设中间一个数为x,则前面一个数为x-5,后面一个数为x+5,根据这三个数之和为240,列方程(x-5)+x+(x+5)=240,解方程得x=80.
所以小明拿到卡片上的数分别是75,80,85.
(2)设中间一个数为x,则(x-5)+x+(x+5)=63,解方程得x=21.•因为卡片上的数都是5的倍数,所以x=21不符合题意,也就是说,卡片上的数之和是63的3张卡片不存在,所以不能拿到这样的3张卡片.
三、课堂小结
通过本节课的探究活动,使我们更加明白利用一元一次方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义,同时,还可以利用方程对一些问题进行推理判断.
四、作业布置
1.课本第108页习题3.4第8、9题.
2.选用课时作业设计.
第三课时作业设计
解答题:
1.某城市按以下规定收取每月煤气费;用煤气如果不超过60立方M,按每立方M0.8元收费;如果超过60立方M,超过部分按每立方M1.2元收费,已知某用户10•月份的煤气费平均每立方M0.88元,求该用户10月份应交的煤气费是多少元?
2.某工程甲、乙合作6天完成,甲一人做需要5天完成,问乙一人做需几天完成?•这是小明给小华出的一道题,可小华说:“这道题有错,不能做”.你说呢?
3.甲每天制造零件3个,乙每天制造零件4个,甲已做4个零件,乙已知10个零件,•问几天以后,两人所做的零件个数相等?
4.观察每个月的日历,一个竖列上相邻的3个数之间有什么关系?
(1)如果设其中的一个数为x,那么其他两个数怎样表示?
(2)根据你所设的未知数x,列出方程,求出这3天分别是几号?
(3)如果小颖说出的和是60,小明能求出这3天分别是几号吗?为什么?
(4)如果小颖说出的和是21,小明能求出这3天分别是几号吗?为什么?
答案:
1.66元,设该用户10月份用煤气超过标准x立方M,则60×0.8+1.2x=0.88(60+x),x=15,0.88(60+15)=66.
2.设乙独做x天能完成,则(11
65
)x=1,x=-30(天),•不符合实际,无解.
3.设x天以后两人所做的件数相等,则3x+6=4x+10,x=-4,不符合题意,•无解.4.(1)略(2)x-7,x+7
(3)(x-7)+x+(x+7)=60,x=20,这三天分别为13号,20号,27号
(4)略.。