固定化酶反应器总结
- 格式:pdf
- 大小:60.57 KB
- 文档页数:1
固定化酶反应器的研究与进展班级:姓名:学号:摘要:以生物催化剂进行生物反应的场所为酶反应器。
根据酶催化剂类别的不同,酶反应器可分为游离酶反应器,即均相酶反应器;另一类是应用固定化酶进行的非均相酶反应器,即固定化酶反应器。
游离酶由于稳定性差及不能回收重复利用而在工业应用中受到限制。
酶固定化可以通过提高酶的结构稳定性,实现酶的回收利用而克服上述问题。
然而,酶的固定化过程可能会引起酶构像的变化导致酶活的少量损失。
因此,在固定化过程中,应根据酶的自身特性及其应用目的来选择合适的固定化方法和载体,以尽量减少酶的活力损失。
关键词:固定化酶反应器,固定化酶方法,新型固定化酶反应器1.前言酶作为一种生物大分子催化剂在生物化学领域被广泛地研究和应用。
酶具有催化条件温和、高效的区域选择性和化学选择性、应用设备相对简单且易于控制,能源消耗较低、环境污染少等显著优势。
目前,酶己被广泛应用于医药、食品生产、化工和农业等领域。
酶的固定化技术就是通过物理或化学方法将酶束缚在一定区间内制成仍具有催化活性的酶的衍生物。
该方法有效克服了传统溶液酶方法稳定性差、难以重复利用等缺点。
因此,该技术在医药、生物、食品领域有着广泛的应用。
而在该项技术的实施过程中,载体材料的结构与性能对固定化效率,酶活性的保持起着重要的作用。
2.固定化酶的方法根据酶与载体的结合方式不同,可将固定化方法分为五种:包埋法、吸附法、共价连结法和交联法。
2.1包埋法包埋法是通过共价键或者非共价键将酶包裹在凝胶或纤维中的一种方法。
如Shen[1]等采用海藻酸-明胶-氢化钙三元体系包埋β-半乳糖苷酶,不仅有效地防止酶的渗出,同时很好地提高了酶的化学稳定性。
此法的优点就在于可以防止酶渗出,但对大分子底物的应用具有局限性。
2.2 吸附法吸附法是通过载体表面与酶分子间的一些次级键(如氢键、疏水作用)的相互作用制备固定化酶的方法。
如Cabrera-Padilla[2]等利用可降解的聚(羟基丁酸-羟基戊酸)吸附固定褶皱酵母假丝脂肪酶(Candida rugosa lipase),结果表明,在50℃条件下,4 h 后,酶活还有94%,同时循环利用次数达到12 次以上。
第一章酶学概论1.酶:具有生物催化功能的生物大分子。
2.酶工程:酶的生产、改性与应用的技术过程。
3.酶活力(enzyme activity):指在一定条件下,酶所催化的反应初速度。
4.酶活力单位(IU):在特定条件下(温度可采用25℃,pH值等条件均采用最适条件),每1min催化1µmol的底物转化为产物的酶量定义为一个酶活力单位,这个单位称为国际单位(IU)5.酶转换数Kp:又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
即每摩尔酶每分钟催化底物转化为产物的摩尔数,是酶催化效率的一个指标。
6.酶的催化周期:转换数的倒数,即催化周期是指酶进行一次催化所需的时间,单位为毫秒(ms)或微秒(µs)。
7.酶结合效率:又称为酶的固定化效率,是指酶与载体结合的百分率。
酶结合效率的计算一般由固定化的总活力减去未结合的酶活力所得到的差值,再除以用于固定化的总酶活力而得到。
8.酶活力回收率:指固定化酶的总活力与用于固定化的总酶活力的百分率。
9.相对酶活力:具有相同酶蛋白(或酶RNA)量的固定化酶活力与游离酶活力的比值。
10.核酸酶(ribozyme):具有催化活性的RNA。
抗体酶(Abzyme):具有催化活力的抗体。
11.组成型酶:有的酶在细胞中的量比较恒定,环境因素对这些酶的合成速度影响不大,如DNA/RNA聚合酶。
12.适应型酶/调节性酶:有的酶在细胞内的含量变化很大,其合成速度明显受到环境因素的影响,如β-半乳糖苷酶13.模拟酶:又称人工合成酶或酶模型,是指根据酶的作用原理,用人工合成的具有活性中心和催化作用的非蛋白质结构的化合物。
14.酶催化作用的特点:1.酶催化作用的专一性强(相对/绝对专一性) 2.酶催化作用的效率高3.酶催化作用的条件温和 4.酶活性受到调节和控制15.影响酶催化作用的因素:1.底物浓度的影响2.酶浓度的影响3.产物浓度的影响4.温度的影响5.pH值的影响6.抑制剂的影响7.激活剂的影响16.酶生物合成的调节:1、分解代谢物阻遏作用2、酶生物合成的诱导作用3、酶生物合成的反馈阻遏作用17. 从如下实验方法和结果分析酶生物合成的调节作用。
包埋法固定化酶:将酶包在凝胶微小格子内,或是将酶包裹在半透性聚合物膜内的固定化方法。
微生物消耗比率:单位时间内菌体对培养基的消耗率.细胞回流的单级恒化器:在反应器的出口处安装细胞分离器,分离出一部分细胞进行浓缩后打回到反应器中的单级恒化器.微生物的生长速率:单位时间内单位体积发酵液中菌体的增量。
反复分批补料培养法:在间歇培养的基础上,流加一种或几种底物或前体物进行培养,培养结束时不取出全部的发酵液,留下一部分发酵液作为种子,然后开始下一个补料培养过程的发酵方法。
氧的满足度:溶解氧浓度与临界溶氧浓度之比。
活塞流模型(PF):在反应器内与流体流向相垂直的横截面上的流速分布是均一的,即不存在返混。
活活塞流反应器:完全不存在返混的理想反应器/CSTR反应器:混合足够强烈,达到完全返混的理想反应器稀释率:培养基体积流北与培养液体积之比传氧速率:每单位界面上每小时的传氧量连续式全混流型反应器(CFSTR):反应器内的返混足够强烈,因而反应器内物料的浓度处处相等,如果温度均一,反应速度也处处相等不随时间而变。
多级全混流釜模型(CFSTR-in-series)高径比不大,搅拌不充分的一个反应器,可以想象内部既有全混流成分,又存在活塞流成分。
等效N个CFSTR串连。
扩散模型(Dispersion model):高径比较大的反应器如短管或塔式反应器内的流体流动具不大的返混(活塞流和轴向扩散的叠加)阻截:细菌质量小,,紧随空气流地流线而向前运动,当空气流线中所挟带地微粒由于和纤维相接触而被捕集称为阻截。
扩散:微小的颗粒受到空气分子的碰撞,发生布朗运动,由于布朗运动,颗粒与介质碰撞而被捕集称为扩散。
用数学模型定量描述生物反应过程各种环境因素与微生物代谢活动地相互作用随时间而变化地规律。
为生物反应过程的控制,小型试验数据的放大,提高反应过程的产物的提纯等提供理论依据。
比拟缩小:将现有的生产规模发酵罐比拟缩小至试验实规模。
酶工程固定化酶(3.5.2)--固定化酶反应器、固定化酶应用1、分子蒸馏是一种真空下操作的蒸馏方法,任何温度,只要冷热表面存在温度差,反应即可发生()2、单体酶由一条肽链组成,一般不含酶的四级结构。
()3、用0.5-2.0 nm长的双功能交联剂固定酶分子上的两个基团,能交联上说明距离在此范围内反之不能判断。
()4、抑制作用的主要特点是由于酶分子合成数量减少而降低酶催化速度。
()5、自杀底物只可以作用于酶活性中心不可以作用于辅基。
()6、酶反应器应用中完全反混和不反混都是理性的液态流动方式。
()7、原生质体制备中对酵母菌常用β葡聚糖酶,因为其细胞壁中有葡聚糖()8、在有机溶剂中,酶活性中心和数量都保持完整时,才可以进行酶催化反应()9、当生物传感器中有O2产生时常用 Pt电极。
()10、有机相酶反应中亲水性底物常选择疏水性强溶剂。
()11、DNA 核酶依赖Mg2+,表明酶的折叠活性形式中可能有G-四联体存在。
()12、在相同反应条件下,反胶束随水和表面活性剂同比增大,尺寸不变,数量增多。
()13、logP能直接反应溶剂的疏水性,logP越高酶活性越大。
()14、生物拆分法实质是两个对映体竞争酶一个活性中心,当异构体大基团与活性中心大口袋结合,则产生快反应。
()15、酶修饰反应在一定盐浓度下进行,为了使蛋白质分子充分伸展,以便所有残基暴露出来()16、酶修饰中的烷基化反应使用试剂需带活泼的卤素原子,可以和亲电基团反应()17、酶化学修饰不能修饰形成次级键的基团。
()18、乳糖合成酶在体内的调节作用属于限制性蛋白水解作用. ( )19、胰蛋白酶由于在它底物-结合部位氨基酸带正电荷,因此可切断带负电荷的氨基酸残基. ( )20、酶化学修饰后抗原性肯定增强. ( )21、可以利用反应平衡常数来判断抑制剂的效应 ( )22、通过设计脑中r-氨基丁酸转移酶的自杀底物可以使人脑中r-氨基丁酸量减少,达到治疗癫痫的目的. ( )23、包埋法只适用于小分子底物,因此固定化后底物的专一性要发生改变.( )24、吸附法固定化酶一般在等电点时的吸附量最大. ( )25、重氮化法载体要提供芳香族氨基,而叠氮法载体要提供羧基, ( )26、利用溴化氰法固定化酶需要在高pH(pH 11左右)进行,因此洗涤固定化酶也需要在 pH 11条件下进行。
固定化酶催化反应器的设计与制备随着现代工业的发展,化学反应技术的发展也日新月异。
而其中的一种方法——催化反应技术,正日益被广泛应用于各种领域,比如生产中的石油、塑料等。
而酶催化反应是催化反应技术中的一种,由于其具有速度快、选择性好等优点,因此被广泛用于药物、生物、食品等领域。
但是,由于酶催化反应体系不稳定,易受环境因素的影响,因此常规的酶催化反应不能满足实际应用的需求。
为了克服这个问题,研究人员设计并制备了固定化酶催化反应器,以提高酶的稳定性和催化能力,从而实现酶催化反应的可持续发展。
本文将介绍固定化酶催化反应器的设计与制备。
一、固定化酶及其优势固定化酶是将酶固定在载体上,并利用化学或物理方法将酶永久性地固定在载体上的一种方法。
随着固定化酶技术的发展,越来越多的研究证明,固定化酶的具有以下优势:1. 提高酶稳定性和催化能力通常情况下,自由酶催化不稳定、失活等问题常常影响酶催化反应的效率,而固定化酶可以通过载体的微环境和共存物质来提高酶的稳定性和催化能力。
2. 重复使用和再利用的能力如今由于亚太地区的经济增长以及城市化进程加快等进程,环境污染问题显得越加突出,而固定化酶可以实现重复使用,从而减少了对环境的污染,并且减少生产成本。
3. 具有某些独特优势由于固定化酶可以变成几乎任何形状的颗粒、毛细管、膜等,因此可以应用到各种系统和过程中。
二、固定化酶催化反应器的设计固定化酶催化反应器的设计通常需要考虑以下几个方面:1. 固定化酶的选择和制备首先,需要选择适合的酶和载体,并对这两者进行固定化。
载体需要具有合适的呈色以及空间结构来保持酶的活性,同时要考虑载体的质量,因为质量差的载体往往会导致酶催化反应活性降低。
对于不同类型的酶,需要选择不同的固定化方法和载体。
2. 反应器的类型和形式反应器的类型和形式要根据所需要催化反应的条件和工艺要求来选择。
常用的固定化酶反应器类型包括固定化床反应器、滴流床反应器、流动反应器和快速氧化反应器等。
固定化酶反应器类型及其适用对象
酶反应器类型 酶反应器适用对象
间歇式搅拌釜反应器 适用于游离酶
连续式搅拌釜反应器 ?
填充床酶反应器 它适用于各种形状的固定化酶和不含固体颗粒、黏度不大的底物溶液,
以及有产物抑制的转化反应。
流化床酶反应器 处理黏度较大和含有固体颗粒的底物溶度,同时,亦可用于需要供气体
或排放气体的酶反应(即固、液、气三相反应)
膜反应器 可以用于游离酶的催化反应,也可以用于固定化酶的催化反应
连续搅拌罐-膜反应器 该反应器适用于颗粒较细的固定化酶、游离酶和细胞以及小分子产物与
大分子底物。