小电流接地系统单相接地、断线分析
- 格式:ppt
- 大小:391.00 KB
- 文档页数:21
小电流接地系统单相接地故障分析小电流系统单相接地时的运行状态,其不同于正常运行状态的信息主要有2点:故障线路流过的零序电流是全系统的电容电流减去自身的电容电流,而非故障线路流过的零序电流仅仅是该线路的电容电流。
故障线路的零序电流是从线路流向母线,而非故障线路的零序电流是从母线流向线路,两者方向相反,或者说两者反相。
从小电流系统单相接地时与正常运行时,状态信息的不同看,故障线路的判定好像特别简单,然而事实并非如此,其缘由主要有以下四点:1、电流信号太小小电流系统单相接地时产生的零序电流是系统电容电流,其大小与系统规模大小和线路类型(电缆或架空线)有关,数值甚小,经中性点接入消弧线圈补偿后,其数值更小,且消弧线圈的补偿状态(过补偿、欠补偿、完全补偿)不同,接地基波电容电流的特点与无消弧线圈补偿时相反或相同,对于有消弧线圈的小电流系统采纳5次谐波电流或零序电流有功功率方向检测,而5次谐波电流比零序电流又要小20~50倍。
2、干扰大、信噪比小小电流系统中的干扰主要包括2方面:一是在变电站和发电厂的小电流系统单相接地爱护装置的装设地点,电磁干扰大;二是由于负荷电流不平衡造成的零序电流和谐波电流较大,特殊是当系统较小,对地电容电流较小时,接地回路的零序电流和谐波电流甚至小于非接地回路的对应电流。
3、随机因素影响的不确定我国配电网一般都是小电流系统,其运行方式转变频繁,造成变电站出线的长度和数量频繁转变,其电容电流和谐波电流也频繁转变;此外,母线电压水平的凹凸,负荷电流的大小总在不断地变化;故障点的接地电阻不确定等等。
这些都造成了零序故障电容电流和零序谐波电流的不稳定。
4、电容电流波形的不稳定小电流系统的单相接地故障,经常是间歇性的不稳定弧光接地,因而电容电流波形不稳定,对应的谐波电流大小随时在变化。
小电流接地系统中发生单相接地,虽然对供电不受影响,但因非故障相对地电压升高到线电压,可能引起对地绝缘击穿而造成相间短路。
故发生单相接地后,不答应长期带接地运行,为此必须装设专用仪表来监视对地绝缘状况。
我国目前在中性点不接地系统中,广泛采用检测接地故障的方法之一是利用母线绝缘监察装置发现接地故障。
当系统发生单相接地故障时,接在母线上的电压互感器开口三角接线两端的监察继电器动作,控制室内发出接地信号。
运行人员利用重合闸装置将线路依次断开,当断开故障线路时,接地故障信号瞬间消失。
而假如电压互感器接线错误,如开口三角两端的端子接反、开口三角绕组中有一相或两相绕组的极性接反,就会造成三相电压表指示错误,无法判定故障相别,或者在电网没有接地的情况下误发接地信号,这无疑会给运行人员分析、判定和处理接地故障带来麻烦。
本文就电压互感器的两种常见接线错误进行分析。
1交流绝缘监视装置接线正确的情况母线电压互感器由三台具有两组二次绕组的单相电压互感器组成,或是一台具有两组二次绕组的三相五柱式电压互感器。
电压互感器原边中性点接地,以10kV电压等级的电网为例,正常时每相绕组加相对地电压,故副边星形每相绕组电压是100V,开口三角形每相绕组电压是100/31/2V。
绝缘监视电压表指示正常的相对地电压,绝缘监视继电器处于不动作状态。
当一次系统中A相发生接地时,原边A相绕组电压降到零,其他两相绕组的电压升高到线电压。
副边星形绕组的A相绕组电压降到零,其他两相绕组电压升高到100V。
三个电压表中,A相电压指示零,另两相指示线电压,由此得知一次系统A相接地。
副边开口三角形的A相绕组电压降到零,其他两相绕组电压升高到100/31/2V,开口三角形两端电压升高到100V。
加在电压继电器上的电压升高到100V,继电器动作发出信号。
2电压互感器开口三角两端的端子接反三相五柱式电压互感器,二次绕组星形接线的中性点有单独的引出端子,设为N端,该端子接地。
小电流接地系统接地故障特征分析小电流接地系统接地故障特征分析小电流接地系统是现代输电系统中一种重要的保护措施,用于限制电网发生接地故障时对系统和用户的影响和损失,提高电网的可靠性和安全性。
但是,在小电流接地系统运行中,难免会发生接地故障,给系统带来不良影响。
因此,对小电流接地系统接地故障特征进行分析,有助于及时发现和处理故障,保证系统的可靠运行和用户的安全用电。
一、小电流接地系统的基本原理小电流接地系统是通过一定的电路装置和保护措施,将接地故障电流限制在很小的范围内,从而保证系统的安全稳定运行。
小电流接地系统通过引入中性点电感器,将出现故障时的接地电流转化为电压信号,经过灵敏地电流互感器和控制器的监测和控制,控制开关从母线中间引出接地电流,并将接地故障电流限制在安全范围内。
二、小电流接地系统接地故障的类型小电流接地系统的故障类型主要有以下几种:1. 单相接地故障:发生单相接地故障时,系统将出现高电压跳闸和过电压;2. 两相接地故障:发生两相接地故障时,电网将出现三相短路电流,电网振荡频率将增大;3. 地间故障:地间故障是指通过地面传递的两相接地故障,会导致电网起伏不定,电网波动,对系统的影响很大;4. 跨越接地故障:跨越接地故障是指线路跨越水域时,水中的导体发生故障导致故障电流通过地面传递时,会对系统带来很大影响。
三、小电流接地系统接地故障特征分析小电流接地系统的接地故障特征主要包括以下几个方面:1. 接地电流的突变:当系统发生接地故障时,接地电流会突然增大,从而引起系统保护动作,产生抢扫现象;2. 中性点电压变化:接地故障会导致中性点电压的变化,如果系统存在悬垂中性点,则可能会引起电压失调;3. 接地微短暂:接地故障微短暂,持续时间一般在毫秒到几十毫秒,往往会被系统快速检测器检测出来;4. 接地电流的波形:接地故障电流一般呈现半波周期,且在接触器和断路器开关时间内,电流的周期变化很明显;5. 接地电阻阻值特征:接地故障电阻的阻值变化会对接地电流的大小产生影响,因此对变化的电阻阻值进行监测有助于快速发现故障。
小电流接地系统是农网的主要组成部分,而接地故障、铁磁谐振、PT断线、线路断线是小电流接地电网中的常见故障,需要人工排除。
发生上述故障时,它们有一个共同特点,就是发接地信号(输电线路专指单电源单回线)。
对于接地与谐振,在一些书籍和规程中说的较具体,大家比较熟悉。
但在发接地信号时,一些运行职员对PT回路是否正常轻易忽视,特别是对输电线路断线时的特征不了解,往往误判定为接地故障,造成不必要的接地选择停电,并且拖延事故处理的时间。
为此,有必要对后两种故障进行计算分析,并对各故障的特点进行比较。
1 故障时的电压计算分析1.1PT故障时的电压计算分析正常时,由于3U0取自PT的变比为//,因此PT开口三角所属三绕组电压Ua=Ub=Uc=100/3V,(1)开口三角绕组接反一相(c相)接反时,3=-2c,即3U0=66.7V;两相(b、c)接反时,30=a-b-c=2a,即3U0=66.7V。
(2)二次中性线断线二次中性线断线时,由于各相二次负载相同,二次三相电压不变,指示为Ua=Ub=Uc=100/=57.7V;当一次系统发生单相接地时,由于二次三相电压所构成的电压三角形Δabc为等边三角形,相同的各相二次负载所产生的三相对称电压在二次中性线断口形成57.7V的断口电压,因此二次三相电压仍不变,指示为57.7V,但开口三角电压为100V。
(3)一次一相(两相)断线由于PT二次相间和各相均有负载,其负载阻抗所形成电路决定断相电压,以及三相磁路系统的影响,断相电压不为0,但要降低,其它相电压正常。
图1单电源单回线断线运行一相(C相)断线时,30=a+b=-c,即3U0=33.3V;两相(B、C)断线时,30=a,即30=a。
(4)二次一相(两相)断线由于无磁路系统的影响,断相电压比一次断线时要低,其他相正常。
1.2线路断线时的电压计算分析(1)单电源单回线路一相断线在图1所示系统中,M及N侧主变中性点不接地或通过消弧线圈接地,当线路MN发生A相断线时的边界条件为:A=0;B+C=0;ΔB=0;ΔC=0将上述条件用对称分量表示:A=A1+A2+0=0B+C=α2A1+αA2+0+αA1+α2A2+0=-(A1+A2)+20=0因此A1=-A2;0=0而ΔA1=(ΔA+αΔB+α2ΔC)/3=ΔA/3ΔA2=(ΔA+α2ΔB+αΔC)/3=ΔA/3Δ0=(ΔA+ΔB+ΔC)/3=ΔA/3根据上述对称分量边界条件,可得复合序网如图2所示。
小电流接地系统单相接地故障的判断与处理一、概述小电流接地系统是指电力系统中采用特殊的接地方式,将系统接地电流限制在很小的范围内(小于1A),以减小绝缘击穿发生的可能性,提高系统的安全性和可靠性。
但是,在小电流接地系统中,由于接地电流很小,一旦发生单相接地故障,会很难被及时发现和定位,给系统运行带来极大的风险。
因此,本文将探讨小电流接地系统单相接地故障的判断与处理方法。
二、小电流接地系统单相接地故障的原因小电流接地系统单相接地故障的原因主要有以下几种:1. 电缆终端缺陷:当电缆终端出现绝缘缺陷时,会导致单相接地故障。
2. 外界短路电流影响:电力系统中,当出现接地故障时,会产生一定的短路电流,使得系统的地电位发生变化,从而影响到小电流接地系统的正常运行。
3. 土壤湿度不足:小电流接地系统是通过地下金属接地网与土壤接触实现接地的,如果土壤湿度不足,将会产生一定的接地电阻,从而影响系统的接地效果,导致单相接地故障的出现。
三、小电流接地系统单相接地故障的判断方法小电流接地系统单相接地故障的判断方法主要有以下几种:1. 就地巡检:一些单相接地故障可以通过就地巡检来进行判断,例如观察接地网是否存在绝缘A故障、接地电阻是否增大等。
2. 压缩信号分析法:通过对小电流接地系统压缩信号进行分析,可以判断出故障点的位置,从而快速定位单相接地故障。
3. 采用低频模拟故障信号:通过向小电流接地系统注入低频模拟故障信号,可以判断出故障点的位置,即可由故障点所在的位置判断出单相接地故障的具体位置。
四、小电流接地系统单相接地故障的处理方法小电流接地系统单相接地故障的处理方法应根据具体情况而定,但一般可以采用以下方法:1. 找到故障点所在的位置:通过采用上述的判断方法,可以找到单相接地故障的具体位置。
2. 对故障线路进行隔离:为了避免故障扩大,需要对故障线路进行隔离,防止故障扩散。
3. 更换有关部件:更换故障件是解决单相接地故障的最终方法,一旦故障件被更换,接地系统将重新正常运行。
小电流接地系统单相接地故障分析及选线研究小电流接地系统是一种常用的电气系统,其中使用单相接地故障分析和选线研究是非常重要的。
接下来我们将对小电流接地系统单相接地故障分析及选线研究进行详细探讨。
一、小电流接地系统概述小电流接地系统是一种电气系统,用于在电气设备接地故障时限制接地电流,减小接地故障影响范围,保障电网安全运行。
小电流接地系统具有阻抗较低、接地电阻较小的特点,是一种有效的接地保护方式。
对于小电流接地系统单相接地故障分析及选线研究具有重要意义。
二、单相接地故障分析单相接地故障是指电气设备的一个相与地接触,形成接地故障。
在小电流接地系统中,单相接地故障可能引起接地电流过大,影响电网运行。
对于单相接地故障的分析非常重要。
1. 接地故障的类型单相接地故障主要分为两种类型,即单相对地短路和单相对地开路。
单相对地短路是指设备的一个相与地之间产生短路,导致接地电流增大;而单相对地开路是指设备的一个相与地之间出现开路,接地电流无法形成闭合电路。
针对单相接地故障,有多种分析方法可供选择。
常用的方法包括瞬时对称分量法、瞬时对称分量法、零序电流法等。
这些方法可以帮助工程师快速准确地确定接地故障的类型和位置,为后续的接地电流限制和接地保护提供重要依据。
三、选线研究在小电流接地系统中,选线研究是指对接地导线的选择和布置进行优化,以满足接地电流的要求。
选线研究的目标是最大程度地减小接地电阻,提高系统的接地性能。
1. 接地导线材料的选择接地导线材料的选择是非常重要的一步。
常用的接地导线材料包括铜、铝、镀锌钢等,它们具有不同的导电性能和耐腐蚀性能。
根据实际情况选择合适的接地导线材料,可以有效提高接地系统的性能。
接地导线的布置也是选线研究中的关键问题。
合理的布置可以减小接地电阻,提高接地效果。
在实际工程中,可以采用平行布置、网状布置、辐射布置等多种方式,根据具体工程条件选择最优布置方案。
四、结论小电流接地系统单相接地故障分析及选线研究是非常重要的。
小电流接地系统单相接地故障处理引言小电流接地系统作为一种常见的电力系统接地形式,具有保护设备和人身安全的重要作用。
然而,单相接地故障是小电流接地系统常见的故障之一。
本文将介绍小电流接地系统单相接地故障的处理方法。
了解单相接地故障在小电流接地系统中,单相接地故障是指系统中某一相导体与地之间发生接地故障,导致相对于地的电压变化。
单相接地故障具有以下特点: - 只有一相导体与地接触,除此之外的其他导体与地之间没有接触; - 接地故障点与接地系统之间存在较高的电阻连接; - 出现单相接地故障后,系统中将会出现地故障电流。
单相接地故障的检测在处理单相接地故障之前,首先需要进行故障的检测,以确定接地故障的具体位置。
常用的单相接地故障检测方法包括以下几种:1. 使用继电器保护继电器保护是一种常见的故障检测方法。
通过监测电流和电压的变化,继电器保护可以判断是否存在单相接地故障,并给出故障位置的指示。
2. 使用故障录波仪故障录波仪可以记录系统中的电流和电压波形,通过对波形进行分析,可以判断是否存在单相接地故障,并确定故障位置。
3. 使用红外热像仪红外热像仪可以检测设备和线路的温度变化,如果某一设备或线路的温度异常升高,可能意味着存在单相接地故障。
单相接地故障的处理方法一旦确定了单相接地故障的存在及其位置,就需要采取相应的处理措施来解决问题。
以下是一些常见的单相接地故障处理方法:1. 进行接地点检查首先需要对接地点进行检查,确保接地电阻正常,没有松动或断开的情况。
如果接地电阻异常,应及时修复或更换。
2. 寻找故障点通过继电器保护、故障录波仪或红外热像仪等方法,确定单相接地故障的具体位置。
然后可以通过巡视、测量和检查相关线路设备来找到故障点。
3. 修复或更换故障设备或线路一旦找到故障设备或线路,应及时修复或更换。
修复方法包括绝缘处理、焊接、更换零部件等。
4. 进行系统测试在处理了单相接地故障后,还需要进行系统的测试,确保故障已经被解决,并且系统能够正常运行。