透射电子显微镜的结构及成像
- 格式:doc
- 大小:269.18 KB
- 文档页数:6
透射电镜实验报告透射电子显微镜透射电子显微镜简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。
散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。
通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2µm、光学显微镜下无法看清的结构,又称“亚显微结构”。
成像原理透射电子显微镜的成像原理可分为三种情况:吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。
样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。
早期的透射电子显微镜都是基于这种原理。
衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。
相位像:当样品薄至100Å以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。
组件电子枪:发射电子,由阴极、栅极、阳极组成。
阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。
聚光镜:将电子束聚集,可用已控制照明强度和孔径角。
样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热、冷却等设备。
物镜:为放大率很高的短距透镜,作用是放大电子像。
物镜是决定透射电子显微镜分辨能力和成像质量的关键。
中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。
通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。
透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。
此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。
透射电子显微镜结构包括两大部分:主体部分为照明系统、成像系统和观察照相室;辅助部分为真空系统和电气系统。
透射电镜结构原理及明暗场成像透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察物质微观结构的仪器。
与光学显微镜相比,透射电镜具有更高的分辨率和更强的放大能力。
其结构原理主要包括电子源、透射电子束、样品与透射电镜之间的相互作用、透射电镜成像系统。
1.电子源:透射电子显微镜主要使用热电子发射阴极作为电子源。
通常使用钨丝发射、氧化物表面发射或冷钨阴极等方式来产生电子束。
2.透射电子束:电子源发射出的电子经过一系列的电子光学透镜系统进行聚焦和调节,形成一束准直的电子束。
透射电子束的能量通常为几千伏到几十万伏之间,能量越高,穿透力越强。
3.样品与透射电镜之间的相互作用:透射电子束通过样品后,会与样品中的原子和分子发生相互作用。
这些相互作用包括散射、散射衍射和吸收。
这些相互作用使得电子束的方向、速度、能量等发生变化。
透射电子显微镜中的明暗场成像原理如下:1.明场成像:在明场条件下,样品中的透射电子束被物镜聚焦,形成一个清晰的像。
物体的亮度取决于电子束的强度,在没有样品的地方透射电子束强度最大,物体越厚,透射强度就越小,呈现出亮度变暗的效果。
明场成像适合于观察形貌和表面特性。
2.暗场成像:在暗场条件下,样品被遮挡住一部分区域,只有经过遮挡区域的电子束能够通过。
这样,只有经过散射才能把电子束引入投影镜,通过暗场的形成,呈现出样品的内部结构。
暗场成像适合于观察晶体缺陷、界面反应等。
总之,透射电子显微镜利用电子束的穿透性质,通过样品与电子束的相互作用以及透射电镜的光学系统,实现了对物质微观结构的高分辨率观察。
明暗场成像原理使得我们可以观察到不同结构和特性的样品的不同信息。
TEM透射电子显微镜的成像原理TEM(Transmission Electron Microscopy)是一种高分辨率的显微镜技术,主要用于研究材料的微观结构和组织。
TEM利用电子束而非光束,可以实现比光学显微镜更高的分辨率,能够观察到纳米级别的细节。
其成像原理可以分为电子光学原理和电子-物质相互作用原理两个方面。
首先,电子光学原理是TEM成像的基础。
TEM的光学系统由一个电子源、一系列透镜、标本和一个像屏组成。
电子源通常采用热阴极的方式,通过加热金属丝使其发射电子。
这些电子经过一系列透镜的聚焦作用,形成一个细束,并进入样品。
对于TEM而言,最重要的透镜是电磁透镜,通常是通过一对线圈产生的。
电磁透镜中的电磁场可以对电子束进行聚焦和对准,以便在样品上形成清晰的像。
透镜的设计和设置可以调整其聚焦能力和调制电子束的波前。
透射电子显微镜通常具有两个凸透镜,分别称为物镜和目镜。
物镜透镜在样品和像屏之间,起到聚焦电子束和收集被样品散射的电子的作用。
目镜透镜位于像屏和观察者之间,用于观察和放大图像。
其次,电子-物质相互作用原理也是TEM成像的重要部分。
透射电子在穿过样品时会与样品中原子的电子发生相互作用,这种相互作用会导致电子的散射和吸收。
根据散射和吸收的强弱,我们可以获得关于样品内部结构和组织的信息。
散射现象包括弹性散射和非弹性散射。
弹性散射是指电子与原子的表面电子或晶格电子发生碰撞而改变方向,但能量基本保持不变。
非弹性散射是指电子在与样品中的原子碰撞时损失或获得能量。
这些散射电子通过透镜被聚焦到像屏上,呈现出所观察到的图像。
通过分析散射电子的强度和角度,我们可以推断出样品中的晶体结构、物质的化学成分和其它细节。
吸收现象是指电子在穿过样品时被材料中的原子吸收。
这种吸收现象通常被用来确定材料的厚度和密度。
因此,TEM利用电子束与样品相互作用的方式,可以获得关于样品结构和组织的信息。
通过聚焦和收集散射电子,形成清晰的图像,进而研究材料的微观特性。
透射电子显微镜解析出材料结构与缺陷的微观形貌材料科学与工程领域中,了解材料的微观结构和缺陷是极为重要的。
透射电子显微镜(Transmission Electron Microscope,简称TEM)作为一种高分辨率的显微镜,被广泛应用于研究材料的微观结构和缺陷的形貌。
本文将对透射电子显微镜的原理以及其在解析材料结构和缺陷方面的应用进行探讨。
首先,我们来了解一下透射电子显微镜的原理。
TEM利用电子束的穿透性质,通过透射模式进行成像。
当电子束通过材料样品时,被材料中的原子核和电子云散射,形成折射、衍射和透射等效应。
其中,透射电子显微镜主要依靠透射电子的成像来解析材料的微观结构和缺陷。
在TEM中,电子束通过样品后,经过透射器(透镜)和投影透镜组件进行成像,最后由像差校正系统进行调整来提高成像质量。
透射电子显微镜的高分辨率使得它能够解析出材料的微观形貌,包括晶体结构、晶格缺陷和界面等。
透射电子显微镜在解析材料结构方面具有得天独厚的优势。
通过TEM的高分辨率成像,可以直接观察到材料的晶格结构。
晶体的晶体结构、晶胞参数、晶体方向和位错等重要的结构信息可以通过TEM成像来获得。
通过选取特定的衍射点和晶格平面,可以进一步通过电子衍射技术确定晶体结构。
透射电子衍射技术可以通过模式匹配和比对已知晶体结构的衍射图案来确定材料的晶体结构,为研究和设计材料提供了重要的依据。
此外,透射电子显微镜还可以帮助解析材料中的晶体缺陷。
晶格缺陷是材料中常见的现象,对材料的性能和行为产生显著影响。
通过透射电子显微镜观察,可以揭示出材料中的位错(dislocation)、嵌错(inclusion)、晶界(grain boundary)和尖晶石等各种缺陷。
位错是晶体中最常见的缺陷类型之一,它们对晶格的完整性和形貌起到了至关重要的作用。
透射电子显微镜可以通过成像和EDS(能谱分析)技术来定量和表征位错的类型和密度。
此外,透射电子显微镜还可以通过高分辨率透射电子显微镜(HRTEM)技术对材料的晶界和界面进行观察,揭示出材料微观结构中的复杂性。
透射电镜衍射成像原理
透射电镜是一种高级显微镜,利用电子束来成像样品的内部结构。
透射电镜的成像原理是基于电子的波粒二象性,电子具有波动性,因此可以产生衍射现象。
在透射电镜中,电子束通过样品时会发生衍射,通过观察样品衍射图样可以得到样品的内部结构信息。
透射电镜的成像原理主要包括以下几个方面:
1. 衍射:当电子束穿过样品时,与样品原子相互作用,会发生衍射现象。
电子束的波长通常在纳米级别,与可见光波长相当,因此可以得到高分辨率的图像。
样品的晶格结构会影响电子的衍射图样,通过分析衍射图样可以确定样品的晶格结构和原子排列。
2. 焦点:透射电镜的成像是通过电子透镜进行调焦来实现的。
透射电镜中的透镜由电磁场产生,可以调节电子束的聚焦和散焦。
透射电镜的透镜系统通常包括透镜、准直器和透镜孔径,通过调节透镜的参数可以获得清晰的电子图像。
3. 探测器:透射电镜的探测器通常是电子学传感器,可以将电子束转换为电子信号。
通过调节探测器的灵敏度和增益,可以获取高质量的电子图像。
透射电镜的探测器通常具有高灵敏度和低噪声,可以获取高分辨率的图像。
透射电镜的成像原理是基于电子的波粒二象性,通过电子的衍射现象和透镜系统的调焦来实现高分辨率的图像获取。
透射电镜在材料科学、生物学和纳米技术等领域具有重要的应用价值,可以帮助科学家研究样品的内部结构和性质。
透射电镜的发展将进一步推动科学研究的进步,为人类社会的发展做出贡献。
透射电子显微镜实验报告透射电子显微镜的基本结构及成像原理认知实验一、实验目的1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理。
2.观察透射电子显微镜基本部件的名称,了解其用途;二、实验仪器仪器:JEM-2100UHR 透射电子显微镜(JEOL)透射电子显微镜用高能电子束作为照明源。
利用从样品下表面透出的电子束来成像。
原理及结构与透射式光学显微镜一样。
世界第一台透射电子显微镜是德国人鲁斯卡1936年发明的。
他与发明扫描隧道显微镜的学者一起获得1982年的诺贝尔物理奖。
目前透射电子显微镜的生产厂家有日本的日立(HITACHI)、日本电子(JEOL)、美国FEI、德国LEO。
透射电子显微镜的功能:主要应用于材料的形貌、内部组织结构和晶体缺陷的观察;物相鉴定,包括晶胞参数的电子衍射测定;高分辨晶格和结构像观察;纳米微粒和微区的形态、大小及化学成分的点、线和面元素定性定量和分布分析。
样品要求为非磁性的稳定样品。
可观察的试样种类:复型样品,金属薄膜和粉末试样,玻璃薄膜和粉末试样,陶瓷薄膜和粉末试样。
三、实验内容(一)透射电镜成像原理透射电子显微镜电子光学系统的工作原理可以用普通光学成像原理进行描述,也就是:平行光照射到一个光栅或周期物样上时,将产生各级衍射,在透镜的后焦面上出现各级衍射分布,得到与光栅或周期物样结构密切相关的衍射谱;这些衍射又作为次级波源,产生的次级波在高斯像面上发生干涉叠加,得到光栅或周期物样倒立的实像。
图1示意地画出了平行光照射到光栅后,在衍射角为θ的方向发生的衍射以及透射光线的光路图。
如果没有透镜,则这些平行的衍射光和透射光将在无穷远处出现夫琅和费衍射花样,形成衍射斑D和透射斑T。
插入透镜的作用就是把无穷远处的夫琅和费衍射花样前移到透镜的后焦面上。
后焦面上的衍射斑(透射斑视为零级衍射斑)作为光源产生次波干涉,在透镜的像平面上出现一个倒立的实像。