转基因技术
- 格式:doc
- 大小:34.00 KB
- 文档页数:7
转基因技术的主要操作流程
内容:
转基因技术的主要操作流程通常包括以下几个步骤:
1. 选择目的基因。
根据转基因的目的,从供体中选择想要的目的基因,这通常是编码某种有用蛋白质的基因。
2. 构建载体。
将选定的目的基因插入到载体分子中,例如质粒或病毒载体。
载体可以帮助目的基因进入目标生物的细胞。
3. 将重组载体导入宿主细胞。
使用微注射、电穿孔、基因枪等方法,将含有目的基因的重组载体导入目标生物的细胞中。
4. 筛选转基因细胞。
通过抗性筛选、荧光筛选等方法,从导入重组载体的细胞中筛选出真正导入了目的基因的转基因细胞。
5. 转基因细胞培养。
对转基因细胞进行培养、繁殖,获得足够数量的转基因细胞。
6. 转基因植株再生。
通过组织培养等手段,从转基因细胞中再生出完整的转基因植株。
7. 鉴定转基因植株。
通过、杂交等手段对转基因植株进行鉴定。
8. 转基因植株评价。
对转基因植株的表型进行评价,确定是否达到了转基因的预期目的。
这就是转基因技术的主要操作流程。
不同的转基因目的和对象,具体操作可能会有所调整。
转基因技术的利与弊在当今科技飞速发展的时代,转基因技术无疑是一个备受关注和争议的话题。
转基因技术是指将人工分离和修饰过的基因导入到生物体基因组中,从而引起生物体性状的可遗传的修饰。
这项技术自诞生以来,在农业、医药等领域展现出了巨大的潜力,但同时也引发了一系列的担忧和质疑。
先来说说转基因技术带来的好处。
在农业方面,转基因作物具有显著的优势。
通过转基因技术,农作物可以获得抗病虫害的能力。
这意味着农民可以减少农药的使用,降低生产成本,同时也减少了农药对环境的污染。
例如,转基因棉花能够抵抗棉铃虫的侵害,大大减少了农药的喷洒量,保护了生态环境。
转基因技术还可以提高农作物的产量。
通过引入特定的基因,使作物具有更好的生长特性,如更强的光合作用能力、更高效的养分吸收等,从而增加单位面积的产量。
这对于解决全球不断增长的人口粮食需求问题具有重要意义。
此外,转基因作物还可以增强其抗逆性,比如耐旱、耐盐等。
在一些气候条件恶劣、土地资源有限的地区,种植转基因作物能够有效地利用土地资源,提高农作物的适应性,保障粮食的稳定供应。
在医药领域,转基因技术也发挥着重要作用。
利用转基因技术,可以生产出大量的药用蛋白和疫苗。
例如,通过将特定的基因导入微生物中,可以大规模生产胰岛素等药物,为糖尿病患者带来了福音。
转基因技术在环境保护方面也有潜在的价值。
例如,通过转基因技术可以培育出能够分解有害物质的植物,用于修复被污染的土壤和水体。
然而,转基因技术也并非完美无缺,它带来的一些问题同样值得我们关注和思考。
转基因技术可能对生态环境产生潜在的风险。
转基因作物的基因可能会通过花粉传播等方式扩散到野生植物中,从而影响生态系统的平衡和稳定。
此外,如果转基因作物具有超强的生存能力和竞争优势,可能会导致一些本土物种的减少甚至灭绝。
转基因食品的安全性也是公众关注的焦点之一。
虽然目前的科学研究尚未发现转基因食品对人体健康有直接的危害,但由于转基因技术改变了食物的基因组成,长期食用是否会产生潜在的健康风险仍存在不确定性。
转基因技术在食品生产中的应用近年来,随着物质生产和生活水平的提高,食品行业的发展日益重要。
在这一过程中,转基因技术在食品生产上越来越广泛地应用,也引起了人们的广泛关注和争议。
本文将从转基因技术的定义、应用领域、利弊以及监管等方面对转基因技术在食品生产中的应用进行探讨。
一、转基因技术的定义转基因技术是指将一个生物体的基因序列移植到另一个生物体中,并使其表达出来的技术。
通俗地说,就是人工修改生物体的基因。
在转基因技术中,常见的方式是采用基因枪、冷冻融合、原生质体融合等技术手段来实现。
二、转基因技术在食品生产中的应用领域目前,转基因技术在食品生产中主要应用于四个领域:作物种植、畜牧业、水产养殖以及食品加工。
在作物种植方面,转基因技术可以提高农作物的抗病性、抗旱性、耐盐碱性,使得作物的产量、品质得到了大大提升。
在畜牧业领域,转基因技术被用来改良动物的体型、肉质、繁殖率等方面,提高畜产品的品质和数量。
在水产养殖方面,转基因技术被用来改良水产动物的生长速度、抗病性等方面,提高水产产品的品质和数量。
在食品加工方面,转基因技术主要被应用于食品添加剂、酶和调料等方面,能够提高食品的口感和品质。
三、转基因技术的利弊转基因技术的应用在很大程度上可以提高食品的产量和质量,比如转基因作物能够提高抗病性和抗虫性,减少农民的使用农药和化肥的量,也能够减轻自然生态的负担。
在提高食品的品质方面,转基因技术能够针对人们对食品口感、色泽、营养成分等方面的需求来设计。
但是,转基因技术也有其负面影响。
首先,转基因食品的安全性一直是人们关注的焦点。
虽然许多国家和地区已经明确规定了转基因食品的安全标准和规范,但是由于转基因技术的高度复杂性,其对人体健康的潜在危害仍然需要进行深入的研究。
其次,转基因技术可能会导致生态环境的破坏、基因污染等问题,对自然生态造成不利影响。
四、转基因技术在食品生产中的监管为了解决转基因食品的安全问题,各国和地区都制定了相应的监管规范和标准。
转基因技术研究进展1.转基因技术概述转基因技术是指利用分子生物学技术,将某些生物的基因转移到其它物种中,改造生物的遗传物质,使遗传物质得到改造的生物在性状、营养和消费品质等方面向人类需要的目标转变。
其主要过程为:从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段,或者人工合成目的基因;在体外,将带有目的基因的DNA片段连接到能够自我复制并具有选择标记的载体分子上,形成重组DNA分子;将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞);带有重组体的细胞扩增,获得大量的细胞繁殖体,从大量的细胞繁殖群体中,筛选出具有重组DNA分子的细胞克隆;将选出的细胞克隆的目的基因进一步研究分析,并设法使之实现功能蛋白的表达。
转基因技术根据人们的意愿操作, 对基因进行修饰、改造, 从而定向地改变生物遗传特征, 培育生物新品种的技术。
简而言之转基因技术就是把大自然不同物种的优秀基因组合到另一个新的物种里面,新的基因信息可以按照要求转入另一种机体, 借以提供一种手段来改造农作物的性状和改良家畜品种, 或生产安全高效的药物, 或制作预防严重疾病的疫苗, 或进行基因治疗, 或制作一系列的食品或蛋白质等,它是现代生物技术的核心技术, 对于发展工业生产和医药学,解决人类的粮食、健康、能源、环境等问题具有重大的作用和意义。
转基因按照对象可分为植物转基因和动物转基因。
1.1植物转基因植物转基因是基因组中含有外源基因的植物。
它可通过原生质体融合、细胞重组、遗传物质转移、染色体工程技术获得,有可能改变植物的某些遗传特性,培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种。
而且可用转基因植物或离体培养的细胞,来生产外源基因的表达产物。
外源基因导入植物的遗传转化方法主要有农杆菌介导法、病毒介导转化法、基因枪转化法、电激转化法、花粉管通道法、真空渗透转化法以及聚乙二醇介导法等。
1.1.1农杆菌介导法农杆菌介导的大豆遗传转化最早始于1985 年。
什么是转基因技术转基因技术的理论基础来源于进化论衍生来的分子生物学。
那么你对转基因技术了解多少呢?以下是由店铺整理关于什么是转基因技术的内容,希望大家喜欢!转基因技术的目的(1)提取目的基因从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段,或者人工合成目的基因,或从基因文库中提取相应的基因片段和PCR技术进行目的基因的增殖。
(2) 将目的基因与运载体结合在细胞外, 将带有目的基因的DNA 片段通过剪切、粘合连接到能够自我复制并具有多个选择性标记的运输载体分子(通常有质粒、T4噬菌体、动植物病毒等)上,形成重组DNA分子。
(3) 将目的基因导入受体细胞将重组DNA分子注入到受体细胞(亦称宿主细胞或寄主细胞) ,将带有重组体的细胞扩增,获得大量的细胞繁殖体。
(4) 目的基因的筛选从大量的细胞繁殖群体中,通过相应的试剂筛选出具有重组DNA分子的重组细胞。
(5) 目的基因的表达将得到的重组细胞,进行大量的增殖,得到相应表达的功能蛋白,表现出预想的特性,达到人们的要求。
转基因技术的主要分类转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术、动物转基因技术和微生物基因重组技术。
人工转基因将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。
人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。
如今,改变动植物性状的人工技术往往被称为转基因技术(狭义),而对微生物的操作则一般被称为遗传工程技术(狭义)。
经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。
自然转基因不是人为导向的,自然界里动物、植物或微生物自主形成的转基因现象,例如慢病毒载体里的乙型肝炎病毒DNA整合到人精子细胞染色体上、噬菌体将自己DNA的插入到溶源细胞DNA上,农杆菌和花椰菜花叶病毒(CMV)等。
转基因技术的原理应用一、转基因技术的概念转基因技术(transgenic technology)是将外源基因导入一个生物体,使其在表现型和遗传性状上发生改变的一种技术。
在转基因过程中,通过人工手段将一个或多个外源基因导入目标生物体的染色体,从而改变目标生物体的基因组成。
二、转基因技术的原理转基因技术主要包括以下几个步骤:1.基因选择:选择合适的外源基因,这些基因往往来源于其他物种,可以是具有特定功能的基因,如抗病基因、耐草药基因等。
2.基因克隆:将选择的外源基因进行扩增和纯化,利用分子生物学技术制备大量目标基因的复制体。
3.载体构建:将目标基因插入到某种载体中,常用的载体有质粒、病毒等,通过转化等方式将目标基因导入载体中。
4.转染:将得到的载体导入目标生物体的细胞中,使目标基因被细胞摄取和表达。
5.筛选与鉴定:通过标记、筛选等手段,识别并筛选出带有目标基因的细胞,进一步验证目标基因是否成功表达。
6.培育与繁殖:将成功表达目标基因的细胞进行培养和繁殖,从而获得具有目标基因的转基因生物体。
三、转基因技术的应用转基因技术在农业、医学和工业等领域有着广泛的应用,以下是一些常见的应用案例:1. 农业领域•抗病虫害作物:通过导入抗病虫害基因,使作物获得抗性,减少农药的使用,提高作物的产量和品质。
•耐逆环境作物:通过导入耐旱、耐盐碱等相关基因,使作物在恶劣环境下生长,提高作物的适应性和产量。
•改善营养成分:通过导入相关基因,提高作物的营养成分含量,如富含维生素、蛋白质等的作物。
2. 医学领域•基因治疗:通过导入缺失或异常基因,纠正患者的遗传病变,实现基因治疗,如用于治疗遗传性疾病、某些癌症等。
•生物药物生产:利用转基因技术大量制备生物药物,如重组蛋白、抗体等,提高产量和效果。
3. 工业领域•生物降解:利用转基因菌株生产具有降解能力的酶,用于污染物的降解,实现环境友好型生产。
•生物能源:利用转基因技术改良微生物,在生物质降解和发酵过程中提高产氢、产乙醇等有机能源的效率。
转基因技术是一种将特定基因导入生物体的技术,其主要步骤如下:
1. 目标基因的选择:选择需要导入的目标基因,通常是从其他生物中提取或合成得到的。
2. 载体构建:将目标基因与载体(如质粒、病毒等)结合,构建成重组载体。
3. 细胞转化:将重组载体导入受体细胞中,可以通过物理、化学或生物学方法进行转化。
4. 筛选和鉴定:对转化后的细胞进行筛选和鉴定,通常使用标记基因或筛选试剂来筛选出含有目标基因的细胞。
5. 转基因植株的培育:将筛选出的含有目标基因的细胞进行组织培养和植株再生,培育出转基因植株。
6. 转基因植株的检测和鉴定:对转基因植株进行检测和鉴定,通常使用分子生物学方法检测目标基因的存在和表达情况。
7. 安全性评估:对转基因植株进行安全性评估,包括环境安全性和食品安全性评估等。
8. 申请批准:如果转基因植株通过安全性评估,需要向相关部门申请批准,才能进行商业化种植或应用。
需要注意的是,转基因技术是一项复杂的技术,需要严格的操作和管理,以确保其安全性和有效性。
同时,转基因技术也面临着一些争议和挑战,需要进行深入的研究和讨论。
基因工程与转基因技术的区别与联系基因工程和转基因技术是现代生物科学领域中重要的概念。
它们都涉及到对生物体基因组的改变,但在方法、目的和应用方面存在着一些区别与联系。
一、基因工程的定义及应用领域基因工程是指利用生物技术手段对个体的基因组进行人为的干预和改造的过程。
通过基因工程技术,可以对基因进行精细的修饰、替换或移植,以达到改善生物体特性或制造特定产品的目的。
基因工程广泛应用于医学、农业、环境保护等领域。
二、转基因技术的定义及应用领域转基因技术是一种特定的基因工程手段,它通过将来自不同物种的基因导入到目标生物体中,实现一个或多个外源基因的组合,从而改变生物体的遗传构成。
转基因技术主要用于农业领域,包括改良农作物、提高产量和抗病虫害等。
三、基因工程与转基因技术的区别1.方法:基因工程可以通过多种手段对基因进行修改,包括体外合成、限制酶切割、基因克隆等;而转基因技术则主要通过将外源基因嵌入到生物体的染色体中实现对基因组的改造。
2.作用:基因工程的核心目标是对基因进行精细的调节和改变,以改善生物体特性或制造特定产品;而转基因技术着重于导入外源基因以改变生物体的遗传构成,通常用于改良农作物或制造转基因动物。
3.适用范围:基因工程的应用领域广泛,包括医学、农业、环境保护等;而转基因技术主要应用于农业领域,用于改良作物和提高农作物的抗性能力。
4.目的:基因工程的目的是通过改变基因来改善生物体的特性或产出特定产品;转基因技术的目的是引入外源基因以改变生物体的遗传构成,使其具备新的性状或特征。
四、基因工程与转基因技术的联系尽管基因工程和转基因技术在方法、目的和应用领域上存在差异,但它们也有着密切的联系。
转基因技术是基因工程的一种特殊应用方式,它利用基因工程技术将外源基因导入到目标生物体中,实现基因组的改造。
因此,可以说转基因技术是基因工程的延伸和应用之一。
综上所述,基因工程是对个体基因组进行干预和改造的过程,应用于医学、农业等多个领域,而转基因技术是一种特殊的基因工程手段,主要应用于农业领域,通过导入外源基因改变生物体的遗传构成。
基因工程与转基因技术基因工程是一种通过人为干预改变生物体基因组的技术,而转基因技术是基因工程的一种重要应用。
本文将从转基因技术的定义、应用领域和发展前景三个方面,探讨基因工程与转基因技术的关系以及其对社会和环境的影响。
一、转基因技术的定义转基因技术是指将外源基因导入目标生物体的染色体中,使其表达所需的特定性状。
这种技术通过人为干预,改变了生物体的遗传信息,使其具备了原本不具备或表达过弱的特性。
转基因技术通常通过DNA重组技术实现,即将特定基因从一个生物体转移到另一个生物体,从而实现特定基因的表达。
二、转基因技术的应用领域转基因技术在农业、医学、环境等领域具有广泛的应用。
1. 农业领域:转基因技术可以改良农作物的抗病虫害能力、提高产量和质量。
例如,将抗虫基因导入作物中,可以降低对农药的依赖,减少农业环境的污染。
此外,转基因技术还能使作物具备耐盐碱、耐旱等特性,为适应恶劣生长环境的农作物提供了新的途径。
2. 医学领域:转基因技术在医学研究和治疗中有着广泛的应用。
例如,通过转基因技术,可以制备人类蛋白质药物、生物制剂等,用于治疗癌症、糖尿病、血液病等疾病。
此外,转基因技术还可用于基因诊断、基因治疗等领域,为医学疾病的预防和治疗提供了新的方法。
3. 环境领域:转基因技术可以用于生物修复和污染防治。
例如,通过引入特定基因,可以使植物具备吸收、分解污染物的能力,从而实现污染物的修复。
此外,转基因技术还可以用于监测环境中的污染物,提高环境监测和评估的准确性和效率。
三、转基因技术的发展前景和影响转基因技术的发展给人类社会带来了诸多益处,但也伴随着一些争议和问题。
1. 发展前景:随着生物技术的进步和基因工程技术的成熟,转基因技术将在更多领域得到应用。
例如,在农业领域,通过转基因技术可以开发出更具抗逆性的农作物,提高农业生产的效益。
在医学领域,转基因技术将为疾病的预防、治疗和基因疗法的发展提供强有力的支持。
在环境领域,转基因技术将为污染治理和生态修复提供新的思路和方法。
转基因技术动植物转基因方法转基因技术是一种现代生物技术,通过对生物体的基因进行修饰和重组,从而实现特定的性状改良或新性状的引入。
在动植物领域,有多种转基因方法被广泛应用,以下将为您详细介绍。
一、动物转基因方法1、显微注射法这是动物转基因技术中最常用的方法之一。
其基本原理是在显微镜下,将经过处理的外源基因直接注射到受精卵的雄原核中。
因为雄原核较大,更容易容纳和整合外源基因。
注射后的受精卵经过培养和筛选,然后移植到代孕母体的子宫内,最终发育成转基因动物。
这种方法的优点是操作相对直接,成功率较高;但缺点是技术难度大,对设备和操作人员的要求较高,且可能会对受精卵造成一定的损伤。
2、病毒载体法利用病毒作为载体将外源基因导入动物细胞。
经过改造的病毒失去了致病性,但仍能携带外源基因并将其整合到宿主细胞的基因组中。
常用的病毒载体包括逆转录病毒、腺病毒等。
此方法的优势在于转染效率较高,能够感染多种类型的细胞;然而,病毒载体的容量有限,可能引起免疫反应,且存在潜在的生物安全风险。
3、胚胎干细胞介导法首先从早期胚胎中分离出胚胎干细胞,然后通过基因工程技术将外源基因导入胚胎干细胞。
经过筛选和鉴定,含有外源基因的胚胎干细胞被重新注入到囊胚腔中,与囊胚细胞融合,形成嵌合体胚胎。
最后将嵌合体胚胎移植到代孕母体子宫内发育。
这种方法可以实现精确的基因修饰,但胚胎干细胞的培养和操作难度较大。
4、体细胞核移植法先将供体细胞进行基因修饰,使其携带外源基因,然后将供体细胞的细胞核移植到去核的卵母细胞中,构建重组胚胎,再将重组胚胎移植到代孕母体中发育。
这种方法的优点是可以获得大量遗传背景相同的转基因动物,但技术流程复杂,成功率相对较低。
二、植物转基因方法1、农杆菌介导转化法农杆菌是一种天然的植物基因转化载体。
当植物受伤时,农杆菌会感染植物,并将其携带的一段 DNA(称为 TDNA)转移并整合到植物基因组中。
在转基因操作中,将含有目的基因的 TDNA 载体导入农杆菌,然后用农杆菌感染植物细胞,从而实现目的基因的转化。
转基因知识点总结一、转基因技术的原理转基因技术是通过将外源基因导入目标生物体的染色体中,使其表现新的特性或功能。
这个过程包括以下几个步骤:基因的识别、克隆、导入、筛选和鉴定。
1. 基因的识别首先,科学家们需要从外部环境中寻找到与目标特性相关的基因。
这个基因可能来源于其他生物体,也可以是由人工合成的。
一旦找到了合适的基因,就需要对其进行分离和纯化,以便进一步的操作。
2. 基因的克隆接下来,科学家们需要复制这个基因,以便在后续的实验中进行操作。
这个过程通常通过PCR(聚合酶链式反应)或者其他克隆技术来实现。
一旦得到了足够多的基因拷贝,就可以进行下一步的操作。
3. 基因的导入在得到了目标基因的大量拷贝之后,科学家们需要找到一种途径将其导入到目标生物体的染色体中。
这个过程通常通过质粒导入、病毒感染、基因枪法等技术来实现。
一旦成功地将基因导入到目标生物体中,就需要进行后续的筛选和鉴定。
4. 基因的筛选和鉴定一旦将外源基因导入到目标生物体的染色体中,就需要进行筛选和鉴定,以确认目标基因已经被成功导入并发挥了预期的功能。
这个过程通常通过PCR、Southernblotting、Northernblotting等技术来实现。
一旦确认了目标基因已经被成功导入并表现了预期的功能,就可以进行后续的实验。
二、转基因技术的应用转基因技术在农业、医学、工业等领域都有着广泛的应用。
在农业领域,转基因作物可以抗病虫害、耐逆境、提高产量、改良品质等方面有着显著的优势;在医学领域,转基因技术可以用于治疗疾病、生产药物、疫苗等方面;在工业领域,转基因微生物可以生产生物燃料、化工产品等。
总的来说,转基因技术为人类的生产生活带来了诸多益处,同时也带来了一些新的问题和挑战。
1. 农业转基因作物可以抗病虫害、耐逆境、提高产量、改良品质等方面有着显著的优势。
比如,转基因水稻可以抗虫、耐盐碱、提高产量;转基因玉米可以抗虫、耐除草剂、提高产量;转基因大豆可以抗除草剂、提高产量等。
转基因的方法
转基因是一种操作基因组的技术,主要有以下几种方法:
1. 基因枪法(Gene Gun Method):将要导入的外源基因以微
粒形式射入植物细胞中。
在这个过程中,先将目标基因包裹在金属微粒或胶体颗粒上,然后使用高压气枪对细胞进行投射,使得基因能够进入细胞。
2. 细菌介导的转化(Bacterial-mediated Transformation):将
目标基因插入具有DNA传递能力的细菌,然后将细菌和植物
细胞接触,使得目标基因通过细菌转移到植物细胞中。
3. 再生障碍物介导的基因传递(Agrobacterium-mediated Transformation):将目标基因插入一种常见的土壤细菌——
农杆菌,然后将该细菌与植物组织接触,使得农杆菌将目标基因输送到植物主细胞中。
4. DNA递送介体介导的转化(DNA Delivery Mediated Transformation):通过将外源基因与DNA递送介体(如利用
病毒载体)结合,并将其导入细胞内,使外源基因被细胞摄取。
5. 基因剪切工具(Gene Editing Tools):利用CRISPR/Cas9
系统等基因剪切工具,直接对细胞中的基因进行切割和编辑,以实现外源基因的引入或目标基因的改变。
这些方法在不同的生物体和实验室条件下有所不同,选择合适
的转基因方法取决于研究目的、生物体的特性和实验条件等因素。
转基因技术转基因产品(GMOs)是通过基因重组技术获得的基因改良生物及其加工产品。
对转基因产品,用转基因产品定性检测方法(qualitative detection)对样品中转基因成分进行检测,以判定该样品是否为转基因产品。
实时荧光PCR法是目前最有发展前途的定量检测方法,也是目前最适合出入境检验检疫的检测技术之一。
所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光集团,利用荧光信号积累,实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
该方法可以有效提高检测的准确性和灵敏度。
它既能做定性检测,加入标准品也能做定量检测。
酶联检测方法,应称作酶联免疫吸附测定,是把抗原及抗体的免疫反应和酶的高效催化反应有机地结合而发展起来的,用酶作为标记物或指示剂进行抗原或抗体定性和定量测定的综合技术。
试纸条检测方法也是转基因产品抗血清检测方法。
这两种方法是中国与美国谷物化学家协会(AACC)联合研究的。
中方主要承担转基因玉米和大豆两个品种的抗血清特异性、灵敏度以及定量检测的研究内容。
目前,这两种方法已上升为ISO标准,即将发布。
其技术创新点为:研究制定了《基因检验实验室技术要求》,建立了我国口岸系统转基因产品检测实验室体系。
建立了转基因产品的亲和诱捕技术,较好解决了DNA提取的技术难点,该方法特别适用于食品和饲料等多组分样品。
建立了精炼植物油和深加工食品中核酸的提取方法。
针对食用油脂中DNA含量极低、破坏严重的特点,建立了食用油脂中DNA提取方法。
建立了边界序列的测定方法和转基因作物品系鉴定方法,首次测定出番茄棉花边界序列。
对转基因的检测不仅能检测种类,而且还能检测品系,如对基因玉米、马铃薯、大豆等都能进行鉴定。
行设计了实时荧光PCR定量(性)检测引物32对和相对应的探针,建立了转基因产品实时荧光PCR定量(性)检测方法,该方法能检测目前国内外已报道的主要商品化转基因品种。
建立了转基因产品的基因芯片检测方法。
自行研究设计了基因芯片检测的引物和探针,优化基因芯片杂交条件和多重PCR反应条件,首次建立了高通量的转基因产品基因芯片检测方法。
研究制定了12项行业标准,7项国家标准。
转基因生物概述转基因生物,又称改性活生物体、遗传饰变生物,常见英文缩写为GMOs (Genetically Modified Organisms)。
1. 有关转基因的几个定义转基因技术:指用人工分离和修饰过的外源基因导入生物体的基因组中,从而使生物体的遗传性状发生改变的技术,包括外源基因的克隆、表达载体构建、重组DNA导入受体细胞,受体细胞的筛选以及目的基因的检测和表达等。
转基因生物是指利用基因技术改良的生物体,即为了达到特定的目的而将DNA 进行人为改造的生物,包括转基因微生物、转基因植物和转基因动物,目前批准商业化生产的转基因产品主要是转因基植物及其加工品转基因食品是以转基因生物为直接食品或为原料加工生产的产品,它可以是活体的,也可以是非活体的。
生活中最常见的几种转基因食品包括:大豆及以大豆为原料的制品如豆腐、豆油等,玉米,大米,西红柿,土豆等。
2. 转基因产品的类型按转基因的功能大致可以分为5类。
1.增产型。
农作物增产与其生长分化、肥料、抗逆、抗虫害等因素密切相关,故可转移或修饰相关的基因达到增产效果。
2.控熟型。
通过转移或修饰与控制成熟期有关的基因可以使转基因生物成熟期延迟或提前,以适应市场需求。
最典型的例子是延熟速度慢,不易腐烂,好贮存。
3.高营养型。
许多粮食作物缺少人体必需的氨基酸,为了改变这种状况,可以从改造种子贮藏蛋白质基因入手,使其表达的蛋白质具有合理的氨基酸组成。
现已培育成功的有转基因玉米、土豆和菜豆等。
4.保健型。
通过转移病原体抗原基因或毒素基因至粮食作物或果树中,人们吃了这些粮食和水果,相当于在补充营养的同时服用了疫苗,起到预防疾病的作用。
有的转基因食物可防止动脉粥样硬化和骨质疏松。
一些防病因子也可由转基因牛羊奶得到。
5.新品种型。
通过不同品种间的基因重组可形成新品种,由其获得的转基因食品可能在品质、口味和色香方面具有新的特点。
3. 转基因技术与传统技术的关系转基因技术与传统技术其本质都是通过获得优良基因进行遗传改良。
但在基因转移的范围和效率上,转基因技术与传统育种技术有两点重要区别。
第一,传统技术一般只能在生物种内个体间实现基因转移,而转基因技术所转移的基因则不受生物体间亲缘关系的限制。
第二,传统的杂交和选择技术一般是在生物个体水平上进行,操作对象是整个基因组,所转移的是大量的基因,不可能准确地对某个基因进行操作和选择,对后代的表现预见性较差。
而转基因技术所操作和转移的一般是经过明确定义的基因,功能清楚,后代表现可准确预期。
因此,转基因技术是对传统技术的发展和补充。
将两者紧密结合,可相得益彰,大大地提高动植物品种改良的效率。
PCR定性筛选检测方法1996年德国伯恩斯坦大学的MeyerRolf等论证了PCR检测转基因食品的可能性,植物细胞转入的基因成分一般包括启动子(promotor)、报告基因(reportergene)、目的基因(targetgene)和终止子(terminator),其中启动子和终止子为表达目的基因所必需。
目前,转基因植物所采用的启动子主要为来源于花椰菜花叶病毒的Camv35s启动子、根瘤农杆菌的nos启动子及玄参花叶病毒的FMV35s启动子;广泛应用的终止子分别来源于根瘤农杆菌的nos终止子、花椰菜花叶病毒的camv终止子以及新霉素磷酸转移酶NptII终止子。
针对这些基因的PCR扩增可涵盖95%的现有的转基因植物的需要。
PCR定性检测是高灵敏度的DNA水平检测,但常伴有各种假性结果出现:(1)DNA提取时产生的各种反应抑制因子,使PCR呈假阴性;(2)产品深加工时核酸被破坏成碎片,含量极低,使PCR呈假阴性;(3)当作物受到花椰菜花叶病毒的感染而带有35S启动子或因农杆菌感染而带有nos终止子时,PCR呈假阳性;(4)实验室的残留污染使检测结果呈假阳性;(5)在收获、运输或加工过程中转基因食品与非转基因食品产生交叉污染也会使检测结果不准确。
要防止检测出现假阴性结果,必须在检测过程中严格遵守操作规程,优化PCR条件,在DNA提取过程中尽量去除可能抑制PCR反应的物质,并可通过扩增真核生物的18SrRNA基因来消除假阴性;要消除转基因食品检测中假阳性结果的影响,可采用southern杂交、PCR产物纯化测序或PCR扩增产物酶切分析等方法,对样品同时检测其Camv35s和nos基因双元件,可避免某些作物因自然感染花椰菜花叶病毒或根癌农杆菌产生的假阳性结果。
实时荧光定量PCR法实时荧光PCR技术于1996年由美国AppliedBiosystems公司推出,是指在常规PCR基础上添加了一条标记了两个荧光基团的探针,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量的方法。
目前我们应用于实时定量PCR检测体系中的荧光探针主要有3种:分子信标探针,TaqMan探针和杂交双探针。
实时定量PCR检测的灵敏度至少是竞争PCR的10倍,它可以检测到每克样品中含2pg转基因的DNA量。
对加工、未加工和混合样品都可以进行检测。
实时荧光PCR技术有效地解决了传统定量只能终点检测的局限,实现了每一轮循环均检测一次荧光信号的强度,并记录在电脑软件之中,可对整个PCR 进程的实时监测。
此外,实时荧光PCR采用闭管分析,无需电泳等PCR后处理步骤,能有效消除核酸的交叉污染。
由于在PCR反应体系中加入荧光探针,使得非特异性产物不能与探针杂交,尤其对与特异性产物分子量接近、通过电泳无法分开的产物更为有效。
当前此方法的挑战就是定量标准物的滞后发展,商业化的标准物已不能满足日渐增长的转基因检测需要。
Moreano等以转基因油菜籽为检测目标发展出了一种新型标准物的合成方法,从而为提高荧光定量检测的标准化程度指明了方向。
基因芯片检测法当今应用于转基因食品检测的前沿技术当属基因芯片技术,其实质就是高度集成化的反向斑点杂交技术。
探针分子固定在载体上,待测基因经过PCR、末端标记等操作,成为标记有荧光染料或同位素的核酸分子,然后与固定的探针杂交。
依据标记方法的不同,通过放射自显影、激光共聚焦显微镜或CCD相机读出每个斑点信号的强度,计算机对杂交信号进行处理,得到杂交谱。
该技术是20世纪90年代由美国的Affymetrix公司首先发展起来的,该公司曾在1996年制造出世界上第一块商品化基因芯片。
免疫学和PCR检测技术大部分情况下一次实验只能检测1种目标分子,在少数情况下能同时检测2~3种目标分子。
基因芯片能解决大数量基因检测问题,具有灵敏度高、效率高、成本低、自动化、结果明确等优点。
但由于其应用需要的相应设备造价高,普及范围窄,而且目前没有形成任何标准,使得基因芯片检测法应用范围不广。
多重连接依赖的探针扩增(MLPA)此方法是转基因多重定量检测的最新进展,最初是由荷兰的Dr.SchoutenJP于2002年发表的应用于医学检测目的高度灵敏的相对定量技术。
它是利用简单的杂交、连接、PCR扩增反应,于单一反应管内同时检测最多40个不同的核苷酸序列的拷贝数变化。
MLPA方法是针对不同检测序列设计多组专一的探针组,对探针组进行扩增的检测方法。
每组探针组总长度不同,可与目标序列杂交黏合。
所有探针的5′端都有通用引物结合区PBS(primerbindingsites),3′端都有与待扩增目标序列结合区,在PBS区与目标序列结合区之间插入不同长度的寡核苷酸,由此形成长度不一的探针组。
如果目标序列缺失、产生突变或是由于不同探针组的配对,则这组探针无法成功连接,也没有相应的扩增反应。
如果这组探针可与目标序列完全黏合,则连接酶会将这组探针连接成为一个片段,并通过标记的通用引物对此连接在一起的探针组进行扩增。
最终经过毛细管电泳和激光诱导的荧光来检测扩增产物。
FranciscoMoreano等应用此方法检测了标准的转基因大豆和玉米并经过特异性和敏感性实验验证了MLPA在转基因检测中的可行性。
实验表明,当探针与目标序列结合的片段长度越长,检测的敏感性就增加,并且根据转基因序列扩增强度与内参基因扩增强度的比值和转基因含量之间的线性关系,可以对待检样品进行定量分析。