D1_1映射与函数
- 格式:ppt
- 大小:1016.50 KB
- 文档页数:19
大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。
在这篇文章中,我们将重点讨论高数中的映射与函数。
一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。
在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。
映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。
映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。
即不同的元素在映射中有不同的对应元素。
2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。
即每一个元素都有对应的映射元素。
3. 一一映射:即又是单射又是满射的映射。
二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。
函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。
函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。
2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。
3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。
4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。
5. 对称性:函数是否具有关于某个轴的对称性。
三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。
下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。
2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。
3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。
4. 三角函数:包括正弦函数、余弦函数和正切函数等。
5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。
经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
一一对应连续函数开映射一一对应是数学中的一个概念,它描述了两个集合之间的关系,其中每个元素都与另一个集合中的唯一元素对应。
在连续函数开映射的背景下,一一对应是一个非常有用且重要的概念。
连续函数是数学中的一种特殊函数,它在数学分析和实际应用中扮演着重要的角色。
连续函数的定义是指函数在整个定义域上都是连续的,即函数的图像没有断裂或突变。
开映射是指函数将定义域中的开集映射到值域中的开集。
开集是指集合中的每个点都有一个邻域,而且邻域中的点仍然属于该集合。
那么,连续函数开映射的含义是什么呢?它意味着函数既是连续的,又能够将定义域中的开集映射到值域中的开集。
这种映射关系在数学和实际问题中经常出现,并且具有很多重要的性质和应用。
连续函数开映射的存在性是一个重要的结果。
根据实分析中的连续函数开映射定理,任意两个实数区间之间都存在一个连续函数开映射。
这个结果非常有用,例如在优化问题中,可以利用这个定理来构造优化算法。
连续函数开映射还具有保序性质。
如果函数是一个连续函数开映射,并且定义域上的元素按照某种顺序排列,那么对应的值域上的元素也会按照相同的顺序排列。
这个性质在经济学和金融学中经常使用,例如在供需分析和市场均衡中,可以利用这个性质来研究市场的行为和价格变动。
连续函数开映射还具有保持距离性质。
如果函数是一个连续函数开映射,并且定义域上的两个点之间的距离小于等于某个值,那么对应的值域上的两个点之间的距离也小于等于相同的值。
这个性质在几何学和拓扑学中经常使用,例如在度量空间和拓扑空间的研究中,可以利用这个性质来研究空间的结构和性质。
连续函数开映射还具有保持邻域性质。
如果函数是一个连续函数开映射,并且定义域中的一个点有一个邻域,那么对应的值域中的点也有一个邻域,并且这两个邻域之间存在一一对应关系。
这个性质在微积分和实分析中经常使用,例如在函数极限和连续性的研究中,可以利用这个性质来证明一些重要的定理和结论。
连续函数开映射是数学中一个非常有用且重要的概念。
八年级函数全知识点讲解函数是数学中非常重要的一个概念,是一种映射方法,用来描述两个变量之间的关系。
下面就为大家详细讲解八年级数学中的函数知识点。
一、函数的定义函数是一个映射方法,可以将一个自变量的值映射到一个因变量的值。
通常用符号 f(x)表示,在其中 x 表示自变量,f(x) 表示因变量。
函数从一组数到另一组数的映射,也就是说函数是一种关系。
映射方法 f 将自变量 x 映射到因变量 y,在数学中用 (x, y) 表示这个映射关系。
函数常用于表示各种自然现象以及数学中导数、积分等运算。
二、函数的特点1. 定义域和值域函数的定义域是指自变量 x 的所有取值,在这些区间内映射后得到的函数值定义了函数的值域。
例如,y = 2x + 1 这个函数的定义域为实数集合,值域为所有的实数集合。
2. 奇偶性函数的奇偶性指函数在自变量 x 为正或负时对应的函数值是否相等。
如果一个函数在自变量 x 为负时对应的函数值与 x 为正时对应的函数值相等,则这个函数具有偶性;如果函数在自变量 x 为负时对应的函数值与 x 为正时对应的函数值相反,则这个函数具有奇性。
3. 对称性函数的对称性包含水平和垂直两种对称性。
如果函数曲线在直线 y = k 垂直平面上对称,则称函数关于该垂直线具有对称性。
如果函数曲线在直线 x = k 水平平面上对称,则称函数关于该水平线具有对称性。
4. 单调性函数在定义域内是单增还是单减的性质称为它的单调性。
如果函数的导数恒大于0,该函数称为单调递增;如果函数的导数恒小于0,该函数称为单调递减。
三、函数的类型1. 线性函数线性函数的表达式为 y = kx + b,其中 k 和 b 是常数,也叫函数的斜率和截距。
线性函数的图形是一条直线,反映了固定比例的关系。
2. 二次函数二次函数的标准表达式为 y = ax² + bx + c,其中 a, b, c 都是常数。
它的图形是一个抛物线。
3. 幂函数幂函数的表达式为 y = x^n,其中 n 为常数。
高一函数知识点总结在学习中,很多人都经常追着老师们要知识点吧,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在苦恼没有知识点总结吗?下面是小编帮大家整理的高一函数知识点总结,希望能够帮助到大家。
高一函数知识点总结篇1(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g 的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意:①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。
求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。
如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。