形式语言与自动机04章 Chomsky文法体系及语言之间的运算-1
- 格式:ppt
- 大小:371.00 KB
- 文档页数:95
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
1.写出表示下列语言的正则表达式。
(吴贤珺02282047)⑴{0, 1}*。
解:所求正则表达式为:(0+1)*。
⑵{0, 1}+。
解:所求正则表达式为:(0+1)+。
⑶{ x│x∈{0,1}+ 且x中不含形如00的子串 }。
解:根据第三章构造的FA,可得所求正则表达式为:1*(01+)*(01+0+1)。
⑷{ x│x∈{0,1}*且x中不含形如00的子串 }。
解:根据上题的结果,可得所求正则表达式为:ε+1*(01+)*(01+0+1)。
⑸{ x│x∈{0,1}+ 且x中含形如10110的子串 }。
解:所求正则表达式为:(0+1)*10110(0+1)*。
⑹ { x│x∈{0,1}+ 且x中不含形如10110的子串 }。
解:根据第三章的习题,接受x的FA为:要求该FA对应的正则表达式,分别以q0、q1、q2、q3、q4为终结状态考虑:q为终态时的正则表达式:(0*(11*0(10)*(ε+111*11*0(10)*)0)*)*q为终态时的正则表达式:0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*1q为终态时的正则表达式:0*11*0((10)*(111*11*0)*(00*11*0)*)*2q为终态时的正则表达式:0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*3q为终态时的正则表达式:0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*4将以上5个正则表达式用“+”号相连,就得到所要求的正则表达式。
⑺ { x│x∈{0,1}+ 且当把x看成二进制数时,x模5与3同余和x为0时,│x│=1且x≠0时,x的首字符为1}。
解:先画出状态转移图,设置5个状态q0、q1、q2、q3、q4,分别表示除5的余数是0、1、2、3、4的情形。
另外,设置一个开始状态q.由于要求x模5和3同余,而3模5余3,故只有q3可以作为终态。
对应chomsky四种文法的四种语言之间的关系NoamChomsky是20世纪最重要的语言学家之一。
他提出了一套语言理论,其中包括了四种文法类型。
这些文法在语言学研究中起着重要作用,因为它们提供了一种方式来描述不同类型的语言结构。
在本文中,我们将探讨这四种文法类型以及它们之间的关系。
1. 正则文法正则文法也称为类型3文法,是最简单的文法类型。
它由一组规则组成,这些规则定义了一种语言的基本结构。
正则文法可以描述一些简单的语言结构,例如正则表达式和有限自动机。
正则文法的语言特征是具有线性结构,其中每个符号只能出现一次。
这种文法的规则只能是一些形如A -> aB或者A -> a的形式。
其中A和B是非终结符,a是终结符。
正则文法只能描述一些简单的语言,例如a^n b^n,其中n是任意正整数。
这种语言可以使用有限自动机来识别。
2. 上下文无关文法上下文无关文法也称为类型2文法,它比正则文法更强大。
这种文法的规则可以定义为A -> α,其中A是一个非终结符,α是一个符号串。
这意味着一个非终结符可以被替换为任何符号串,而不管它周围的上下文是什么。
上下文无关文法可以描述一些复杂的语言结构,例如二元表达式和HTML文档。
上下文无关文法的语言特征是具有树形结构,其中每个符号可以出现多次。
这种文法的规则只能是一些形如A -> α的形式。
其中A是非终结符,α是一个符号串。
上下文无关文法可以描述一些复杂的语言,例如a^n b^n c^n,其中n是任意正整数。
这种语言可以使用语法分析器来识别。
3. 上下文相关文法上下文相关文法也称为类型1文法,它比上下文无关文法更强大。
这种文法的规则可以定义为αAβ -> αγβ,其中A是一个非终结符,α和β是符号串,γ是一个符号串,它可以替换A。
上下文相关文法可以描述一些非常复杂的语言结构,例如自然语言。
上下文相关文法的语言特征是具有树形结构,其中每个符号可以出现多次。
一、实验名称生成Chomsky文法二、实验原理1.0型文法(短语文法)如果对于某文法G,P中的每个规则具有下列形式:u:: = v其中u∈V+,v∈V*,则称该文法G为0型文法或短语文法,简写为PSG。
0型文法或短语结构文法的相应语言称为0型语言或短语结构语言L。
这种文法由于没有其他任何限制,因此0型文法也称为无限制文法,其相应的语言称为无限制性语言。
任何0型语言都是递归可枚举的,故0型语言又称递归可枚举集。
这种语言可由图灵机(Turning)来识别。
2.1型文法(上下文有关文法)如果对于某文法G,P中的每个规则具有下列形式:xUy:: = xuy其中U∈VN;u∈V+;x,y∈V*,则称该文法G为1型文法或上下文有关文法,也称上下文敏感文法,简写为CSG。
1型文法的规则左部的U和右部的u具有相同的上文x和下文y,利用该规则进行推导时,要用u替换U,必须在前面有x和后面有y的情况下才能进行,显示了上下文有关的特性。
1型文法所确定的语言为1型语言L1,1型语言可由线性有界自动机来识别。
3.2型文法(上下文无关文法)如果对于某文法G,P中的每个规则具有下列形式:U :: = u其中U∈VN;u∈V+,则称该文法G为2型文法或上下文无关文法,简写为CFG。
按照这条规则,对于上下文无关文法,利用该规则进行推导时,无需考虑非终结符U所在的上下文,总能用u替换U,或者将u归约为U,显示了上下文无关的特点。
2型文法所确定的语言为2型语言L2,2型语言可由非确定的下推自动机来识别。
一般定义程序设计语言的文法是上下文无关的。
如C语言便是如此。
因此,上下文无关文法及相应语言引起了人们较大的兴趣与重视。
4.3型文法(正则文法,线性文法)如果对于某文法G,P中的每个规则具有下列形式:U :: = T 或 U :: = WT其中T∈VT ;U,W∈VN,则称该文法G为左线性文法。
如果对于某文法G,P中的每个规则具有下列形式:U :: = T 或 U :: = TW其中T∈VT ;U, W∈VN,则称该文法G为右线性文法。