芝诺
- 格式:ppt
- 大小:27.00 KB
- 文档页数:6
芝诺悖论的认识
芝诺悖论是古希腊哲学家芝诺提出的一组悖论,它们挑战了人们对于
运动和空间的直觉认识。
这些悖论虽然看似简单,但却引发了哲学、
数学、物理等多个领域的讨论和研究。
芝诺悖论的核心在于它们揭示了运动和空间的本质问题。
其中最著名
的悖论是阿喀琉斯与乌龟悖论。
这个悖论描述了阿喀琉斯和乌龟进行
赛跑,阿喀琉斯比乌龟快,但是他必须先追上乌龟的起点,而在此期
间乌龟已经向前移动了一段距离。
当阿喀琉斯到达乌龟原来的位置时,乌龟又向前移动了一段距离。
如此往复,阿喀琉斯似乎永远也追不上
乌龟。
这个悖论揭示了运动的本质问题,即无论时间和空间如何分割,运动都是连续的,而不是离散的。
另一个著名的悖论是亚刻梅涅斯悖论。
这个悖论描述了一个箭静止在
空气中,但是在任何瞬间,箭都必须占据一个空间点。
因此,箭在任
何瞬间都必须静止在空间中,而不是在运动中。
这个悖论揭示了空间
的本质问题,即空间是连续的,而不是离散的。
芝诺悖论的出现挑战了古希腊哲学家对于运动和空间的直觉认识。
这
些悖论引发了哲学家们对于运动和空间的深入思考,推动了数学和物
理学的发展。
例如,数学家柯西提出了极限理论,解决了阿喀琉斯与
乌龟悖论中的问题。
物理学家爱因斯坦则通过相对论理论解决了亚刻梅涅斯悖论中的问题。
总之,芝诺悖论揭示了运动和空间的本质问题,挑战了人们的直觉认识,推动了哲学、数学、物理等多个领域的发展。
这些悖论不仅是古希腊哲学的珍贵遗产,也是人类思维发展的重要里程碑。
芝诺悖论简介
芝诺悖论是一种哲学问题,源于古希腊哲学家芝诺提出的一系列奇妙的问题。
这些问题都以表面上合理的推理方式来阐述,但实际上其结论相互矛盾,从而引出了一系列阐述动态和无穷的问题。
这些问题常常用来挑战人们的科学直觉和逻辑技巧。
最著名的芝诺悖论是阿喀琉斯与乌龟的悖论。
阿喀琉斯与乌龟同起跑,阿喀琉斯比乌龟快10倍,但是乌龟领先阿喀琉斯一段距离,阿喀琉斯追上乌龟所需走的路程,与前一步走过的路程相差不大,因此,阿喀琉斯永远也无法赶过乌龟,这是一种无穷的过程。
这种看似荒谬的结论,引出了另外一些似是而非的物理和哲学推论,例如,理论上可以无限缩小物体的大小;在无穷小的状态下,运动是否存在等等。
这些问题的答案至今不明确,仍然是哲学和科学上的争议话题。
芝诺悖论芝诺悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。
这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释。
两分法悖论运动是不可能的。
由于运动的物体在到达目的地前必须到达其半路上的点,若假设空间无限可分则有限距离包括无穷多点,于是运动的物体会在有限时间内经过无限多点。
这里的“运动”不是距离的概念,而是速度的概念。
从A点到B点的运动不仅仅涉及到距离,并且涉及到时间。
从A到B的运动如果发生在无限长的时间内,那么悖论就为真,因为此时速度为0。
速度这个概念虽然可以被表示为距离除以时间,但是速度是一个自然界的固有概念,并不依赖于时间和距离。
所以庄子的万世不竭反倒成为一个真实的叙述,而不是悖论。
阿奇里斯悖论“动得最慢的物体不会被动得最快的物体追上。
由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。
因此被追者总是在追赶者前面。
”—亚里士多德, 物理学 VI:9, 239b15如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。
首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的"1>0.999..., 1-0.999...>0"思想。
然后,他又用这个悖论,嘲笑他的学生芝诺的"1=0.999..., 但1-0.999...>0"思想。
最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999...=0, 或1-0.999...>0"思想。
譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。
追乌龟要涉及到极限问题:t=lim(n->∞)(1/2+1/4+....1/ n)=1,而极限是个无限过程,这涉及到潜无限问题,即无限过程无法完成,即1只能无限逼近,不能达到1,乌龟是不能被追上的。
芝诺悖论是古希腊哲学家芝诺提出的一系列关于运动和数学的悖论。
其中最著名的是“阿基米德螺旋”和“追不上的乌龟”。
这些悖论看似矛盾,但实际上反映了古希腊哲学家对数学和物理学的深刻思考。
从极限角度解释芝诺悖论,我们可以将芝诺悖论转化为数学问题。
例如,芝诺悖论中的“追不上的乌龟”可以转化为无穷级数的形式。
这个级数收敛于0,但芝诺悖论表明它永远不会完全收敛。
这反映了芝诺悖论的本质:看似无限接近,却永远不能到达。
此外,从极限角度解释芝诺悖论还可以让我们更好地理解数学中的极限概念。
极限是数学中非常重要的一个概念,它描述了函数在趋近于某个点时的行为。
在芝诺悖论中,极限的概念被用来描述物体在趋近于无限接近的速度下,最终仍然无法追上物体的情况。
总之,从极限角度解释芝诺悖论可以帮助我们更好地理解这个著名的哲学悖论,同时也有助于我们更好地理解数学中的极限概念。
芝诺(埃利亚)(Zeno of Elea)生活在古代希腊的埃利亚城邦。
他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友。
关于他的生平,缺少可靠的文字记载。
柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巴门尼德于公元前5世纪中叶去雅典的一次访问。
其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂。
那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了。
”按照以后的希腊著作家们的意见,这次访问乃是柏拉图的虚构。
然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的。
据信芝诺为巴门尼德的“存在论”辩护。
但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。
”他用同样的方法,巧妙地构想出一些关于运动的论点。
他的这些议论,就是所谓“芝诺悖论”。
芝诺有一本著作《论自然》。
在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世。
”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出40个各不相同的悖论。
芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici-us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外只有少量零星残篇可提供佐证。
现在流传下来而广为人所知的所谓“芝诺悖论”共有九个:四个是关于运动的,三个是指向“多”的,一个是反对空间观念的,另一个则试图表明感觉是不可靠的,其中关于运动的4个悖论尤为著名。
直到19世纪中叶,亚里士多德关于芝诺悖论的引述及批评几乎是权威的,人们普遍认为芝诺悖论不过是一些诡辩。
英国数学家B.罗素感慨的说:“在这个变化无常的世界上,没有什么比死后的声誉更变化无常了。
从极限角度解释芝诺悖论题目:从极限角度解释芝诺悖论【导言】在古希腊数学史上,芝诺的悖论被视为数理逻辑领域中的一颗明珠。
它通过对质疑动态和时间的无限分割,挑战了人们对真实世界的直观理解。
本文将以极限的观点,解读芝诺悖论并探讨其含义。
【正文】1. 芝诺悖论的起源芝诺悖论起源于古希腊数学家芝诺提出的一系列非常反直觉的思维实验。
其中最著名的是“亚基里斯赛跑”和“阿喀琉斯之舟”两个悖论。
在亚基里斯赛跑中,亚基里斯每次都会落后于乌龟一点点,因此他永远都赶不上乌龟;而在阿喀琉斯之舟中,阿喀琉斯每次射箭之前,船总是移动到了箭射到的位置,所以他永远无法将箭射中目标。
2. 极限的观点要理解芝诺悖论,我们需要引入“极限”的概念。
极限是用来描述趋近于某个特定值或状态时的无限过程。
当我们观察运动变化或无限分割时,极限的思想可以帮助我们解释一些看似矛盾的现象。
3. 亚基里斯赛跑的极限分析在亚基里斯赛跑中,亚基里斯每次都会离乌龟更近一点,但永远不会赶上它。
然而,如果我们用极限的观点来看待这个过程,我们会发现每次迭代,亚基里斯离乌龟的距离会趋向于无穷小,但他永远不会达到乌龟的位置。
4. 阿喀琉斯之舟的极限分析在阿喀琉斯之舟中,船总是在阿喀琉斯射箭之前移动到箭射到的位置。
尽管看起来这种情况下箭无法射中目标,然而通过极限的思考,我们可以认识到,船的移动速度趋近于零、而箭射出的速度是有限的,所以当阿喀琉斯射箭的瞬间到来时,箭射中目标成为可能。
5. 芝诺悖论的启示芝诺悖论通过思考动态过程中的无限分割,揭示了我们的感官和直觉不能完全捕捉到真实世界的特性。
在现代数学中,通过引入极限、序列和无穷的概念,我们能够正式地处理芝诺悖论中的矛盾,并将其应用于数学推理中。
【总结】芝诺悖论作为古希腊数学史上的一颗明珠,挑战了人们对真实世界的直观理解。
通过极限的观点,我们可以解释亚基里斯赛跑和阿喀琉斯之舟这两个悖论,并在这个过程中进一步理解动态过程中的无限分割。
芝诺悖论解答芝诺悖论(Zeno's paradoxes)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。
这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。
),而芝诺悖论中既承认广延,又强调无广延的点。
这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的的机械论的分歧点。
这些悖论其实都可以简化为:1/0=无穷。
留传下来的芝诺悖论共有8个,最为著名的主要有4个,分别为二分法悖论、阿基里斯(Achilles)悖论、飞矢不动悖论和游行队伍悖论。
二分法悖论的内容是:事物想要运动完全程,就必须运动完全程的一半,而全程的一半还有一半,一半的一半还是有一半,这样一来一半的概念是可以无限地划分的,因而,事物在运动的过程中是永远无法经过“一半”的。
因此,运动是永远无法终结和进行的,因而运动不存在。
这里的问题所在是把时间看作了一个有限的概念而把空间看做了一个无限的范畴。
因而认为无法在有限中完成无限。
然而事实上,根据马克思理论,事物的有限无限的概念完全是相对的,不能片面地承认一方面的存在而否定另外一方。
比如说,一条线段(距离)包括无限的点,人永远无法走完这无数的点,正如他永远无法数清这些点一样。
为什么人们不认为数不清这无数的点是个悖论,却认为走完这无数的点就成了悖论了呢?原因就在于数数和运动是不同性质的东西,数数是空间中的行为,运动是本身的时间中的行为,不能混淆时间和空间。
第二个悖论是最为复杂的阿基里斯(Achilles)悖论。
芝诺认为追赶者,即阿基里斯需要一定的时间才能达到被追赶者(乌龟)于该时间开始的出发之处。
芝诺悖论解答芝诺悖论(Zeno's paradoxes)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。
这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。
),而芝诺悖论中既承认广延,又强调无广延的点。
这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的的机械论的分歧点。
这些悖论其实都可以简化为:1/0=无穷。
留传下来的芝诺悖论共有8个,最为著名的主要有4个,分别为二分法悖论、阿基里斯(Achilles)悖论、飞矢不动悖论和游行队伍悖论。
二分法悖论的内容是:事物想要运动完全程,就必须运动完全程的一半,而全程的一半还有一半,一半的一半还是有一半,这样一来一半的概念是可以无限地划分的,因而,事物在运动的过程中是永远无法经过“一半”的。
因此,运动是永远无法终结和进行的,因而运动不存在。
这里的问题所在是把时间看作了一个有限的概念而把空间看做了一个无限的范畴。
因而认为无法在有限中完成无限。
然而事实上,根据马克思理论,事物的有限无限的概念完全是相对的,不能片面地承认一方面的存在而否定另外一方。
比如说,一条线段(距离)包括无限的点,人永远无法走完这无数的点,正如他永远无法数清这些点一样。
为什么人们不认为数不清这无数的点是个悖论,却认为走完这无数的点就成了悖论了呢?原因就在于数数和运动是不同性质的东西,数数是空间中的行为,运动是本身的时间中的行为,不能混淆时间和空间。
第二个悖论是最为复杂的阿基里斯(Achilles)悖论。
芝诺认为追赶者,即阿基里斯需要一定的时间才能达到被追赶者(乌龟)于该时间开始的出发之处。
3、芝诺的四个悖论第一个悖论是阿基里斯与乌龟悖论,希腊战士阿基里斯跟乌龟赛跑,乌龟说,如果它比阿基里斯先跑10米,那么阿基里斯永远都追不上它,因为只要阿基里斯跑了10米,这时乌龟就又多跑了几米,若阿基里斯再跑到乌龟曾经停留的点,乌龟一定又跑到阿基里斯前面去了;看似有理,但要怎么说明为何如此呢?第二个是二分法悖论,是说你永远不可能抵达终点,因为你为了抵达终点,必得先跑完全程的一半,而要跑到全程的一半,你又得跑完一半的一半……如此一来,你永远跑不到终点;甚至可以说你根本无法起跑,因为若要起跑一小段距离,你就得移动那一小段距离的一半,似乎永远无法开步跑?第三则是飞矢悖论,在任一时刻,飞矢会占据着与它同等长度的空间,就这个瞬间而言,飞矢可说是静止不动的;如果每一个“任一时刻”飞矢都静止不动,那么飞矢应该一直不动。
怎么可能如此?飞矢应该不断往前飞啊!第四是竞技场悖论,假设时间有最小不可分割的单位(这是自古以来的基本假设),现在有3辆车子,在单位时间内,一号车向左移一个车身,二号车不动,三号车向右移一个车身,于是一号和三号便相差两个车身,那么一号和三号车在过程中相差一个车身时,需要花费基本单位元时间的一半,但这与基本的单位时间假设相冲突。
林兹要阐释这四个芝诺悖论,所持的基本论点是,对运动中的物体而言,并没有所谓的“任一时刻会位于某个确定位置”,因为物体的位置会随时间不停地改变。
他解释道︰“这样想应该比较能够理解,无论时间间隔多么小,或者物体在某段时间间隔中运动得有多慢,它还是在运动状态中,位置还是不断在改变,因此,无论时间间隔有多短,运动物体没有所谓在任一时刻、某一瞬间拥有确定的相对位置这回事。
”从芝诺到牛顿乃至于今天的物理学家,在讨论运动的本质时,无不假设“运动中的物体之间具有确定的相对位置”,而林兹则认为,便是因为假设时间可以冻结在任一时刻,此时运动中的物体位在一个确定的位置上,因此芝诺悖论中那种不可能发生的情况才会成立。