燃气轮机效率与温比压比关系曲线
- 格式:docx
- 大小:11.50 KB
- 文档页数:2
第二章1、热力参数:压缩比π=p2*/p1*,温度比τ=T3*/T1*;性能指标:比功ωn=ωt-ωc ;燃气机循环热效率ηgt=ωn/(f*Hu )2、燃气轮机的比功大,说明在同样工质流量和同样的装置尺寸下,燃气轮机的功率大;在 同样的功率下,工质的流量下,燃气轮机的尺寸小。
3、1*11111k k n p k k c T ωτππ--⎡⎤⎛⎫⎛⎫⎢⎥ ⎪=--- ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎝⎭⎣⎦4、111st k k ηπ-=-5、 膨胀比πt=p3*/p4*6、在一定的压比下,温比越高,比功越大;在一定的温比下,存在一个特定的压比πωmax ,使比功ωn 取得最大值;在一定的压比下,温比越高,效率越高,在一定的温比下,存在一 个特定的压比πηmax ,使效率ηgt 取得最大值。
通常,πηmax>πωmax 。
7、联合循环中最佳压比都比简单循环要降低。
简单循环燃气轮机的效率对燃气初温不很敏 感,而对压比较敏感;联合循环的效率对燃气初温较敏感而对压比不很敏感。
8、简单循环的效率只与压比有关,压比越大,效率越高。
联合循环时效率对压比不敏感。
9、如上图:简单循环的效率只与压比有关。
联合循环效率随温度变化很大。
10、采用再热循环时,燃气轮机的最佳压比都将有所提高。
计算题1.*1*31 1.3861** 1.38621**21288,10, 1.386, 1.315,0.8,0.851.03/, 1.20/,125028810546.9546.9288258.9258.9323.60.81.03323.6a a a g c t pa pg k k s cs s cs c c c pa c K k k C KJ Kg C KJ Kg T KT T KT T T K T T K w c T T πηηπη--===========⨯==-=-======⨯**34 1.31511 1.315**34333.3/1012507201012507205300.85530450.51.20450.5540.6/540.6333.3207.3/g gt s k k t ts s t t ts t pg t n t c KJ Kg T T K T T T KT T Kw c T KJ Kg w w w KJ Kg πππη--=======-=-===⨯===⨯==-=-= 2.***134**34**43 1.315*1 1.31513*4288,1600,860,0.85,0.881.386, 1.3151600860740740840.90.881600840.9759.1160022.48759.1gg c t a g t t ts t s ts k k t s t T K T K T K k k T T T KT T K T T T KT T ηηηππ--========-=-=====-=-=⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭=1 1.3861** 1.38621**21**2122.4828822.48685.3685.3288397.3397.3467.40.85288467.4755.4a a k k s cs s csc c c T T KT T T T T K T T T Kππη--===⨯==-=-=====+=+=3.()()()()()()()()()()---=======-==-→===-+-+*4**341**34**43**43 1.31511 1.31517 1.315 0.90 T 850 123 485012341527.20.9010.90117g gg g t g t s k k ts st t ts t t t k k k K T T T T T T T T T T T T Kππηπηηηπ。
燃机考试题库(附答案) work Information Technology Company.2020YEAR燃机考试题库选择题1.燃机压气机发生喘振时,轴向推力将( B )。
A、增大B、减小C、无法判断。
2.燃机支承轴承采用可倾瓦块结构,每个轴承有( B )块瓦块。
A、四B、六C、八。
3.燃机的燃烧器采用多喷嘴( B )燃烧器,另外在燃烧器末段还装有一个空气旁路阀。
A、预混B、扩散C、预混扩散型。
4.燃气透平输出的有效功率,约( C )用于驱动压气机,其余部分用来带动发电机旋转发电。
A、1/3B、1/2C、2/35.燃气-蒸汽联合循环机组额定工况下,汽机输出功率约占联合循环总功率的( A )。
A、1/3B、1/2C、2/36.燃机停机后用( B )来进行吹扫,以使透平上下缸温度均匀。
A、辅助蒸汽B、压缩空气。
C、氮气7.燃机的效率为36%,蒸汽轮机的效率为33%,则整套机组的总效率为( C )。
A、36%+33%B、36%×33%C、36%+(1-36%)×33%8.推力轴承瓦片上的钨金厚度一般应( B )燃机、汽机通流部分最小动静间隙。
A、大于B、小于C、等于9.相对于热端驱动,冷端驱动的燃机转轴所承受的扭力( A )。
A、较大B、较小 C不一定10.当燃机熄火惰走过程中,汽轮机的胀差( C )。
A、增大B、减小C、先增大后减小D、先减小后增大11.天然气减压后其自身的温度也相应降低,当压力降低1MPA时其温度降低约( A )。
A、5℃B、10℃C、15℃D、20℃12.当燃机负荷在( C )负荷时,可进行在线水洗。
A、100%B、50%、C、80%13.天然气的主要成分是:( A )A、甲烷B、乙烷C、丙烷14.进行天然气置换时,气体的升压速率一般不超过( B )。
A、1bAr/minB、3bAr/minC、5bAr/min15.进行天然气置换,氮气置换空气时,测的氧气浓度低于( A )时合格A、1%B、2%C、5%16.进行天然气置换,天然气置换氮气时,测的氮气浓度高于( A )时合格A、99%B、98%C、96%17.在调压站等可能存在天然气泄漏的地方,甲烷的浓度低于爆炸下限的( B )以后才允许进入站内做相应的检修工作。
选择题1.燃机压气机发生喘振时,轴向推力将( B )。
A、增大B、减小C、无法判断。
2.燃机支承轴承采用可倾瓦块结构,每个轴承有( B )块瓦块。
A、四B、六C、八。
3.燃机的燃烧器采用多喷嘴( B )燃烧器,另外在燃烧器末段还装有一个空气旁路阀。
A、预混B、扩散C、预混扩散型。
4.燃气透平输出的有效功率,约( C )用于驱动压气机,其余部分用来带动发电机旋转发电。
A、1/3B、1/2C、2/35.燃气-蒸汽联合循环机组额定工况下,汽机输出功率约占联合循环总功率的( A )。
A、1/3B、1/2C、2/36.燃机停机后用( B )来进行吹扫,以使透平上下缸温度均匀。
A、辅助蒸汽B、压缩空气。
C、氮气7.燃机的效率为36%,蒸汽轮机的效率为33%,则整套机组的总效率为( C )。
A、36%+33%B、36%×33%C、36%+(1-36%)×33%8.推力轴承瓦片上的钨金厚度一般应( B )燃机、汽机通流部分最小动静间隙。
A、大于B、小于C、等于9.相对于热端驱动,冷端驱动的燃机转轴所承受的扭力( A )。
A、较大B、较小 C不一定10.当燃机熄火惰走过程中,汽轮机的胀差( C )。
A、增大B、减小C、先增大后减小D、先减小后增大11.天然气减压后其自身的温度也相应降低,当压力降低1MPA时其温度降低约( A )。
A、5℃B、10℃C、15℃D、20℃12.当燃机负荷在( C )负荷时,可进行在线水洗。
A、100%B、50%、C、80%13.天然气的主要成分是:( A )A、甲烷B、乙烷C、丙烷14.进行天然气置换时,气体的升压速率一般不超过( B )。
A、1bAr/minB、3bAr/minC、5bAr/min15.进行天然气置换,氮气置换空气时,测的氧气浓度低于( A )时合格A、1%B、2%C、5%16.进行天然气置换,天然气置换氮气时,测的氮气浓度高于( A )时合格A、99%B、98%C、96%17.在调压站等可能存在天然气泄漏的地方,甲烷的浓度低于爆炸下限的( B )以后才允许进入站内做相应的检修工作。
第二章1、热力参数:压缩比π=p2*/p1*,温度比τ=T3*/T1*;性能指标:比功ωn=ωt-ωc ;燃气机循环热效率ηgt=ωn/(f*Hu )2、燃气轮机的比功大,说明在同样工质流量和同样的装置尺寸下,燃气轮机的功率大;在 同样的功率下,工质的流量下,燃气轮机的尺寸小。
3、1*11111k k n p k k c T ωτππ--⎡⎤⎛⎫⎛⎫⎢⎥ ⎪=--- ⎪⎢⎥ ⎪⎝⎭ ⎪⎢⎥⎝⎭⎣⎦4、111st k k ηπ-=-5、 膨胀比πt=p3*/p4*6、在一定的压比下,温比越高,比功越大;在一定的温比下,存在一个特定的压比πωmax ,使比功ωn 取得最大值;在一定的压比下,温比越高,效率越高,在一定的温比下,存在一 个特定的压比πηmax ,使效率ηgt 取得最大值。
通常,πηmax>πωmax 。
7、联合循环中最佳压比都比简单循环要降低。
简单循环燃气轮机的效率对燃气初温不很敏 感,而对压比较敏感;联合循环的效率对燃气初温较敏感而对压比不很敏感。
8、简单循环的效率只与压比有关,压比越大,效率越高。
联合循环时效率对压比不敏感。
9、如上图:简单循环的效率只与压比有关。
联合循环效率随温度变化很大。
10、采用再热循环时,燃气轮机的最佳压比都将有所提高。
计算题1.*1*31 1.3861** 1.38621**21288,10, 1.386, 1.315,0.8,0.851.03/, 1.20/,125028810546.9546.9288258.9258.9323.60.81.03323.6a a a g c t pa pg k k s cs s cs c c c pa c K k k C KJ Kg C KJ Kg T KT T KT T T K T T K w c T T πηηπη--===========⨯==-=-======⨯VVV V**34 1.31511 1.315**34333.3/1012507201012507205300.85530450.51.20450.5540.6/540.6333.3207.3/g gt s k k t ts s t t ts t pg t n t c KJ Kg T T K T T T K T T K w c T KJ Kg w w w KJ Kgπππη--=======-=-===⨯===⨯==-=-=VVV V2.***134**34**43 1.315*1 1.31513*4288,1600,860,0.85,0.881.386, 1.3151600860740740840.90.881600840.9759.1160022.48759.1gg c t a g t t ts t s ts k k t s t T K T K T K k k T T T KT T K T T T KT T ηηηππ--========-=-=====-=-=⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭=V V V V 11.3861** 1.38621**21**2122.4828822.48685.3685.3288397.3397.3467.40.85288467.4755.4a a k k s cs s csc c c T T KT T T T T K T T T Kππη--===⨯==-=-=====+=+=V V V V3.()()()()()()()()()()---=======-==-→===-+-+V V V V *4**341**34**43**43 1.31511 1.31517 1.315 0.90 T 850 123 485012341527.20.9010.90117g gg gt g t s k k ts st tts t t t k k k K T T T T T T T T T T T T Kππηπηηηπ(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
燃气轮机功率曲线计算公式燃气轮机是一种常见的热力发电设备,其工作原理是利用燃气燃烧产生高温高压气体,驱动涡轮机转动,从而产生功率。
燃气轮机功率曲线是描述燃气轮机输出功率与工况参数之间关系的曲线,对于设计和运行燃气轮机具有重要的指导意义。
本文将介绍燃气轮机功率曲线的计算公式及其应用。
燃气轮机功率曲线计算公式的基本形式如下:\[P = \eta_m \cdot \eta_t \cdot Q \cdot \Delta h\]其中,P为燃气轮机输出功率,单位为瓦特(W);ηm为燃气轮机机械效率;ηt为涡轮机效率;Q为燃气流量,单位为立方米/秒(m³/s);Δh为燃气焓增,单位为焦耳/千克(J/kg)。
在实际应用中,燃气轮机功率曲线的计算往往需要考虑更多的因素,例如燃气轮机的压气机和涡轮机的特性曲线、燃气的燃烧热值、空气和燃气的混合比等。
因此,完整的燃气轮机功率曲线计算公式应该包含更多的参数和修正项。
燃气轮机功率曲线计算公式的应用可以帮助工程师和操作人员更好地理解燃气轮机的性能特点,指导燃气轮机的设计和运行。
例如,在燃气轮机的设计阶段,可以通过计算功率曲线来确定最佳的工作参数,以实现燃气轮机的高效运行;在燃气轮机的运行阶段,可以通过功率曲线来监测燃气轮机的性能变化,及时调整运行参数,保证燃气轮机的安全稳定运行。
除了燃气轮机功率曲线计算公式外,还有一些与燃气轮机功率相关的重要参数需要注意。
例如,燃气轮机的热效率是衡量燃气轮机性能的重要指标之一,其计算公式为:\[η_{th} = \frac{P}{Q \cdot H_c}\]其中,P为燃气轮机输出功率;Q为燃气流量;Hc为燃气的低位发热值。
燃气轮机的热效率直接影响燃气轮机的经济性和环保性,因此在燃气轮机的设计和运行中,热效率的计算和优化也是至关重要的。
另外,燃气轮机的负荷特性曲线也是燃气轮机性能的重要表征之一。
燃气轮机的负荷特性曲线描述了燃气轮机在不同负荷下的输出功率和燃气流量之间的关系。
燃气轮机原理与应用复习题2013-05-281 同汽轮机相比,燃气轮机的特点有哪些?优点:(1)重量轻、体积小、投资省。
(2)启动快、自动化程度高、操作方便。
(3)水、电、润滑油消耗少,少用或不用水。
(4)燃料适应性强、公害少。
(5)维修快、运行可靠。
缺点:A. 热效率较低。
B.使用的经济性和可靠性较差。
2 燃气轮机涡轮叶片有哪几种冷却方式?每种冷却方式的大概降温范围?1)对流冷却 可使温度降低200-250℃2)冲击冷却 可使温度降低200-300℃3)气膜冷却 可使温度降低400--600℃4)发散冷却 可使温度降低500-800℃普遍使用前三种的混合3 航空用燃气轮机有哪几种类型?涡轮喷气发动机、涡轮螺旋桨发动机、涡轮风扇发动机4 什么是燃气轮机循环的压比、温比?压比 π*:压气机出口的气流压力与其进口的气流压力的比值。
温比 τ*:涡轮前进口燃气温度与压气机进口气流温度的比值。
5 什么是燃气轮机循环的比功、热效率、有用功系数?燃气轮机的循环比功:进入压气机内1kg 空气完成 一个循环后,对外界输出的有效轴功。
热效率:燃气轮机输出的有用功与其所耗燃料的热量的比值。
有用功系数ϕ:燃气轮机比功w i 与涡轮比功w T 的比值。
6 燃气轮机理想简单循环的比功与哪些因素有关?影响理想简单循环的比功ws 的重要因素:压比π*和温比τ*。
(1) 压比π*一定时,温比τ*增大,循环比功ws 增大。
(2) 温比τ*一定时,有一最佳比πL *使比功最大,且τ*增大时,πL *增大。
7 燃气轮机理想简单循环的效率与哪些因素有关?(1) 理想简单循环的热效率ηs 只与压比π*有关,而与温比τ*无关。
*1*2*p p =π*1*3*T T =τT C T i w w w w -1 ==ϕ(2) 理想简单循环的热效率ηs 随压比π*增加而提高。
8 写出理想简单循环中对比功的最佳压比、极限压比的表达式。
最佳压比: 。
燃气轮机效率与温比压比关系曲线
1. 燃气轮机简介
燃气轮机是一种常见的热力发电装置,其通过燃烧燃料产生高温高压气体,然后将气体通过扩张机械转化为旋转动能,最终驱动发电机发电。
燃气轮机具有结构简单、启动快速、效率高等优点,在电力、航空、船舶等领域得到广泛应用。
2. 燃气轮机效率
燃气轮机的效率是衡量其能量利用程度的重要指标。
通常情况下,燃气轮机的效率可以分为两部分:压缩功和扩张功之间的比值以及扩张功和输入焓之间的比值。
2.1 压缩功与扩张功之间的比值
在燃气轮机中,压缩功是指将空气压缩至工作状态所需消耗的能量,而扩张功是指由于高温高压气体膨胀而产生的能量。
这两者之间的比值被称为压缩功与扩张功比,记作ηc。
2.2 扩张功与输入焓之间的比值
扩张功是燃气轮机从高温高压气体中获得的能量,而输入焓是指单位时间内通过燃烧室进入轮机系统的能量。
这两者之间的比值被称为扩张功与输入焓比,记作ηt。
2.3 燃气轮机总效率
燃气轮机的总效率是指压缩功和扩张功之间以及扩张功和输入焓之间两个比值的乘积,即ηtotal=ηc×ηt。
3. 温比和压比
在讨论燃气轮机效率与温比压比关系之前,我们首先需要了解温比和压比这两个概念。
3.1 温比
温比是指工作状态下的绝对温度与参考状态下的绝对温度之间的比值。
通常情况下,参考状态选择大气标准条件下的绝对温度(298K)。
工作状态下的绝对温度可以通过测量得到。
3.2 压比
压比是指工作状态下的绝对压力与参考状态下的绝对压力之间的比值。
与温比类似,参考状态一般选择大气标准条件下的绝对压力(101.3kPa)。
4. 燃气轮机效率与温比压比关系曲线
燃气轮机效率与温比压比之间存在一定的关系,可以通过绘制效率-温比压比曲线
来展示。
4.1 曲线特点
燃气轮机效率-温比压比曲线通常呈现以下特点: - 曲线起始于(1,1)点,即在
参考状态下,燃气轮机的效率为100%。
- 随着温比的增加,燃气轮机的效率逐渐
提高,并逐渐趋近于一个极限值。
- 随着压比的增加,燃气轮机的效率也会提高,在一定范围内呈现增长趋势。
- 当达到一定的温比和压比时,燃气轮机的效率开
始下降。
4.2 影响因素
影响燃气轮机效率与温比压比关系曲线的因素主要包括以下几个方面: - 燃料选择:不同类型的燃料燃烧产生不同的燃气特性,从而对燃气轮机效率产生影响。
- 空气进气温度:空气进气温度的增加会导致温比的升高,从而提高燃气轮机效率。
- 压缩机效率:压缩机的效率越高,燃气轮机的总效率也会相应提高。
- 燃烧室
设计:合理的燃烧室设计可以提高燃料的完全燃烧程度,从而提高扩张功和输入焓之间的比值。
5. 总结
通过绘制燃气轮机效率与温比压比关系曲线,我们可以直观地了解到在不同工况下,燃气轮机的能量利用程度。
了解这种关系对于优化和改进现有轮机系统以及设计新型轮机具有重要意义。
同时,我们还需要考虑其他因素如环境条件、运行方式等对曲线形态和实际应用中的影响。
通过深入地分析和探索,我们可以进一步提高燃气轮机的效率,并推动其在各个领域的广泛应用。
参考文献: 1. Boyce, M. P. (2019). Gas turbine engineering handbook. Butterworth-Heinemann. 2. 王洪涛, & 周树生. (2003). 燃气轮机性能参数与燃气轮机性能曲线的计算方法[J]. 中国电力教育, (4), 54-59.。