汽水热液矿床各论
- 格式:ppt
- 大小:3.13 MB
- 文档页数:39
第五章气水热液矿床总论本章主要讲述气水热液矿床概念、工业意义;含矿气水热液的来源、成分组成、性质;成矿元素在气水热液中的搬运方式及沉淀原因;气水热液的运移、成矿方式;气水热液矿床的围岩蚀变现象;气水热液矿床成矿温压条件测定;气水热液矿床在时间和空间上的演化规律;气水热液矿床的分类等。
为不同类型气水热液矿床的研究奠定理论基础。
关键词:含矿气水热液;气水热液矿床;搬运形式;成矿方式;成矿期次;围岩蚀变;第一节含矿气水热液与气水热液矿床一、基本概念1、含矿气水热液:在一定深度下形成的,主要由水和挥发性组分(F、Cl、S、B、P等)组成的,有一定温度、压力的溶液,称之为气水热液。
如果气水热液中含有一定量的成矿物质,则称为含矿气水热液。
由于气水热液主要由水组成,呈液态,故可简称为“热液”。
(1)含矿气水热液由成矿物质(Au、Ag、Cu、Pb、Zn、W、Sn、Mo等)和介质(水、挥发性组份)两部分组成,二者可同源,也可异源;(2)温度600~50℃、压力最多可达几亿Pa。
临界温度以上是气态,降到临界温度以下呈液态(纯水临界温度374℃,如溶有其他物质时,其临界温度可提高到400℃);(3)高温情况下,气、液两相并存,故称之为“气水溶液”或“气-水热液”,中低温情况下(临界温度以下)则呈液态出现,故统称为热水热液或热液。
2、热液矿床:含矿气水热液在一定的地质构造中运移时,由于温度、压力、组分浓度、物理化学条件等发生变化,其中的某些成矿物质通过充填和(或交代)的方式在一些有利的部位发生沉淀、聚集,形成的矿床称为气水热液矿床。
二、气水热液矿床的工业意义气水热液矿床在矿床学领域中占着十分重要的地位,这是由于:(1)矿床类型繁多,产有许多专业矿产。
如亲硫组分矿产(W、Sn、Bi、Mo、Cu、Pb、Zn、As、Sb、Be、Hg、Fe)、贵金属和放射性金属矿床(Au、Ag、U等)、稀有和稀土元素矿产(Li、Be、Ga、Ge、In、Cd等)及非金属矿产(萤石、石棉、重晶石、冰洲石、硫等);(2)丰富和发展了成矿理论。
第六章气水热液矿床各论(思考题及答案)1.热液矿床的分类方案答:由于自然界中热液矿床数量多、成矿复杂,至今尚无一个被不同研究者所公认的分类方案。
早在1933年,Lindgren根据热液矿床的成矿温度和深度,将热液矿床分为高温深成(300~500℃,>3km)、中温中成(200~300℃,1.5~3km)和低温浅成(50~200℃,<1.5km)等三种类型;后又有研究者进一步划分为深成高温、中深中温、浅成低温、远成低温矿床和浅成高温等矿床五类;也有人按成矿热液的主要来源,将热液矿床分为岩浆热液矿床、地下水热液矿床、火山热液矿床和变质热液矿床等。
在姚凤良等(2006)的《矿床学教程》中,主要考虑:(1)矿质和介质的主源(2)不同类型矿床的工业价值(3)成矿系列(即在侵入体的不同部位常出现成因上有联系的不同类型矿床)等,将热液矿床分为(1)接触交代矿床(狭义的矽卡岩矿床);(2)斑(玢)岩型矿床;(3)高、中温热液脉型矿床;(4)低温热液矿床。
2.矽卡岩及其成因?答:矽卡岩,英文名为Skarn,原为瑞典中部的矿工用来称谓那些与矿石伴生的深色钙质硅酸盐岩石,此后经Tornebohm(1875)正式提出,并为Lingren (1902)及广大研究者接受与沿用。
在矿物组成上,矽卡岩由各类钙-镁-铁-锰-铝硅酸盐矿物所组成,以石榴子石与辉石(透辉石)为主,次为硅灰石、透闪石、阳起石、绿帘石、绿泥石、电气石、方柱石、符山石、金云母等。
目前地学界公认的矽卡岩定义为:产于火成侵入岩体接触带及附近,由岩浆热液及各类流体与碳酸质岩石交代变质而形成的蚀变岩,属于接触变质交代岩。
我国研究者根据长江中下游地区矽卡岩小矿床研究成果,提出了“岩浆矽卡岩”的概念。
吴言昌等(1996)指出,岩浆矽卡岩是由钙硅酸盐熔(流)体或钙矽卡岩质岩浆贯入结晶或/和隐爆团结(结晶)形成的。
主要呈脉状体,少数呈角砾岩筒(带),受断裂、裂隙构造控制,可产于各类不同岩石(层)中。
矿床学06气水热液矿床概论1. 引言气水热液矿床是地质中含有气体、水和热液的矿床。
它们通常形成于构造运动活跃的地区,并与岩浆活动和热液活动有关。
本文将对气水热液矿床的形成机制、分类、主要特征和勘查方法进行概述。
2. 气水热液矿床的形成机制气水热液矿床的形成机制是由于地壳中的构造运动,导致岩浆在地下逆浸入,形成熔融岩浆库,同时地下水也因大地构造的运动而发生循环。
当熔融岩浆库和地下水循环相遇时,岩浆迅速冷却,热液形成。
热液含有丰富的金属和非金属元素,经过长时间的沉积和成矿作用,形成气水热液矿床。
3. 气水热液矿床的分类气水热液矿床可以根据热液的来源、成分和温度进行分类。
3.1 火山喷发型气水热液矿床火山喷发型气水热液矿床是由火山作用引起的热液活动形成的矿床。
火山岩浆中的含有丰富的挥发性组分,在火山喷发过程中与地下水相遇,形成热液。
这种类型的矿床常见于火山带。
3.2 岩浆热液型气水热液矿床岩浆热液型气水热液矿床是由岩浆活动引起的热液活动形成的矿床。
岩浆通过裂隙和断裂进入地下水系统,形成热液。
这种类型的矿床常见于火山地区和地壳褶皱带。
3.3 地壳深部热液型气水热液矿床地壳深部热液型气水热液矿床是由地壳深部的地热活动引起的热液活动形成的矿床。
由于地下深部的高温和高压条件,地下水在地壳深部形成高温高压下的热液。
这种类型的矿床常见于板块构造活跃的地区。
4. 气水热液矿床的主要特征气水热液矿床具有以下主要特征:•高温高压条件下形成:由于热液形成的地下条件通常是高温高压,导致矿床中的矿物含量丰富。
•矿物多样性:气水热液矿床中的矿物种类繁多,包括金属矿物、非金属矿物以及稀有地球元素矿物。
•成矿作用长时间:气水热液矿床的形成需要长时间的矿物沉积和成矿作用,矿床通常具有较大的规模。
•区域一致性:气水热液矿床常常呈现区域一致性,即在一个特定的地区内出现多个矿床。
5. 气水热液矿床的勘查方法气水热液矿床的勘查方法包括地质勘查、地球化学勘查和物理勘查。
第五章气水热液矿床总论(思考题及答案)1.气水热液与含矿气水热液的概念答:“气水热液”简称“热液”,是指形成于一定深度,具有一定温度和压力,主要由“水”和挥发性组分(F、Cl、B、P、S)组成(“气”)的流体,该流体在临界温度以上为气态,降到临界温度以下是液态。
含矿热液(ore-bearing hydrothermal solution)也称成矿热液(ore-forming hydrothermal solution),是指含有成矿物质的气水热液。
流体包裹体研究以及矿物组合的稳定性热力学计算表明,成矿热液一般具有较大的温度(50~500℃)和盐度(所溶解的所有固体组分的百分含量,<5%~>40%)区间,压力一般为4×106~2.5×108Pa,传统上一般认为热液矿床的形成深度不超过6~8Km。
2.何谓临界温度?水的临界温度是多少?答:使物质由气相变为液相的最高温度叫临界温度。
每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,液体就会沸腾,气态物质不会液化,这个温度就是临界温度。
临界温度越低,越难液化。
水的临界温度约是374℃。
当在临界温度时,恰好还能使水保持液态的那个压力,被称作水的“临界压力”,它大约是标准大气压的218.3倍。
当温度与压力高于上述数值时,就能得到“超临界水”。
与水蒸气相似,它没有固定体积并能充满任何容器。
然而,它的密度远比水蒸气高,事实上是液态水密度的三分之一。
而它最令人惊奇的性质是,它能像液态水一样溶解物质。
CO2的临界温度是31℃,临界压力是72.85标准大气压。
H的临界温度是-204℃,临界压力是12.8标准大气压。
3.含矿热液的来源有几种?如何判断?答:多数研究者认为,自然界中的存在不同来源的气水热液,包括岩浆水、变质水、地层建造水、天水(大气水)以及幔源初生水。
其中,大气水热液(meteoric fluid)包括雨水、湖水、海水、河水、冰川水和浅部地下水。